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Color-changing melons are a kind of cucurbit plant that combines ornamental

and food. With the aim of increasing the efficiency of harvesting Color-changing

melon fruits while reducing the deployment cost of detection models on

agricultural equipment, this study presents an improved YOLOv8s network

approach that uses model pruning and knowledge distillation techniques. The

method first merges Dilated Wise Residual (DWR) and Dilated Reparam Block

(DRB) to reconstruct the C2f module in the Backbone for better feature fusion.

Next, we designed a multilevel scale fusion feature pyramid network (HS-PAN) to

enrich semantic information and strengthen localization information to enhance

the detection of Color-changing melon fruits with different maturity levels.

Finally, we used Layer-Adaptive Sparsity Pruning and Block-Correlation

Knowledge Distillation to simplify the model and recover its accuracy. In the

Color-changing melon images dataset, the mAP0.5 of the improved model

reaches 96.1%, the detection speed is 9.1% faster than YOLOv8s, the number

of Params is reduced from 6.47M to 1.14M, the number of computed FLOPs is

reduced from 22.8GFLOPs to 7.5GFLOPs. The model’s size has also decreased

from 12.64MB to 2.47MB, and the performance of the improved YOLOv8 is

significantly more outstanding than other lightweight networks. The

experimental results verify the effectiveness of the proposed method in

complex scenarios, which provides a reference basis and technical support for

the subsequent automatic picking of Color-changing melons.
KEYWORDS

Color-changing melon, multi-scale feature fusion, model pruning, knowledge
distillation, YOLOv8s
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1 Introduction

Color-changing melon, a kind of fruit that turns from green to

red on the surface of its skin when it matures, belongs to the

Cucurbitaceae family of vines, and the fruit is thick in the middle

and thin at both ends, resembling a mouse, so it is also known as the

mouse melon. It is suitable for planting in the garden, both

ornamental and edible. When cultivated on the plantation,

workers will plant the seedlings in the hanging soil, and when the

plant grows up, the vine climbs all over the shelves. The fruit

naturally hangs down with a reddish color for a good ornamental

appearance. At the same time, Color-changing melons have a high

yield, and a single plant can get about 200 fruits in its lifetime.

Therefore, after some ornamental fruits are left behind, most of the

remaining immature fruits are picked and used in stir-fries or soups

for a refreshing flavor. A Color-changing melon plant can produce

fruit for up to five consecutive months. Due to the varying maturity

periods of the fruits, in the current production environment, the

immature fruits are mainly picked by hand. Fruits picked too early

have a rugged quality and poor flavor, while fruits picked too late

lose their food value and affect profitability (Camposeo et al., 2013).

If you rely only on workers, you need to pick several times, which is

too time-consuming and inefficient (Yang et al., 2023). Meanwhile,

the fruits are all growing on 3-meter-high shelves, and picking

operations that do not meet safety norms increase the risk of worker

injury. In response to these problems, we believe robotic arms

(Kang et al., 2020) can be developed to automatically pick fruits that

meet standards. This can alleviate the problem of labor shortage in

agricultural production (Clark et al., 2018) and, at the same time,

ensure the quality of picking, improve productivity, and ensure the

safety of workers. However, there are still some difficulties in robotic

picking technology, and the critical step is the localization and

judgment of the fruit. The study of how to realize accurate target

detection is a prerequisite for automatic picking work.

In the early field of target detection, researchers designed

detection algorithms based on the fruit’s color, shape, and texture.

However, for fruits whose fruit color is similar to that of leaves, such

as cucumbers, it is impossible to distinguish the fruit from the

background by relying on shape alone. Therefore, researchers

usually use morphology in conjunction with other methods in the

process of designing algorithms. For example, Dorj et al (Dorj et al.,

2017). designed algorithms to detect citrus based on color and shape

features. However, traditional algorithms are only designed for a

specific scene. If the interference of environmental factors such as

light changes is considered (Zhang et al., 2022), the detection effect

on the target will be significantly reduced. Traditional machine

learning algorithms have some improvements in detecting fruits.

However, they still have similar problems: they often need to limit

the types of features to compress the feature space (Chaudhari and

Waghmare, 2022), they cannot learn high-dimensional features

directly, and they are not robust and generalized enough to face a

variety of complex scenes.

As science continues to develop, Convolutional Neural

Networks (CNNs) have overcome the limitations of traditional

machine learning and demonstrated excellent performance

(Krizhevsky et al., 2017). CNN-based machine vision has been
Frontiers in Plant Science 02
increasingly widely used in agriculture (Kamilaris and Prenafeta-

Boldú, 2018), and the resulting deep-learning networks are

continuously penetrating the field of Computer Vision. With the

structure of CNNs as the Backbone, the model extracts rich feature

information and dramatically improves the accuracy of detection,

while the high-dimensional features processed by multi-layer

convolution further enhance the generalization of different

application scenarios. Classical target detection algorithms consist

of a classification process and a localization process, and these

algorithms can be classified into two-stage detection algorithms and

one-stage detection algorithms based on whether they produce

candidate regions. The R-CNN family of networks are

representative algorithms for two-stage detection, which first

generate candidate regions and then perform the target

classification task and the target localization task separately, for

instance, Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He

et al., 2017). Mu et al (Mu et al., 2020). used Faster R-CNN

incorporating transfer learning and achieved a mAP of 87.83% on

a homemade immature tomato dataset. Jin et al (Suddapalli and

Shyam, 2021). used Mask R-CNN to segment diseased portions of

vegetables and fruits, which was used in place of the manual

screening process.

In contrast, one-stage detection algorithms have faster detection

speeds and such algorithms are represented by SSD (Liu et al., 2016)

and the YOLO family (Redmon et al., 2016). The YOLO family has

iterated many versions through continuous development (Terven

et al., 2023), with progressively improved extensibility and

generalization, and is now widely used in detecting fruits and

diseases in agriculture (Shi et al., 2020; Suo et al., 2021; Nan et al.,

2023; Zhu et al., 2024). Liang et al (Liang et al., 2020). combined

YOLOv3 and UNet to detect lychee under nighttime conditions.

YOLOv3 suffers from the problem of a relatively complex model

structure. Therefore, subsequent research has also focused on

lightweight target detection algorithms. Li et al (Li et al., 2021).

modified the YOLOv4-Tiny model to design a detection algorithm

for corn kernel breakage during harvesting and provide parameters

for the combined harvester while working. Zeng et al (Zeng et al.,

2023). used the MobileNetv3 network to replace Backbone in

YOLOv5 while optimizing the training hyperparameters. They

constructed a lightweight model successfully deployed to cell

phones to detect tomatoes’ maturity. Nouaze et al (Nouaze and

Sikati, 2023). introduced the FEature architecture in YOLOv7,

which was used to combine various pieces of information in the

feature space and increase the model’s recognition accuracy for both

healthy and diseased apples, and its recognition accuracy with a

mAP of 89.30%.

