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Efficient utilization of agricultural wastes and reduction of chemical fertilizer

inputs are crucial for sustainable development of agriculture. Plant growth

promoting rhizobacteria (PGPR) are widely used as biofertilizers to partially

replace chemical fertilizers in agricultural production. The functional

performance of PGPR strains is closely related to their root colonization

capacity. Some organic acids from root exudates can recruit PGPR to colonize

the root. In this study, agricultural organic wastes such as mushroom bran and

tobacco waste materials were used to produce organic acids through the

hypoxic hydrolysis process. The hydrolysis conditions were optimized to

maximize the production of a mixture of complex organic acids from the

hypoxic hydrolysis of these materials, employing both single-factor and

orthogonal experimental methods. The diluted hydrolysates were tested for

their effects on the rhizosphere colonization of the PGPR strain Bacillus

amyloliquefaciens SQR9 using fluorogenic quantitative PCR in greenhouse pot

experiments. The results demonstrated that hypoxic hydrolysates from tobacco

waste and mushroom bran significantly enhanced the colonization of SQR9 in

the maize rhizosphere. Specifically, a 2000-fold dilution of tobacco waste

hydrolysate yielded the most effective result, while a 5000-fold dilution of

mushroom bran hydrolysate provided the best outcome. All treatments
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combining these hydrolysates with SQR9 significantly increased maize stem dry

weight, indicating that with appropriate treatment, such as anaerobic

fermentation, these agricultural organic wastes can serve as synergistic agents

of microbial fertilizers, contributing to agricultural sustainability.
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1 Introduction

Chemical fertilizers and pesticides have greatly contributed to the

development of agriculture, but their overuse has also led to serious

environmental damage. This includes the degradation of soil and the

quality of agricultural products, which has restricted the sustainable

development of agriculture (Ding et al., 2024; Wang et al., 2022, 2024;

Wu et al., 2023). Another issue in modern agriculture is the

management and efficient utilization of the large amount of

agricultural waste, such as crop straws and by-products from

agricultural product processing. Discarding these organic materials

causes environmental pollution and a waste of valuable resources.

However, if properly treated, these materials can be used to improve

soil quality and agricultural production (Koul et al., 2022).

Plant growth-promoting rhizobacteria (PGPR) play important

roles in sustainable agricultural production (Kunal et al., 2023).

They promote plant growth by producing phytohormones and

releasing essential nutrients such as phosphorus and potassium

(Shao et al., 2015). PGPR can also suppress soil-borne diseases by

occupying rhizosphere niches and exhibiting antagonistic

properties (Li et al., 2014; Liu et al., 2014; Zhang et al., 2015).

With growing concern over the negative effects of chemical

fertilizers and pesticides on the environment and soil, PGPR is

becoming increasingly popular in agricultural production due to its

low cost, high efficiency and environmentally friendly nature. It has

the potential to reduce the use of chemical fertilizers and pesticides.

It is well known that efficient root colonization of PGPR is

necessary for them to exert their plant beneficial effects, and root

colonization is related to the chemotaxis ability of PGPR towards

root exudates (Guo et al., 2024). Many studies have reported that

low molecular weight organic acids in root exudates play a role in

recruiting PGPR for root colonization. For example, L-malic acid

(MA) secreted from roots recruits the beneficial rhizobacterium

Bacillus subtilis FB17 (Yang et al., 2023). Additionally, root-secreted

citric acid and fumaric acid positively influence the colonization of

Bacillus amyloliquefaciens SQR9 in the cucumber rhizosphere (Liu

et al., 2014). Furthermore, several root-secreted organic acids can

recruit Paenibacillus polymyxa SQR-21 (Ling et al., 2011).

Therefore, to increase root colonization and the beneficial

efficiency of PGPR, it is possible to produce low molecular weight

organic acids as auxiliary agents or biofertilizers.
02
The hydrolysis reaction is the early stage of the anaerobic

fermentation process, which can hydrolyze macromolecular organic

substances such as agricultural organic waste into low molecular

weight organic acids without strict anaerobic conditions (Stams

et al., 2006; Wang et al., 2009; Weiland, 2010). Mushroom bran and

tobacco waste contain rich organic substances, including

carbohydrates, proteins, and cellulose. These components can be

converted into low molecular weight organic acids during the

hydrolysis process (Ketemepi et al., 2024; He et al., 2024). Therefore,

producing organic acids through the hydrolysis of agricultural organic

waste, such as mushroom bran and tobacco waste, and then using

these hydrolysis products to enhance the root colonization of PGPR,

not only provides a new way for the utilization of agricultural waste,

but also offers a new strategy to boost the efficacy of PGPR.

Maize is the largest cultivated crop in China and a vital food

source for its population (Yue et al., 2022). However, the current

maize yield in China is only 60% of that in developed countries

(Guo et al., 2021). A key factor contributing to this gap is the

degradation of soil structure and nutrient imbalances resulting from

the prolonged overuse of chemical fertilizers and pesticides. To fully

leverage the growth-promoting effects of PGPR on maize yield, this

study optimized the hypoxic hydrolysis process of mushroom bran

and tobacco waste. The hydrolysates obtained from these processes

were then applied in conjunction with Bacillus amyloliquefaciens

SQR9, to enhance root colonization and promote growth in maize.

