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agroecology in Ethiopia
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1Bako National Maize Research Center, Bako, Ethiopia, 2EthioAgri-CEFT, Addis Ababa, Ethiopia,
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Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
Biofortification of provitamin A inmaize is an attractive and sustainable remedy to

the problem of vitamin A deficiency in developing countries. The utilization of

molecular markers represents a promising avenue to facilitate the development

of provitamin A (PVA)-enriched maize varieties. We screened 752 diverse tropical

yellow/orange maize lines using kompetitive allele-specific PCR (KASP) makers

to validate the use of KASP markers in PVA maize breeding. To this end, a total of

161 yellow/orange inbred lines, selected from among the 752 lines, were

evaluated for their endosperm PVA and other carotenoid compounds levels in

two separate trials composed of 63 and 98 inbred lines in 2020 and 2021,

respectively. Significant differences (p < 0.001) were observed among the yellow

maize inbred lines studied for all carotenoid profiles. An inbred line TZMI1017,

introduced by the International Institute of Tropical Agriculture (IITA) showed the

highest level of PVA (12.99 µg/g) and b-carotene (12.08 µg/g). The molecular

screening showed 43 yellow maize inbred lines carrying at least three of the

favorable alleles of the KASP markers. TZMI1017 inbred line also carried the

favorable alleles of almost all markers. In addition, nine locally developed inbred

lines hadmedium to high PVA concentrations varying from 5.11 µg/g to 10.76 µg/

g and harbored the favorable alleles of all the KASP PVA markers. Association

analysis between molecular markers and PVA content variation in the yellow/

orange maize inbred lines did not reveal a significant, predictable correlation.

Further investigation is warranted to elucidate the underlying genetic

architecture of the PVA content in this germplasm. However, we recommend

strategic utilization of themaize-inbred lines with higher PVA content to enhance

the PVA profile of the breeding program’s germplasm.
KEYWORDS

biofortification, carotenoids profile, provitamin A, favorable allele, marker-assisted
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1 Introduction

Maize is the most widely cultivated staple crop in Sub-Saharan

Africa and provides over 20% of total calories in human diets

(Badu-Apraku et al., 2020). In Ethiopia, maize is the second most

widely cultivated staple crop after tef (Eragrostis tef), but it ranks

first in terms of productivity and total production, with more than

nine million households depending on it for their food and

livelihoods (Abate et al., 2015). However, heavy dependence on

the consumption of staple food crops like maize can contribute to

micronutrient malnutrition such as vitamin A deficiency (VAD)

(Menkir et al., 2018). VAD is prevalent in developing countries and

is the main cause of preventable blindness and growth retardation

in children and increased risk of maternal mortality in pregnant

women (Olivia Pecukonis, 2017).

Biofortification of staple crops with essential micronutrients

stands out as a cost-efficient and sustainable intervention against

VAD (Gupta et al., 2015). Biofortification is the process of

increasing the content of vitamins and minerals in the edible

parts of staple crops through plant breeding techniques (Garg

et al., 2018).

Maize biofortification efforts in Sub-Saharan Africa tackle the

challenge of low provitamin A (PVA) content in local inbred lines

(Parasanna et al., 2020). Breeders employed backcrossing, using

high b-carotene temperate maize with elite white tropical inbred

lines (Pixley et al., 2013); the inbred lines showed variation in

carotenoid profiles (Babu et al., 2013; Sayadi Maazou et al., 2021).

Conventionally, breeders relied on screening large numbers of

genotypes for carotenoid profiles using high-performance liquid

chromatography (HPLC) or ultra-performance liquid

chromatography (UPLC) (Gupta et al., 2019). However, these

techniques are expensive for routine PVA breeding programs.

This is where molecular screening comes in—it allows researchers

to detect alleles associated with high PVA content (Babu and

Prasanna, 2014), offering a more cost-effective approach. Genetic

markers, particularly for the crtRB1 gene in the carotenoid

biosynthesis pathway (Muthusamy et al., 2015), facilitated

breeding for high-PVA maize. Particularly, favorable alleles at

crtRB1-3’TE showed promise for increasing PVA content

(Azmach et al., 2013; Babu et al., 2013). These findings suggest

PVA-enriched inbred lines and associated markers are valuable

tools. Recently developed kompetitive allele-specific PCR (KASP)

markers targeting the gene crtRB1 were reported to offer a reliable,

high-throughput screening method for PVA content (Gowda et al.,

2017). However, the genetic background in which these favorable

alleles developed, population size, and marker–trait relationships

may influence the effectiveness of such marker-assisted selection for

main routine breeding programs (Babu et al., 2013).