Although the above-improved algorithms have made progress

in model lightweight, they only pursue the simplification of network

structure when they face complex real-world scenarios, such as

backlighting, overlapping fruits, dense fruits, and fruits being

occluded by other objects, many of the target detection

algorithms that have been lightweight are limited by the small

number of parameters and computation, their robustness is not

ideal, and they often miss and misdetect, which makes it difficult to

cope with the detection in complex scenes. Therefore, in response to

the challenge, most lightweight models are less robust when facing
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complex scenes. In contrast, high-accuracy models suffer from a

more complex network structure; this paper constructs an

improved model based on YOLOv8s as well as a series of

subsequent processing of the model, which can be used for the

real-time detection task of picking robots and low-cost edge devices

in complex natural environments under the premise of

guaranteeing the detection accuracy.

These combined algorithms can effectively improve the

shortages of sizeable computational cost and excessive memory

occupation during the model deployment while maintaining a high

accuracy rate, providing technical support for the subsequent

automatic harvesting.

The main contributions and innovations of this study are

summarized as follows:
Fron
(1) We created a dataset of Color-changing melon figures using

manual annotation, and the fruits in various real scenarios

were considered in the shooting process.

(2) In order to improve the accuracy of target detection in

complex scenes while maintaining the lightweight structure

of the model, we first designed the DWR-DRB module to

replace the Bottleneck in the C2f module to increase the

receptive field without increasing the depth of the network,

to enrich the multi-scale contextual information extracted

by Backbone. Then, we constructed the HS-PAN

architecture, which adopts multi-level feature fusion to

aggregate multi-scale features and can effectively focus on

the fruits that are interfered with by background factors.

(3) After the model was trained, we used layer adaptive sparsity

pruning on the model, and the pruned model computed

only one-third of the original FLOPs. Then, using the

improved model trained in advance as the teacher model,

the pruned model is distilled using block correlation

knowledge distillation, and the student model does not

increase the network complexity. At the same time, the

recognition performance is further improved, which helps

the model to be deployed on mobile terminals or embedded

devices with limited resources.

(4) We conducted a series of comparison experiments related

to Color-changing melon dataset detection. We first

conducted a comparison of the model recognition effect

before and after improvement, then designed an ablation

experiment, next compared the number of each channel

before and after model pruning and the effect of different

scales of teacher models on the distillation effect, and finally

compared our improved algorithm with other lightweight

algorithms to demonstrate the difference in performance

between different algorithms.
The rest of the paper is organized as follows. Part II discusses

the processing flow of the Color-changing melon dataset and the

improved YOLOv8s model and also describes the model pruning

and knowledge distillation methods used. Part III explains the

experimental setup and evaluation metrics and discusses the

results of the various types of comparisons. Part IV summarizes.
tiers in Plant Science 03
2 Materials and methods

2.1 Data acquisition

The Color-changing melons dataset utilized in our research was

collected from a vegetable science and technology park in Shouguang

City, Shandong Province (36°51′N, 118.49′E), and photographed

during July 2023, every day from 10:00 a.m. to 4:00 p.m. All images

were obtained using the Sony IMX 866 rear camera of the Vivo X80

smartphone under natural lighting conditions. The shooting distance

ranged from 0.8 meters to 1.2 meters. The images consider variations

in factors such as shooting angle, lighting, and fruit overlap. After

filtering out low-quality images, such as overexposure and severe

blurring, 1240 images were finally obtained and archived in a JPG

file type of 4032� 3024 pixels. Figure 1 displays the sample data

obtained from various shooting scenarios.
2.2 Data labeling

In the task of detecting the maturity of Color-changing melons,

the maturity of Color-changing melons was classified into green

immature, orange semi-mature, and red mature stages based on the

color of the fruit surface in accordance with agricultural harvesting

requirements. Some of the green immature stages have fine stripes

present on the surface of the fruit. When the surface of the fruit

fades from green to orange starting from the top, this enters the

semi-mature stage. The immature stage is reached when the color of

the fruit surface gradually deepens until it turns completely red.

During actual harvesting, a small number of semi-mature and

mature fruits are used for ornamental purposes as well as seed

reserves, while most of the immature fruits are picked for

consumption. The use of algorithms to obtain information on the

maturity of the fruit helps to provide a basis for judgment of the

picking work of the robot. Without affecting the recognition

accuracy, we set the images in the Color-changing melons dataset

uniformly at 640� 640 pixels and randomly divided them into the

training set, validation set, and test set according to the ratio of 8 :

1 : 1. The images of the three maturity levels of fruits are uniformly

distributed in each set without intersecting each other. There are

992 images in the training set and 124 in the validation and test sets,

respectively. Then, all the images are labeled using LabelImg, and

the labels are saved in txt format and converted to xml format for

easy training and testing.
2.3 Data augmentation

To improve the trained network’s effectiveness and enhance

the model’s robustness, data enhancement methods are used to

increase the number of images in the training part to avoid

overfitting. With the help of the Augmentor tool, we performed

operations such as flipping, brightness adjustment, warping

distortion, and adding noise to the images, 150 images were

obtained for each enhancement method, and finally, the training
frontiersin.org
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set was expanded to 2142 images. Figure 2 provides an example of

each data augmentation technique. It is worth noting that in cases

where it is difficult to obtain a large number of labeled fruit figures,

in addition to the offline data augmentation approach used in the

paper, it is good to consider using FSL (Few-Shot Learning) or

Meta-learning to help the model improve its generalization ability.

These two approaches provide practical tools for dealing with data

scarcity in resource-constrained environments. Meta-learning

learns from a few crucial fruit samples and thus adapts quickly

to different fruit maturity stages. Further, it enhances adaptation

to new tasks by learning multiple related tasks and constructing

similar sets between different tasks. Few shot learning is a learning

strategy to improve the model’s ability to generalize to new tasks

with fewer supervised samples, and it usually utilizes prior

knowledge to simplify the sample features. In practical

agricultural applications, these two methods can be combined to

train the base model through meta-learning first and then use few

shot learning to fine-tune the model and improve its

generalization in the case of limited samples to apply the target

detection technology more widely to agricultural automated

picking systems.
2.4 YOLOv8

Until 2016, the R-CNN family of algorithms dominated the

field of target detection. After introducing YOLOv1, target detection

algorithms have been differentiated into single-stage and two-stage.
Frontiers in Plant Science 04
YOLO is characterized by abandoning the generation of candidate

frames and adopting a direct regression approach for object

classification and prediction. This dramatically simplifies the

network structure and is nearly ten times faster than the

detection speed of Faster R-CNN. As the YOLO family continues

to grow, the current version of the YOLO framework has absorbed

the advantages of the previous version. It is constantly innovating

itself, with a broader range of applications in agriculture.

YOLOv8 is one of the latest YOLO architecture detectors, which

inherits many of the advantages of real-time target detectors,

including lightweight network architecture and powerful feature

extraction capabilities with faster detection speed and higher

detection accuracy. The Backbone part of YOLOv8 uses the

CSPDarkNet network (Bochkovskiy et al., 2020), which applies a

cross-stage hierarchical structure to the feature map merging,

improving the accuracy and reducing the whole network’s

computational complexity. YOLOv8 also borrows the ELAN

structure from YOLOv7 (Wang et al., 2023) and designs the C2f

module, which enriches the extracted feature information. YOLOv8

uses the CIoU (Zheng et al., 2021) to determine the IoU between

prediction and ground-truth frames. In addition to that, its

detection header separates the classification process and

localization process, introduces Distributed Focus Loss (DFL) (Li

et al., 2020), and also adopts the idea of Anchor Free, which

eliminates the need for predefined anchors, making it more

flexible and efficient compared to previous YOLO models.

YOLOv8 provides models across various scales, including nano

(n), small (s), medium (m), large (l), and extra-large (x).
FIGURE 1

Images captured under different scenes.
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2.5 Improved YOLOv8s model

In this study, we considered the balance between computational

cost and detection accuracy and chose YOLOv8s as the basic model.

First, we designed the DWR-DRB module, which replaces the

bottleneck of the original C2f module in Backbone to enhance the

sensory field and constructed a new module, which we named

C2f_DWR_DRB. Then, we constructed the HS-PAN architecture,

which uses a bottom-up feature module to enhance the localization

information. At the same time, it is combined with other layers in

the Neck section to generate a more robust feature representation.

The light blue background shows the central improvement part, and

in the following two subsections, we describe the proposed method

in detail. Our improved YOLOv8s model is shown in Figure 3.
2.6 Dilation-wise Residual-Dilated
Reparam Block

In a dilated convolutional layer, a dilated convolutional layer

utilizing a compact kernel is equated to a non-dilated (i.e., r = 1)

convolutional layer with a larger, sparser kernel, provided that

disregarding specific input pixels is analogous to interspersing

additional zeroes within the convolutional kernel. The original

convolution kernel W ∈ Rk�k becomes W0 ∈ R((k−1)r+1)�((k−1)r+1)

after insertion of zeros, a process that can be realized by the
Frontiers in Plant Science 05
transposed convolution of Equation (1) and the unitary kernel

I ∈ R1�1:

W 0 = Convtranspose2d(W ,I,stride=r Þ: (1)

Based on this equivalent conversion, DRB (Dilated Reparam

Block) was proposed by Ding et al (Ding et al., 2023). in

UniRepLKNet, which applies a solitary, unenlarged small kernel

alongside several dilated small kernel layers to enhance a

convolutional layer with a non-dilated large kernel.

By reparameterizing multiple blocks consisting of small kernel

convolution layers with different dilated rates to be equivalently

converted into a solitary large kernel convolution layer with a larger

sparse kernel, DRB improves the detection network’s performance

to extract spatial information while maintaining the number of

learned Params and computational efficiency. This design

innovation provides the convolutional network with a wider

receptive field without increasing the depth of the model.

The essence of the DWR (Dilation-wise Residual) (Wei et al.,

2022) module is a two-stage method for gathering information

contextually across various scales, structured around a residual

framework to capture nuanced details. The multi-scale sensory

wild-formed feature maps are then fused, which reduces the

difficulty of acquiring information. The first step is to generate

relevant residual features based on the input features. The

combination of 3� 3 convolutional layers, BN layers, and ReLU

layers generates many feature maps of different sizes as the material
FIGURE 2

Examples of various data augmentation techniques.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1406593
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1406593
for the second step of morphological filtering. The second step is to

perform morphological filtering on region features of different sizes.

Initially, the region feature maps are segmented into several

clusters, and then different groups are convolved in different ways.

We notice the similarity between the deep dilated convolution

in the original DWR module and DRB. They both obtain a larger

receptive field by improving the dilated convolution. Therefore, we

utilize the method of reparameterizing and enhancing the non-

dilated large kernel convolution layer in DRB to design the DWR-

DRB module to replace the Bottleneck in C2f, which is utilized to

gather information from various scales more efficiently,

streamlining the process of contextual understanding. Specifically,

we replace the deep convolution with dilated convolution of 3 in the

second branch of the original DWR module with a DRB with a

convolution kernel size of 5� 5, the deep convolution with dilated

convolution of 5 in the third branch with a DRB with a convolution

kernel size of 7� 7, and the 3� 3 deep convolution in the first

branch with dilated convolution of 0, and thus remains unchanged.

In addition, the initial branch’s output channel was expanded to

double the capacity compared to the subsequent branches due to

the fact that more extensive spatial spanning connections require

the help of more minor spanning connections.

After plotting multi-scale contextual data, various results are

consolidated to link all feature mappings. Features are then merged
Frontiers in Plant Science 06
by batch normalization and point-by-point convolution and

appended to the input feature map to build a more robust and

holistic expression of the features. Schematic representation of the

DWRmodule structure. Figure 4 illustrates the three-branch DWR-

DRB module of the high-level network structure. Conv denotes

convolution, DConv denotes deep convolution, and c denotes the

number of channels in a feature map.
2.7 High-level Screening-path
Aggregation Networks

The color of the surface of immature fruits is close to the color of the

surrounding leaves and canes, and coupled with the disruption caused

by elements like fluctuating illumination and occlusion, the difference

between Color-changing melons and the complex background becomes

significant. To solve this problem, we refer to the multilevel feature

fusion approach of HS-FPN (High-level Screening-feature Pyramid

Networks) (Chen et al., 2024) and design the HS-PAN (High-level

Screening-path Aggregation Networks) architecture for fusing multi-

scale feature information to reduce the interference of complex

backgrounds, thus improving the accuracy of fruit detection.