In Ethiopia, yellow maize improvement was started in 2004 to

meet the demand of the poultry industry, and subsequently,

breeding for provitamin A enrichment for human nutrition began

in 2008 through the introduction and evaluation of maize hybrids

and inbred lines (Girum et al., 2012). Currently, the public maize

breeding program in Ethiopia has developed a large number of

yellow/orange maize inbred lines with diverse genetic backgrounds.
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In addition, the program has been introducing PVA inbred lines

from IITA and CIMMYT and extensively evaluating them for

various agronomic traits in multilocation field trials. Most of the

locally developed yellow/orange inbred lines were derived from bi-

parental crosses and backcrosses using a few temperate PVA trait

donor inbred lines and locally adapted elite white inbred lines.

These inbred lines have not been assayed for their provitamin A and

other carotenoid contents in relation to their haplotype for the

alleles of the crtRB1 gene. Therefore, the objectives of our study

were to (i) assess the PVA and other carotenoid profiles of the

adapted yellow/orange maize inbred lines for use as parents to

develop hybrids with high PVA content and source populations of

new inbred lines; (ii) evaluate the inbred lines using a set of KASP

markers associated with allelic variants of a major crtRB1 gene; and

(iii) select inbred lines carrying favorable alleles of high provitamin

A content for subsequent use as parents to accelerate new PVA

inbred line development using molecular markers.
2 Materials and methods

2.1 Plant materials

A total of 161 yellow/orange maize inbred lines along with

checks (a locally developed white inbred line, BKL004, and a

HarvestPluss inbred line, CLHP00003) were evaluated in two

separate trials during the 2020 and 2021 main cropping seasons.

The inbred lines had diverse genetic backgrounds, which include

introductions from CIMMYT, IITA, and locally developed yellow/

orange inbred lines. The local yellow/orange inbred lines at the F5
inbreeding stage were developed from crosses of adapted elite white

maize inbred lines with introduced provitamin A donor lines

through backcrossing and pedigree breeding methods.
2.2 Experimental site

The trials for carotenoid analysis and genotyping were planted

at Bako Agricultural Research Center, Ethiopia. Bako represents the

mid-altitude subhumid maize agroecology of Ethiopia. Its elevation

is about 1,650 m above sea level and lies between 9°06′ north

latitude and 37°09′ east longitude. Bako receives 1,200–1,500 mm of

rainfall annually.
2.3 Analyses of carotenoids

Each of the two trials was composed of two sets of yellow/

orange maize inbred lines with two checks; each trial was arranged

in an alpha lattice design and blocks nested under two replications.

Each inbred line was planted in one row with a row length of 5 m, a

spacing of 75 cm, and a 25-cm distance between plants within a

row. Trial I consisted of 63 inbred lines and was evaluated in the

2020 main cropping season, whereas trial II consisted of 98 inbred

lines and was evaluated in the 2021 main cropping season.
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Agronomic practices, including fertilizer application (NPS 150

kg/ha and UREA 250 kg/ha) and weed management, were carried

out uniformly as per recommendation for the testing site.

Two plants were self-pollinated in each line to produce pure

seeds for carotenoid analysis. Each ear was harvested separately, air-

dried at ambient temperature, shelled, and stored in a cold room at

10°C for carotenoid analysis.

A hundred seed samples were drawn randomly from each plot

and sent to CIMMYT, Mexico for carotenoid analysis. The

carotenoid extraction and measurement were carried out as per

the procedure CIMMYT’s laboratory manual (Muzhingi et al.,

2017; Azmach et al., 2018).

Briefly, 600 mg offine powder from each sample was transferred

into a 15-mL glass tube container, to which 6 mL of ethanol with

0.1% of butylated hydroxyl toluene was added. Next, the tubes were

shacked and vortexed for 15 s and incubated at 85°C for 5 min in a

water bath. The tubes, which contain samples taken out from

incubation and 500 mL of 80% potassium hydroxide added for

saponification, were then shacked and vortexed.

Each tube sample was mixed with 3 mL of cold deionized water,

200 µL of internal standard b-Apo-80-carotenal, and 3 mL of

hexane. The mixture was vortexed for 15 s, followed by a 3-min

centrifugation at 3000 rpm. The supernatant (upper solvent phase)

was pipetted into a 15-mL new test tube, placed on ice, and tightly

covered. Again, 3 mL of hexane was added to each tube of sample

and centrifuged. The supernatant (upper phase) was transferred to a

new tube placed on ice and tightly covered.