The structure of HS-PAN is shown in Figure 5. It consists of two

sub-modules:(1) Feature processing module. (2) Feature fusion
FIGURE 3

Improvement of YOLOv8 structure.
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module. First, HS-FPN sieves through the feature maps derived

from the Backbone at varying scales, subsequently amalgamating

the information from upper and lower levels in the filtered feature

maps using the Selective Feature Fusion (SFF) mechanism.

Subsequently, in order to solve the drawback of FPN (Lin et al.,

2017) in dealing with the ambiguity of high-level information, we

constructed a bidirectional multilevel feature fusion PAN (Liu et al.,

2018), i.e., HS-PAN, which adds a bottom-up feature fusion

module, takes the low-level information as one of the input parts

during feature fusion, and strengthens the localization information

by taking advantage of the fact that the low-level features are more

accurate for the target localization, which is the reason why we used

the conventional C2f as a feature fusion mechanism in the

beginning of the This is the reason why we use the regular C2f

module when extracting features. This multilevel fusion approach

has rich and comprehensive semantic information, which helps to

obtain more detailed features in Color-changing melon images, thus

enhancing the detection ability of the model.

We first introduce the Channel Attention (CA) and Dimensional

Matching (DM) modules in the feature processing module. The CA
Frontiers in Plant Science 07
module initially conducts global max and average pooling on the

provided feature maps. This dual pooling strategy captures both the

average and the critical features present. These are designed to filter out

redundant information, compress features, and reduce the number of

parameters. Combining the two pooling methods helps extract the

critical information in each channel while ensuring minimal

information loss. Next, the generated features are aggregated, and

the Sigmoid function is employed to calculate the channel-wise weights

in the network, which ultimately yields the weights for all channels.

Subsequently, the weight information is multiplied by the feature maps

of the corresponding scales to generate the filtered feature maps. The

DM module adopts the point-by-point convolution method to match

the feature maps of different scales and different numbers of channels

before feature fusion and, at the same time, reduces the number of

channels in each layer of the feature maps to 256. The SFF module,

which is one of the core components of the HS-PAN, uses the high-

level features as the filters to refine the low-level important information

in the features to fuse multi-scale features more efficiently.

As illustrated in Figure 6, given a high-level feature fhigh ∈
RC�H�W and a low-level feature flow ∈ RC�H1�W1 , where C denotes

the channel count, H stands for the feature map’s height, and W

stands for the feature map’s width. The high-level features are first

dilated convolution, which is applied by a transposed convolution (T-

Conv) with a 2-step and a 3� 3 convolution to obtain the feature

f 0
high ∈ RC�2H�2W . Then, the high-level features are up-sampled or

down-sampled using bilinear interpolation to align the dimensions of

high-level and low-level features to obtain the feature fatt ∈
RC�H1�W1 . Next, the CA module is utilized to unify the

dimensionality of the attention weights generated from converting

the high-level features and filtering the low-level features. Finally, the

high-level features are fused with the filtered low-level features to

obtain a more comprehensive feature fout ∈ RC�H1�W1 . Equations (2,

3) illustrate the process of feature fusion, where BL (Chen et al., 2018)

is a multi-scale feature representation method.

fatt = BL T − Conυ(fhigh) Þ;  
�

(2)

fout = flow ∗CA(fatt) + fatt : (3)
2.8 Layer-Adaptive Sparsity Pruning

Model pruning productively decreases the number of model

parameters and FLOPs (Lei et al., 2017). In neural networks, some

parameters with relatively small weights take up a large amount of

computational resources, but these redundant parameters have little

effect on the results of model inference. By removing these

parameters with smaller weights, the model can be compressed

with little loss of accuracy, thus reducing memory consumption and

alleviating computational load (Liu et al., 2017). Previous studies

have found (Gale et al., 2019, Gale et al., 2020) that if the layered

sparsity is chosen for a neural network, then a simple magnitude-

based pruning (MP) can be a suitable balance between the model’s

performance and lightweight. However, there is no clear solution to

choosing the hierarchical sparsity.
FIGURE 4

DWR-DRB (Dilation-wise Residual-Dilated Reparam Block) structure.
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The model pruning method used in our research is the

magnitude-based Layer-Adaptive Sparsity Pruning (LAMP) (Lee

et al., 2020), which proposes a global pruning importance score.

Global pruning is characterized by removing connections below the

LAMP scores in the whole model rather than removing connections

below a threshold score in each layer, i.e., global pruning is not

equally sparse for each layer. As shown in Figure 7, the LAMP

scores are the square of the weight size, normalized by the total of all

remaining weights in the layer.

Consider a feedforward neural network of depth-d with

co r r e spond ing we i gh t t enso r s W(1),…,W(d) f o r e ach

convolutional layer and fully connected layer. Each weight tensor

is assumed to be expanded into a one-dimensional vector to define

the LAMP scores uniform for both the fully connected and

convolutional layers. For these one-dimensional vectors, we

assume the weights are sorted depending on the index map in

ascending order, i.e., W½u�j j ≤ W½v�j j holds whenever u < v, where

W½u� denotes the entries ofW that are mapped by the index u. The
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LAMP scores corresponding to the u-th position in the weight

tensor W are established in the Equation (4).

score(u;W) : =
(W½u�)2

ov≥u(W½u�)2 : (4)

Once the LAMP scores are computed, the minimum-scoring

connections are globally pruned until the required global sparsity

constraints are satisfied. That is, for any given weight tensor W,

along with indicators u and v, the following conditions need to be

satisfied in the Equation (5).

(W½u�)2 > (W½v�)2 ⇒ score(u;W) > score(v;W) (5)

All connections with the LAMP scores less than the target

weights are pruned. Global pruning using the LAMP scores is

similar to MP-based hierarchical pruning with automatic selection

of hierarchical sparsity. Pruning the model with the LAMP scores

after training maintains the benefits of MP, and the LAMP scores do
FIGURE 5

HS-PAN (High-level Screening-path Aggregation Networks) structure.
FIGURE 6

SFF (Selective Feature Fusion) module structure.
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not depend on any model-specific knowledge, eliminating the need

for a long, sparse training step. The overall process of pruning is

depicted in Figure 8.
2.9 Block-Correlation
Knowledge Distillation

Knowledge distillation is a classical approach to model

compression, a concept initially put forward by Hinton et al

(Hinton et al., 2015), and during the following years, researchers

have proposed many more knowledge distillation methods, such as

Logits distillation and Features distillation (Adriana et al., 2015;

Ahn et al., 2019; Heo et al., 2019). The core idea of knowledge

distillation is to extract knowledge from the better-performing and

more complex structure of the teacher model and transfer the

knowledge to the more lightweight student model without changing

the network structure so that the performance and versatility of the

smaller model can be enhanced.

Previous approaches obtained good results but performed

poorly on small datasets. Therefore, we adopted BCKD (Wang

et al., 2023). Unlike conventional Logits distillation or Features

distillation, BCKD notices the connections between blocks in a

neural network, providing new knowledge for distillation. This

approach improves performance, does not introduce additional

computational overhead, and addresses the problem of poor

distillation on small datasets.

Figure 9 illustrates the structure of the BCKD. The classification

task’s bottom right corner is the cross-entropy loss function (CE).

The bottom uses conventional knowledge distillation (KD) for the

trained student model. Finally, the block correlation loss function

(BC) is employed to augment the distillation’s efficacy.

BCKD uses ResNet32x4 and ResNet8x4 (He et al., 2016) as

infrastructure. Setting the set B  = b1,…, bi, bnf g be the output

candidates for each residual block from teachers and students,

and the correlation between neighboring blocks is assumed to be

a relationship that the model can learn, denoted as C  =
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c1,…, cj, cn−1
� �

. All candidate outputs have their own feature

mapping size and channel dimension, e.g., b ∈ RBs�D�H�W ,

where Bs、D、H and W denote the batch size, channel dimension,

height, and width, respectively. When the number of neighboring

blocks is n, it is clear that the number of correlations is n − 1. For

ease of exposition, we use bs, bt , cs and ct to denote the blocks and

correlations of students and teachers, respectively. From this, we

derive the equation for the correlation set C:

dbi−1 = yD adaptiveavg(bi−1)
� �

: (6)

cj = f  dbi−1 ⊙ bbiT� �
            bcj = f  bbi ⊙dbi−1T� �

(7)

The adaptive _ avg( · ) in Equation (6) is a convolutional kernel

self-adaptive function that is used to average the values of the spatial

dimensions of the feature maps, whereby bi−1 can be unified

according to the size of the feature maps of bi. yD( · )   represents

the average pooling of the channels, so the feature map sizes ofdbi−1, bbin o
∈ RBs�Hi�Wi have feature mappings of equal size. The f

( · ) in Equation (7) represents the normalized softmax function,

thus cj ∈ RBs�Hi�Hi and bcj ∈ RBs�Wi�Wi .

Next, we utilize the multilayer perceptron (MLP) to help match

bs and cs with bt and ct in order to preserve the features while trying

to apply different network structures. Considering the important

influence of the discriminative classifier on the model’s detection

capability, we input the results obtained from the MLPs into the

classifiers of the teacher’s model with the aim of obtaining a more

comprehensive representation of the correlation features. The

resultant MLPout and CLSout are expressed are expressed in the

Equations (8), (9).

MLPout = L2Norm   Linear ReLu Linear(�xð Þð Þð ÞÞ  , (8)

CLSout = Cls(MLPout) : (9)

Where Linear( · ) denotes the linear layer, ReLu( · ) denotes the

ReLu activation function, L2Norm( · ) stands for L2 for normalization,

Cls( · ) denotes the classifier of the teacher model, �x denotes cj or bcj. In
FIGURE 7

Illustration of the LAMP (Layer-Adaptive Sparsity Pruning) scores.
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MLPout ∈ RC�Bs�M and CLSout ∈ RC�Bs�L, C is the number of

elements in the set C, Bs is the batch size, and M and L stand for

the output dimensions of MLPout and CLSout respectively.

After the above process, the correlations of the student model

and the teacher model are then mapped into the same feature space.

In this feature space, the correlation between neighboring blocks of

the pre-trained teacher model is strong, and the distribution of

different samples is consistent. In contrast, the untrained student

model is divergent across samples. Therefore, for the student model

to understand the gap between itself and the teacher MLPout and
Frontiers in Plant Science 10
CLSout , it can learn more knowledge and thus improve the

performance of the student itself.

Regarding loss function, if L1 (MAE) or L2 (MSE) is used

directly, it does not work well for the untrained student model. The

MSE loss function performs better for the model in terms of

gradient and convergence, and the MAE loss function performs

more consistently when dealing with outliers. Therefore, BCKD

chose Huber loss (Gokcesu and Gokcesu, 2021) to combine the

respective advantages of MAE and MSE in order to get better

performance from the student model.
FIGURE 8

Model pruning flowchart.
FIGURE 9

BCKD (Block-Correlation Knowledge Distillation) structure.
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2.10 Pseudo code for
combinatorial algorithms

By integrating the approaches in the above subsections, we

designed an algorithm for Color-changing melon maturity

detection, divided into five main steps: initialization, model

training, model pruning, knowledge distillation, and testing. The

algorithm enhances the robustness of the model when dealing with

complex scenarios while maintaining the lightweight characteristics

of the model, and the pseudo-code is given in Algorithm 1.
Fron
Input: Color-changing melon images, pretrained YOLOv8s

weight

Output: Category confidence and prediction frame

coordinates

1: Initialize: img_split=img_train(80%) + img_val

(80%) + img_test(80%);

2: Training on Server:

3: batch_size=64, img_size=640, epochs Et= 300;

4: for i = 1: Et do

5: Train on the img_train with the improved YOLOv8;

6: Calculate the loss function;

7: Evaluate model using img_val;

8: end for

9: save best_weight.pt;

10: Model Prune on Server

11: model=best_weight.pt, epochs Ep= 9999,

pruned_method=LAMP, speed_up=3.0;

12: for i = 1: Ep do

13: if(speed_up > 3.0)

14: break;

15: Calculate the LAMP score for each channel in the

improved model;

16: Remove the connection with the minimum score and

calculate speed_up;

17: end for
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18: save last_prune.pt;

19: Knowledge Distillation on Server

20: model= last_prune.pt, epochs Ek d= 250,

kd_method=BCKD, teacher=YOLOv8s-Improved;

21: for i = 1: Ekd do

22: Predict training data and generate sample

distribution space;;

23: Utilize BCKD to help students calculate the

difference between their own and their teacher’s

predictions of outcomes;

24: Update the parameters of the student model using the

loss function;

25: end for

26: save best_kd_weight.pt;

27: Testing on laptop

28: Predict model using img_test;

29: Obtain the output result.
Algorithm 1. Pseudo code for combinatorial algorithms.

3 Results and discussion

3.1 Experimental setup

This study’s experiments were all performed on an Ubuntu

18.04 system; the programming language was Python 3.9.16, and

the network framework used was Pytorch 1.10.0 (cuda 11.7). For

our training phase, we used a high-performance server configured

with an Intel® i7 13700K 16C5.40GHz CPU and an NVIDIA RTX

4090 GPU. For the inference testing phase, we used an Intel® i7

8750H 4C2.20GHz and an NVIDIA GTX 1050ti laptop to simulate

a resource-constrained device and test the model’s performance.