Each extracted sample was dried under nitrogen gas using a

Turbovap LV concentrator, reconstituted in 1 mL of 50:50 methanol:

dichloroethane, and vortexed for 10 s. Using a mobile phase gradient

from methanol:tert-butyl methyl ether (80:20 v/v) and a C30 Column

(4.6 mm × 250 mm; 3 µm) to separate carotenoids, 50 µL of each

sample was injected into the Acquity UPLC system. The solvent flow

rate was 1 mL/min. The water acuity photodiode array detector is used

to measure carotenoid absorbance at 450 nm wavelength (Muzhingi

et al., 2017) and is connected to the software to view carotenoid

profiles. Provitamin A was calculated as the sum of b-carotene and half
of each of b-cryptoxanthin and a-carotene. Total carotenoid was

calculated as the sum of PVA, lutein, and zeaxanthin. The

concentration measurements were expressed in micrograms per

gram of dry weight (DW).
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2.4 Genotyping

The 752 inbred lines (Supplementary Table S5), which also

contain the 161 inbred lines analyzed for their carotenoid content,

were genotyped using seven KASP PCR markers with key allelic

variants of the crtRB1 gene. Each inbred line was planted on a single

row of 5 m long at Bako Maize Research Center in the 2021 off-

season. Young leaf samples were collected from five typical plants in

each plot using labeled 96-well plates following the leaf sample

collection procedure of the genotyping service provider. The leaf

samples were dried in an oven at 50°C for 48 h, sealed, placed in a

bucket containing silica gels, and stored in a cold room till samples

were shipped to Sweden. DNA extraction protocol followed the

CTAB method (Obi et al., 2020), and KASP PCR genotyping was

carried out by Intertek AgriTech Laboratory, Sweden (https://

www.intertek.com/agriculture/agritech/). The isolated DNA

samples were genotyped using seven KASP markers presented in

Table 1. PCR amplification and thermal cycling were performed

according to the standard protocol for the KASP genotyping

chemistry manual (https://www.biosearchtech.com/, accessed

in 2020).
2.5 Statistical analysis

The carotenoid data were analyzed using PROC GLM in SAS

software version 9.3 (SAS institute, 2011), in which inbred lines

were treated as fixed effects while blocks and replications were

treated as random effects. A mean separation was performed to

compare treatment means using an LSD test at a 5% level of

significance. Similarly, the repeatability (R2) values for PVA and

other carotenoids were estimated using the PROC GLM model

using SAS software (version 9.3). The distribution of carotenoid

traits was analyzed using R software version 3.1.4. Genotyping

data of inbred lines were sorted and aligned in an Excel sheet to

identify the presence of favorable alleles associated with

provitamin A and other carotenoid profiles. The general linear

model (GLM) was used to analyze the association of favorable

alleles with carotenoid traits in the TASSEL 5.0 version (Bradbury

et al., 2007).
TABLE 1 KASP PCR markers were used to genotype 752 yellow/orange maize inbred lines.

SNP ID Intertek ID Owner Trait category Favorable allele Unfavorable allele

S10–134583972 snpZM0013 CIMMYT PVA GG CC

S10–134655704 snpZM0014 CIMMYT PVA CC TT

SYN11355 snpZM0015 CIMMYT PVA AA GG

PZE-110083653 snpZM0016 CIMMYT PVA GG AA

S10–136072513 snpZM0017 CIMMYT PVA TT GG

S10–136840485 snpZM0018 CIMMYT PVA CC TT

S10–137904716 snpZM0019 CIMMYT PVA CC TT
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3 Results

3.1 Carotenoid profile

The analysis of variance showed highly significant differences

(p < 0.001) among the yellow maize inbred lines in both trials I

and II for PVA, b-carotene, b-cryptoxanthin, zeaxanthin, lutein,
and total carotenoid concentrations (Tables 2, 3). The

distributions of PVA and other carotenoids (µg/g) for the two

trials (trial I, 63 inbred lines, and trial II, 98 inbred lines) are

presented in boxplots (Figures 1A, B, respectively). The two trials

displayed a similar distribution of carotenoids among the inbred

lines. A few out-layers were observed for b-carotene and b-
cryptoxanthin in both trials.