The hyperparameter settings for the training phase include a batch

size of 64 and 300 epochs for the number of training rounds, and

the officially provided pre-training weights are used as the initial

weights. The rest of the hyperparameters are the default values

of YOLOv8.
3.2 Evaluation indicators

In this study, a total of seven metrics, namely, precision, recall,

average precision, model size, number of Params, FLOPs, and FPS,

are used to comprehensively evaluate the performance of the model.

The formulas for precision and recall are expressed in the

Equations (10), (11).

Precision = TP
TP+FP , (10)
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Recall = TP
TP+FN : (11)

In the above two equations, TP stands for the number of targets

correctly judged as positive, FP stands for the number of targets

incorrectly judged as positive, and FN stands for the number of

targets belonging to positive but incorrectly judged as negative. AP

is used to calculate the average precision of a single class of targets

under different recall rates, andmAP is used to calculate the average

AP of multiple classes of targets, and their definitions are expressed

in the Equations (12), (13), respectively:

AP =
Z 1

0
P(R)dR, (12)

mAP = 1
No

N

i=1
AP : (13)

For all kinds of targets detected, the higher the mAP, the more

accurate the model’s predictions are; therefore, it represents a better

detection performance of the model.mAP@0:5 denotes the average

AP of each kind of target when the IoU threshold is set to 0.5. mA

P@0:5 : 0:95 The thresholds are computed from the range of 0.5 to

0.95, with an increase of 0.05 in each step, and the obtained average

AP of each kind of the average AP of the targets, they are defined in

the Equations (14), (15), respectively:

mAP@0:5 = 1
No

N

i=1
APi :  (14)
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mAP@0:5 : 0:95 = 1
No

N

i=1
o
j
APi   (j = 0:5, 0:55, 0:6,…, 0:95) :  (15)

Params denote the sum of parameters to be trained within the

model. FLOPs denote the number of floating point operations

required during network training, and model size denotes the size

of the model. The lower these three metrics are, the more

lightweight the model is and, therefore, the more suitable it is for

deployment on edge devices.

Frames per second (FPS) measure the model’s detection speed.

FPS is calculated from the inverse sum of the pre-processing time,

inference time, and post-processing time. The larger its value, the

faster the real-time detection of the model. Its definition is in the

Equation (16).

FPS = 1
tpre−process+tinference+tpost−processing

: (16)
3.3 Comparison of before and
after improvements

We trained the base YOLOv8s and the improved YOLOv8

separately with the same parameter settings on the server side and

then compared the hotspots of attention of the two models under

four scenarios on the test set on the laptop side. As shown in

Figure 10, when the fruits are denser, the improved model shows a

higher degree of hotness for the fruit-concentrated regions, while
FIGURE 10

Comparison of visualized heat maps in different scenarios.
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the hotspots of the base model are more scattered. When the fruits

are more dispersed, the improved model has more hotspots and a

little more heat for the regions where the fruits are located. For

regions where the fruits overlap, the improved model pays more

attention to the occluded fruits, while the base model pays less

attention to the occluded fruits. The final image shows the similarity

between the background and the fruit, which is similar to the

common mimicry in the insect world, and it can be seen that the

base model mistook the white pipe on the right side for an

immature fruit while the improved model shows the hotspots of

attention to the fruit very well.

Figure 11 shows some of the detection results of the two models

on the test set.

In the first row of Color-changing melon detection, we list the

detection effects of the two models when the usual scene, backlight,

and fruit overlap, respectively. Both models perform better, but the

confidence of the improved model is generally higher than that of

YOLOv8s, and there are no misdetected fruits. When facing smaller

fruits and fruits at the edge of the figure, the improved model has

better detection performance, and the confidence level is 0.28 higher

than that of YOLOv8s. When switching to the second row of Color-

changing melon detection, we compared the detection effects of the

two models when the fruits are at the edge of the figure, dense fruits,

and fruits are obscured by other objects, and the confidence level of
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the improved model is still higher than that of YOLOv8s, especially

when other objects obscure the fruits. They are more effective when

other objects occlude them. However, given the rigor of the article,

we also give examples of rare errors in the detection process of both

models, as the co-obscuration of leaves and other objects creates a

visual misalignment, which results in a situation where both models

detect the same fruit as two targets.

Overall, YOLOv8s misdetected the background as fruit in a few

cases and had problems with ambiguous judgments about the

maturity of some fruits. In contrast, the improved model is more

accurate in localizing and classifying fruits with a higher

confidence level.

In order to illustrate more intuitively the prediction accuracy of

the three categories of fruit maturity before and after the model

improvement, we present the normalized confusion matrix of the

training results. As depicted in Figure 12, in the confusion matrix,

the rows indicate the predicted labels for the categories, and the

columns indicate the true labels for the categories. In each square,

darker colors indicate larger values, lighter colors indicate lower

values, and white indicates empty values. By looking at the

differences between the predicted values for each category, it can

be observed that the values of the improved model’s diagonal lines

add up to a larger sum and improve the accuracy of the predictions

for semi-mature fruits, as well as reduce the proportion of
FIGURE 11

Comparison of detection effect.
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backgrounds that are mistakenly detected as immature fruits. This

demonstrates that the multilevel feature fusion mechanism we

constructed reduces the interference of complex background on

fruit detection accuracy to some extent.
3.4 Results of ablation experiments

The server’s ablation experimental results are recorded in Table 1.

The first row uses YOLOv8s as the baseline, and each module can be

added to the model independently. Where A denotes the use of the

DWR-DRBmodule, B stands for the use of the HS-PANmodule, and

A+B denotes the merging of the two model optimization methods

into the base model. As seen from the table, each module suggested in

this research contributes to the model performance when merged

into the base model and reduces the network structure’s complexity

and the associated computational workload.
3.5 Results after model pruning

After several experiments, we adopted a pruning acceleration

ratio of 3.0 for the improved model because the pruning rate at this

point can make the mAP stay relatively good. During the neural
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network’s pruning phase, the layer with the high LAMP scores has a

higher importance level of its channels. Thus, a small amount of

pruning or directly skipping the pruning of the channels of that

layer can be done to remove the non-essential connections more

reasonably to maintain the performance of the pruned model.