The PVA content varied from 0.7 µg/g to 12.99 µg/g with a

mean value of 6.64 µg/g; the b-carotene value varied from 0.65 to

12.07 with a mean of 4.41 µg/g and that of b-cryptoxanthin varied

from 0.10 to 14.85 with a mean of 4.45 µg/g. Zeaxanthin showed the

highest level ranging from 8.76 µg/g to 24.75 mg/g whereas lutein

had the lowest level, ranging from 0.05 µg/g to 8.91 µg/g

(Supplementary Tables S1, S2).

The inbred line TZMI1017, introduced from IITA, had the

highest level of provitamin A (12.99 µg/g), followed by CML 297

(11.33 µg/g) and a locally developed inbred line (IL00’E-9–1-1–1-1–

1/(KUI carotenoid syn-FS17–3-2-B-B-B/(KU1409/DE3/KU1409)

S2–18-2-B)-B-1(MAS: L4H1)-5-B-B-B)-B-11–1-2-B (11.08 µg/g)

(Table 4) and also supplementary (Supplementary Table S6) for

all carotenoids. On the other hand, the two checks (the white seeded

inbred line (BKL004) and HarvestPlus inbred line (CLHP00003)

had the lowest provitamin A content, 0.7 µg/g and 1.08 µg/g,
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respectively. Inbred lines with mean PVA contents of 6.64 µg/g to

12.99 µg/g can be used as donor parents in PVA maize breeding.

3.2 Molecular screening

Out of the 752 diverse yellow maize inbred lines screened with

the seven KASP markers, about 113 inbred lines were found to be

carrying one favorable allele by one of the KASP markers, whereas

16 inbred lines carried two favorable alleles at least by two KASP

PCR markers. Moreover, 43 inbred lines carried three or more

favorable alleles of the crtRB1 gene (Supplementary Table S3).

Among 43 lines, 14 locally developed inbred lines carried

favorable alleles of all markers of the crtRB1 gene, suggesting that

introgression of favorable alleles into adapted elite lines was

successful. Inbred lines TZMI1017 and CML297, introduced and

adapted to local conditions carried five and six favorable alleles of

KASP PVA markers, respectively.

Inbred lines carrying the favorable alleles of the KASPmarkers and

having high PVA content were identified. Inbred line TZMI1017

showed the highest levels of PVA (12.99 µg/g) and b-carotene (12.08
µg/g) and carried the favorable alleles of almost all the markers

evaluated (Table 5). Inbred line CML297 had high PVA (11.32 µg/g)

with high b-cryptoxanthine concentration and carried the favorable

alleles by five KASP markers used. In addition, nine locally developed

inbred lines had medium to high PVA concentrations (5.11 µg/g to

10.76 µg/g) and carried favorable alleles of the seven KASP markers

(Table 5). However, the general linear model association analysis result

showed that the KASP markers were not significantly associated with

variation in PVA carotenoids, b-carotene, and b-cryptoxan
(Supplementary Table 4).
TABLE 2 Mean squares for carotenoid content of 63 maize inbred lines evaluated in 2020.

Source
of variation

df Mean square of carotenoids

Bcar b-Cry PVA Lutein Zea TC

Inbred lines 62 9.62*** 16.98*** 14.15*** 10.33*** 69.16*** 164.85***

Rep 1 0.04 0.02 0.04 0.14 0.04 0.26

Block (rep) 4 0.12 0.11 0.10 0.12 0.40 2.10

Error 58 0.02 0.12 0.14 0.16 0.58 1.53
*** means highly significant.
TABLE 3 Mean squares for carotenoid content of 98 maize inbred lines evaluated in 2021.

Source
of variation

df Mean square of carotenoids

Bcar b-Cry PVA Lutein Zea TC

Inbred lines 97 8.97*** 14.38*** 11.86*** 10.27*** 85.20*** 187.36***

Rep 1 0.19 2.10 1.37 0.01 0.04 1.75

Block (rep) 12 0.59 0.67 0.51 0.38 3.78 5.65

Error 85 0.21 0.74 0.45 0.57 3.22 7.22
df, degree of freedom. *** means highly significant.
Repeatability (r) for all carotenoids ranged from 95% to 99% for trials I and II evaluated in 2020 and 2021, respectively.
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FIGURE 1

(A) Distribution of carotenoid concentrations for 98 inbred lines (Trial II). (B) Distribution of carotenoid concentrations for 63 inbred lines (Trial I). The
upper and lower whisker (outside of the box plot) endpoints represent maximum and minimum concentrations, respectively. In the box plot, the
lower and upper edges represent the first and third quartiles, the line inside the box represents the median, and the black point represents the mean.
Carotenoids are abbreviated as follows: b-car, b-carotene; b-cry, cryptoxanthine; Lut, lutein; PVA, provitamin A; TC, total carotene; zeax, zeaxantine.
TABLE 4 Selected inbred lines among 98 inbred lines based on their mean value of b-carotene and provitamin A content (µg/g).