Figure 13 demonstrates the changes in the number of channels in

each layer of the pruned model. It can be seen that some of the

convolutional layers are pruned strongly, while the float in the

number of channels in most of the layers is not significant. After

pruning, the range of channel counts changed from 1 to 512 before

pruning to 1 to 74 after pruning. mAP 0.5 and mAP@0.5:0.95 were

reduced by 0.8% and 2.9%, respectively. The number of model

Params decreased from 6.47 M to 1.14 M, a reduction of 82%. The

number of computed FLOPs is reduced from 22.8 GFLOPs to 7.5

GFLOPs, a 67% reduction. The model size is also changed from

12.64 MB to 2.47 MB.
3.6 Effect of different teacher models
on distillation

After a model is pruned, the accuracy generally decreases by a

certain degree, and it is generally essential to adjust the pruned

model accordingly with the aim of restoring its accuracy. Since the
FIGURE 12

Comparison of confusion matrices.
TABLE 1 Results of ablation experiments.

A B A + B mAP@0.5 mAP@0.5:0.95 Precision Recall Params GFLOPs

94.8% 86.5% 98.6% 97% 11.13 M 28.4

√ 95.0% 88.6% 97.7% 98% 10.46 M 27.4

√ 96.2% 87.1% 96.6% 99% 7.73 M 25.0

√ 95.5% 89.0% 98.3% 99% 6.47 M 22.8
The "√" symbol indicates that the module is used.
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structure of the pruned model is relatively simple, it has good

portability while ensuring prediction accuracy when the task goal is

relatively clear. We distill the pruned model as a student model

using the BCKD method. To evaluate the impact of various size

scales of teachers on the effect of the student models, we trained the

students on their knowledge using the base YOLOv8 and the

improved model in s, m, and l sizes, respectively. Figure 14

illustrates the validation results on a laptop after distillation

training with different teacher models. Table 2 provides specific

data after validation of the distillation models. I-YOLOv8 in the

table represents the improved YOLOv8 model.

According to the comparison results in the table, it is easy to see

that the base model of different sizes is not as effective in training

the students as the improved model. Furthermore, the distillation of

the student model by the untrained base model is too low in

accuracy, and there is a cliff drop in detection speed. While the

teacher models themselves continue to improve, they perform less

and less well for distillation training. Compared to the other models

as teachers, Improved-YOLOv8s had the most outstanding results

for student training when the student model achieved 96.1% mAP

0.5 and 88.1% mAP@0.5:0.95. YOLOv8l had the worst distillation
Frontiers in Plant Science 15
training as a teacher when the student model achieved 94.1%

mAP0.5 and 88.1% mAP 0.5 only 94.1% and mAP@0.5:0.95 only

84.6%. This indicates that when the gap between the teacher and

student models is within a reasonable range, the student model

obtains more effective knowledge from the teacher network. On the

contrary, when the gap between the two is too large, the student

model is unable to learn much of the knowledge from the teacher’s

network, and the training effect is not as good as expected.

Therefore, we choose the s version of the improved model as the

teacher network to distill the pruned model.
3.7 Comparison between different target
detection networks

To evaluate the efficacy of our suggested approach, we trained

various lightweight networks in the same server-side experimental

environment. We tested the trained models on a laptop to simulate

the environment of resource-constrained hardware. The specific

experimental results are shown in Table 3. In the table, I-YOLOv8

represents the improved YOLOv8 model, I-P-YOLOv8 represents
FIGURE 13

Comparison before and after channel compression.
FIGURE 14

Validation results of the teacher model at different scales.
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the improved model trained with fine-tuning after pruning, and I-

P-KD-YOLOv8 represents the improved model trained with

knowledge distillation after pruning. Under the condition of

mAP@0.5, I-YOLOv8 and I-P-KD-YOLOv8 showed better results

compared to other models. When the evaluation metric becomes

the more stringent mAP@0.5:0.95, the models with a larger number

of Params and computed FLOPs take advantage, leading the other

lightweight networks by 5% to 10%, which can be seen in the good

performance of YOLOv8s as well as our subsequent improved

models, and among them I-YOLOv8 is also 2.5% higher than

YOLOv8s. In terms of precision and recall, the performance of

the various lightweight networks does not differ much. After

pruning, the FLOPs and Params of I-P-YOLOv8 are significantly

lower than other lightweight networks and even smaller than

YOLOv8n. Meanwhile, the detection speed of I-P-YOLOv8 is

somewhat improved, which is 9.1% and 14% faster than

YOLOv8s and I-YOLOv8, respectively. Subsequently, after

knowledge distillation, I-P-KD-YOLOv8 shows a large

improvement in the metrics of mAP, and the overall performance

outperforms that of I-P-YOLOv8. It can be seen that I-P-KD-

YOLOv8 maintains the detection performance of I-YOLOv8.

Meanwhile, the number of parameters and FLOPs are

significantly reduced, and the model size is the smallest, which is

an excellent balance between accuracy, speed, and model

lightweight. YOLOv8s has higher detection accuracy than

YOLOv8n, while the parameters and computational effort are

much smaller than YOLOv8m. S-scale models can strike a good
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balance between detection performance and model complexity

relative to n- and m-scale YOLOv8 models, so we chose

YOLOv8s as the original model and improved it. After

subsequent model pruning and knowledge distillation operations,

the detection accuracy of the improved YOLOv8s is higher than

that of YOLOv8n. However, it is more lightweight, making it more

suitable for robot picking for automated Color-changing melons.
4 Conclusion

In this study, we focus on the need for robotic picking of Color-

changing melons and put the front-loaded fruit detection work into

the study, which lays the foundation for further realization of

automatic picking work. We first designed the DWR module and

DRB to expand the receptive field, aiming to further strengthen the

Backbone part’s ability to acquire multi-scale contextual

information. Subsequently, we design HS-PAN with multi-level

feature fusion to strengthen the localization information and enrich

the semantic information in the feature fusion process, which helps

to enhance the detection network’s attention to Color-changing

melons’ details, thus increasing the accuracy of fruit detection and

reducing the proportion of false detections. Then, we simplified the

improved network structure by pruning unimportant connections

in the detection network using Layer-Adaptive Sparsity Pruning.

Finally, the accuracy of the pruning model is further recovered

using Block-Correlation Knowledge Distillation and compared to
TABLE 2 Validation results of distillation by different teachers.

Teacher-model mAP@0.5 mAP@0.5:0.95 Precision Recall FPS

YOLOv8s 95.5% 86.1% 56.2% 99% 63.8

YOLOv8m 95.1% 85.9% 57.4% 99% 63.8

YOLOv8l 94.0% 84.6% 58.9% 99% 63.6

I-YOLOv8s 96.1% 88.1% 97.8% 99% 78.9

I-YOLOv8m 95.6% 86.6% 95.3% 99% 78.7

I-YOLOv8l 95.3% 86.3% 95.9% 99% 78.4
TABLE 3 Comparison of different target detection networks.