Entry Pedigree b-
Carotene

PVA

85 TZMI1017 12.08 12.99

3 IL00’E-9–1-1–1-1–1/(KUI carotenoid syn-FS17–3-2-B-B-B/(KU1409/DE3/KU1409) S2–18-2-B)-B-1(MAS: L4H1)-5-B-B-B)-B-11–
1-2-B

10.13 11.08

7 (IL00’E-9–1-1–1-1–1/(KUI carotenoid syn-FS17–3-2-B-B-B/(KU1409/DE3/KU1409)S2–18-2-B)-B-1(MAS:L4H1)-5-B-B-B)-B-13–1-
4-B-1

9.74 10.27

57 CML144/(KUI carotenoid syn-FS11–1-1-B-B-B/(KU1409/DE3/KU1409)S2–18-2-B)-B-3(MAS:L4H1)-1-B-B-B)-B-5–2-1 8.94 9.44

88 CLHP00306 8.13 10.60

54 (CML144/(KUI carotenoid syn-FS3–3-2-B-B-B(KU1409/DE3/KU1409)S2–18-2-B)-B-4(MAS:L4H1)-2-B-B-B)-B-9–1-1–1 8.01 9.18

49 (CML144/(KUI carotenoid syn-FS3–3-2-B-B-B(KU1409/DE3/KU1409)S2–18-2-B)-B-4(MAS:L4H1)-2-B-B-B)-B-3–2-4–1-1 7.91 10.76

86 TZMI1018 7.26 9.32

30 (DE78-Z-126–3-2–2-1–1(g)/(KUI carotenoid syn-FS11–1-1-B-B-B/(KU1409/DE3/KU1409) S2–18-2-B)-B-3(MAS: L4H1)-1-B-B-B)-
B-1–1-1

6.76 9.17

4 (IL00’E-9–1-1–1-1–1/(KUI carotenoid syn-FS17–3-2-B-B-B/(KU1409/DE3/KU1409) S2–18-2-B)-B-1(MAS: L4H1)-5-B-B-B)-B-11–
2-2

7.52 8.12

96 (CML486/(CML297-B<d7>KUICarotenoidsyn-FS17–3-2-B/KUI3<d7>B77))-B-11–1-B-B-B-B-B-B-B-#-B-B 6.10 10.32

94 CML 297 4.48 11.33

75 (Gibe1–91-1–1-1–1/(KUI carotenoid syn-FS17–3-2-B-B-B/(KU1409/DE3/KU1409)S2–18-2-B)-B-1(MAS:L4H1)-5-B-B-B)-B-2–2-
1-B

5.76 8.88

90 CLHP00003, introduced from Harvest Plus (check) 0.90 1.10

84 BKL004, locally developed white maize inbred line check 0.92 1.09

Mean 4.41 6.64

CV 10.57 10.15

LSD.05 0.93 1.34
F
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TABLE 5 Selected inbred lines carrying favorable alleles of the crtRB1 gene combined with high PVA content (µg g−1).

Carotenoids

15 snpZM00016 snpZM00017 snpZM00018 snpZM00019 b-Car b-Cry PVA

G:G T:T C:C C:C 4.01 4.75 6.39

G:G T:T C:C C:C 1.64 1.55 2.42

G:G N/A C:C C:C 3.37 4.40 5.55

G:G T:T C:C T:T 3.04 5.90 5.97

G:G T:T C:C C:C 4.01 7.25 7.63

N/A T:T N/A C:C 3.18 4.10 5.23

G:G T:T C:C C:C 7.91 5.70 10.76

G:G T:T C:C T:T 2.32 5.60 5.11

N/A T:T C:C T:T 3.13 5.35 5.78

A:A T:T N/A C:C 3.93 7.90 7.88

G:G T:T C:C C:T 12.08 1.85 12.99

N/A T:T C:C T:T 4.48 13.70 11.33
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0
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Sample
ID coded