Model mAP@0.5 mAP@0.5:0.95 Precision Recall Params GFLOPs FPS Size

YOLOv4-tiny 94.4% 74.5% 93.8% 93% 5.88 M 16.2 52.0 22.4 MB

YOLOv5s 93.5% 78.6% 93.8% 96% 7.03 M 16.0 55.1 14.5 MB

YOLOv7-tiny 93.4% 70.8% 94.0% 99% 6.01 M 13.1 66.5 12.3 MB

YOLOv8n 94.1% 81.2% 95.7% 99% 3.01 M 8.1 64.8 6.2 MB

YOLOv8s 94.8% 86.5% 98.6% 97% 11.13 M 28.4 72.3 21.5 MB

I-YOLOv8 95.5% 89.0% 98.3% 99% 6.47 M 22.8 69.2 12.6 MB

I-P-YOLOv8 94.7% 86.1% 96.0% 99% 1.14M 7.5 78.9 2.5 MB

I-P-
KD-YOLOv8

96.1% 88.1% 97.8% 99% 1.14M 7.5 78.9 2.5 MB
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other lightweight networks. To summarize, we first improve and

train modules on larger models for complex scenarios. Next, we

drastically simplify the network structure of the improved model by

model pruning. Finally, we make the accuracy of the pruned model

close to the pre-pruning level by knowledge distillation. The

advantages of our proposed combinatorial algorithm are that it

obtains higher accuracy and stronger robustness than other

lightweight models. In contrast, the complexity of the final model

is much lower than that of the lightweight networks. The

generalization of our proposed approach is that it is more

conducive to achieving deployment on edge devices by utilizing

small models with superior performance. Although the effectiveness

of our proposed combined algorithm for Color-changing melon

maturity detection has been validated, some things could be

improved. The current algorithm is specific to Color-changing

melon fruits, and the detection performance for more fruit

varieties still needs to be proven. Meanwhile, this study only deals

with the mature recognition part of Color-changing melon and does

not mention the algorithms related to localization in the robotic

picking behavior. In conclusion, our proposed algorithm can

provide technical support for picking color-changing melons and

some ideas for the automatic picking of melons, which need to be

researched more in intelligent agriculture. In the future, we can

explore other application scenarios, such as the detection of tomato

fruits, to verify the applicability of the algorithm in other scenarios.
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Kamilaris, A., and Prenafeta-Boldú, F. X. (2018). Deep Learn. agriculture: A survey.
Comput. Electron. Agric 147, 70–90. doi: 10.1016/j.compag.2018.02.016

Kang, H., Zhou, H., Wang, X., and Chen, C. (2020). Real-time fruit recognition and
grasping estimation for robotic apple harvesting. Sensors 20, 5670. doi: 10.3390/
s20195670

Krizhevsky, A., Sutskever, I., and Hinton, G. (2017). ImageNet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/3065386

Lee, J., Park, S., Mo, S., Ahn, S., and Shin, J. (2020). Layer-adaptive sparsity for the
magnitude-based pruning. Mach. Learn. 2010.07611. doi: 10.48550/arXiv.2010.07611

Lei, J., Gao, X., Song, J., Wang, X., and Song, M. (2017). Survey of deep neural
network model compression. J. software 29, 251–266. doi: 10.13328/j.cnki.jos.005428

Li, X., Du, Y., Yao, L., Wu, J., and Liu, L. J. A. (2021). Design and experiment of a
broken corn kernel detection device based on the yolov4-tiny algorithm. Agriculture 11,
1238. doi: 10.3390/agriculture11121238

Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., et al. (2020). Generalized focal loss:
Learning qualified and distributed bounding boxes for dense object detection. Comput.
Vision Pattern Recognition 33, 21002–21012. doi: 10.48550/arXiv.2006.04388

Liang, C., Xiong, J., Zheng, Z., Zhong, Z., Li, Z., Chen, S., et al. (2020). A visual
detection method for nighttime litchi fruits and fruiting stems. Comput. Electron. Agric.
169, 105192. doi: 10.1016/j.compag.2019.105192

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).
“Feature pyramid networks for object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition . 2117–2125. doi: 10.48550/
arXiv.1612.03144

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016). “Ssd:
Single shot multibox detector,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016. 21–37.
doi: 10.1007/978-3-319-46448-0_2

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). “Learning efficient
convolutional networks through network slimming,” in Proceedings of the IEEE
international conference on Computer Vision and Pattern Recognition. 2736–2744.
doi: 10.48550/arXiv.1708.06519

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). “Path aggregation network for
instance segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition. 8759–8768. doi: 10.48550/arXiv.1803.01534

Mu, Y., Chen, T.-S., Ninomiya, S., and Guo, W. J. S. (2020). Intact detection of highly
occluded immature tomatoes on plants using deep learning techniques. Sensors 20,
2984. doi: 10.3390/s20102984

Nan, Y., Zhang, H., Zeng, Y., Zheng, J., and Ge, Y. J. C. (2023). Intelligent detection of
Multi-Class pitaya fruits in target picking row based onWGB-YOLO network. Comput.
Electron. Agric. 208, 107780. doi: 10.1016/j.compag.2023.107780

Nouaze, J. C., and Sikati, J. (2023). “YOLO-appleScab: A deep learning approach for
efficient and accurate apple scab detection in varied lighting conditions using CARAFE-
enhanced YOLOv7,” in Biology and Life Sciences Forum, MDPI. 6. doi: 10.3390/
IOCAG2023-16688
Frontiers in Plant Science 18
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. 779–788. doi: 10.48550/arXiv.1506.02640

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
28, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Shi, R., Li, T., and Yamaguchi, Y. (2020). An attribution-based pruning method for
real-time mango detection with YOLO network. Comput. Electron. Agric. 169, 105214.
doi: 10.1016/j.compag.2020.105214

Suddapalli, S. R., and Shyam, P. (2021). “Using mask-RCNN to identify defective
parts of fruits and vegetables,” in Intelligent Human Computer Interaction (Springer),
637–646. doi: 10.1007/978-3-030-98404-5_58

Suo, R., Gao, F., Zhou, Z., Fu, L., Song, Z., Dhupia, J., et al. (2021). Improved multi-
classes kiwifruit detection in orchard to avoid collisions during robotic picking.
Comput. Electron. Agric. 182, 106052. doi: 10.1016/j.compag.2021.106052
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