KASP SNP PVA markers

snpZM00013 snpZM00014 snpZM000

ETBKCART110 C:C T:T A:A

ETBKCART113 G:G C:C A:A

ETBKCART137 G:G C:C A:A

ETBKCART143 G:G C:C A:A

ETBKCART153 G:G C:C A:A

ETBKCART154 G:G C:C A:A

ETBKCART157 G:G C:C A:A

ETBKCART168 G:G C:C A:A

ETBKCART169 G:G C:C A:A

ETBKCART177 G:G C:C A:A

ETBKCART193 G:G C:C A:A

ETBKCART202 G:G C:C A:A

green, favorable allele; blue, heterozygous; red, unfavorable allele; and yellow, not available/m
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4 Discussion

Our result demonstrated high genetic variation among yellow

maize inbred lines for all carotenoids, which was consistent with

results in other studies (Muthusamy et al., 2015; Garg et al., 2018).

Inbred lines with high b-carotene and PVA content were identified

(Table 4). For example, inbred lines introduced from IITA and

locally developed that contain PVA > 8 µg/g can be used as donor

parents in hybrid and open variety development (Sayadi Maazou

et al., 2021). The higher repeatability estimates, ranging from 95%

to 99% for all carotenoid concentrations in both trials, indicate that

the measured carotenoid values were reliable and the variation was

mainly due to the genetic factors.

Different studies reported that genotype by environment

interaction showed a minor and significant effect on PVA

expression in maize. For instance, Menkir et al. (2008) and

Muthusamy et al. (2015) reported that location and inbred lines by

location interaction had a small fraction effect on lutein, a-carotene,
and PVA. Similarly, there is a minor effect of genotype ×

environment interaction on lutein and zeaxanthin (Goswami et al.,

2019a; Duo et al., 2021), whereas there is a nonsignificant effect on the

PVA and b-carotene carotenoids of maize, indicating that b-carotene
and PVA carotenoids are strongly influenced by genotypes. In the

current study, we did not conduct line × year interaction, but the

success of PVA breeding relies on the availability of genetic variation

in yellow maize inbred lines (Menkir et al., 2008) and allelic diversity

for PVA and other carotenoid content (Duo et al., 2021). On the

other hand, variety × environment interaction showed effects on PVA

content (Mengesha et al., 2019), and inbred lines × years of

interaction showed significant effects on carotenoids except on b-
carotene and PVA content (Menkir et al., 2015). Such inconsistent

reports highlight that further investigation of genotype ×

environment interaction and other stress effects is required on PVA

and other carotenoid content using a wide array of enriched yellow

maize genetic backgrounds.

Marker-assisted selection is a useful tool to shorten the breeding

cycle through the introgression of favorable alleles into agronomically

superior elite lines to improve the nutritional quality of maize. We

tested kompetitive allele-specific PCR (KASP) markers of the

functional variations in the crtRB1 gene of the carotenoid

biosynthesis pathway in maize endosperm to screen diverse maize

inbred lines adapted to the mid-altitude subhumid agro-ecology of

Ethiopia. Association analysis using the GLM model showed a

nonsignificant association between the KASP markers and variations

in PVA contents, b-carotene, and b-cryptoxanthin in the set of maize

inbred lines studied. This is contrary to the results of Sayadi Maazou

et al. (2021), who reported that KASP markers had a significant

association with b-carotene and PVA accumulation and a negative,

nonsignificant association with b-cryptoxanthin in maize. This could

be due to the genetic backgrounds of the local inbred lines than those

used in developing KASP markers, as that can affect marker–trait

association (Babu et al., 2013). Likewise, the functional markers’

predictive accuracy seemed variable depending on the source of

genotype and the combination of favorable alleles (Gedil and

Menkir, 2019). Our results from similar studies (Esuma et al., 2022;

Codjia et al., 2023) reported only one marker showed a significant
Frontiers in Plant Science 07
association with PVA accumulation in cassava. Similarly, Vignesh et al.

(2012) and Gebremeskel et al. (2018) reported that some lines carrying

unfavorable alleles of the crtRB1 gene expressed high levels of PVA

content, which might be due to ZmBCH1 and other genes. Such

marker-to-trait association inconsistencies within a set of genotypes

require further study, including phenotyping a larger sample of inbred

lines and also checking for additional marker systems.
5 Conclusion

The genetic variation observed in PVA and other carotenoids

among the inbred lines suggests their potential value for use as

parents to enhance the PVA content through crossing, recycling,

and strategic selection. The KASP markers examined in this study

did not show a clear, predictable association with the observed PVA

variation. However, it is crucial to continue investigating the

underlying cause and test a more comprehensive marker system

to streamline the regular PVA maize breeding program.
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