The integration of these hydrolysates with SQR9 aimed to

significantly improve maize yield by fostering more robust plant-

microbe interactions.
2 Materials and methods

2.1 Strains and substrates

Bacillus amyloliquefaciens SQR9 (CGMCC accession no. 5808,

China General Microbiology Culture Collection Center) is a well-

studied and widely used PGPR strain (Cao et al., 2011; Qiu et al.,

2014; Xu et al., 2013). It was cultured in LB medium (10 g/L

tryptone, 5 g/L yeast extract, 3 g/L NaCl) (Shao et al., 2015). The

mushroom bran and tobacco waste utilized for hypoxic hydrolysis

were sourced from the Forestry Bureau in Tonghe County, Harbin,
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Heilongjiang Province (45.98, 128.75), and the Hongyun Honghe

Group’s Qujing Cigarette Factory (25.53, 103.81), respectively. The

mushroom bran had a moisture content of 9.3%, a pH of 6.5, and a

C/N ratio of 42.6, while the tobacco waste had a moisture content of

7.2%, a pH of 7.2, and a C/N ratio of 35.9. The inoculated sludge

used to initiate the fermentation of hydrolysis was obtained from

the sediments of the local Qinhuai River (32.01, 118.83).
2.2 Optimization of the hypoxic hydrolysis

Single factor experiments for the optimization of organic acid

production conditions were firstly conducted. The hypoxic

hydrolysis was carried out in a brown bottle (500 mL) with its

mouth sealed by a leather stopper. Mushroom bran or tobacco

waste materials were air-dried, passed through a 2 mm sieve and

autoclaved. Then, they were added into the bottle (34.5 g in 500

mL). Five factors were designed for the optimization, including

initial pH, temperature, inoculum, moisture content and hydrolysis

time, respectively. Each factor had four levels: 5.0, 6.0, 7.0, and 8.0

for pH; 30°C, 35°C, 40°C, and 45°C for temperature; 5%, 10%, 15%,

and 20% (w/w) for inoculum; and 80%, 85%, 90%, and 95% for

moisture content. The hydrolysis lasted for 7 days and samples were

taken every 12 hours.

In the orthogonal experiment, two optimal levels were included

for each of the above single factors, resulting in a total of 5 factors

and 2 levels (Supplementary Tables S1, S2).
2.3 Measurement of organic acids

Organic acids were determined by the colorimetric method

(Montgomery et al., 1962). Briefly, the hydrolysis supernatant was

obtained by centrifuging the sample at 10000 rpm, and then 0.5 mL

of the supernatant was transferred into a tube. 1.7 mL of reagent B

(30 mL of ethylene glycol with 4 mL of dilute sulfuric acid and an

equal volume of water) was added to the tube and mixed

thoroughly. The tube was heated in a boiling-water bath for 3

min, and then cooled down in an ice water bath immediately.

Subsequently, 2.5 mL of reagent C (20 mL of 4.5 mol/L sodium

hydroxide with 5 mL of hydroxylamine sulphate) was added, mixed

and settled aside for 1 minute. The solution was then transferred

into a 25 mL calibrated flask, and 10 mL of reagent D (dissolve 20 g

of ferric chloride hexahydrate in 500 mL of water, add 20 mL of

concentrated sulfuric acid, and dilute to 1 liter) was added. The

optical density at a wavelength of 500 nm was measured with

distilled water as the blank control. The concentrations of organic

acids produced by the hypoxic hydrolysis process were calculated

using the following equation:

C = C0 � Vd=V (1)

Where C (mg/mL) is the concentration of total organic acids, C0

(mg/mL) is the optical density at 500 nm wavelength corresponding

to the amount of organic acid in the acetic acid standard curve, Vd is

the dilution factor of the measurement, and V is the volume of the

samples (mL).
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2.4 Pot experiments

The pot experiments were conducted in the greenhouse on the

campus of Nanjing Agricultural University, located in Nanjing,

Jiangsu Province, China (118.78°E, 32.05°N). During the

experiment, the temperature in the greenhouse was maintained

between 20°C and 28°C, with a light transmittance of 50-60% and

humidity levels ranging from 55-85%. Water supply was manually

controlled to ensure consistent and adequate irrigation, with no

influence from natural rainfall. Surface soil (0-20 cm) was collected

from the Baima Teaching and Research Base of Nanjing

Agricultural University (119.17°E, 31.63°N). The area has a

subtropical monsoon climate, featuring hot, humid summers and

mild winters. The average annual temperature ranges from 15°C to

16°C, with most of the 1000-1200 mm of annual precipitation

occurring during the summer months. The soil type was yellow-

brown soil, iron wet leaching soil, with properties including a pH of

8.18, organic matter of 5.46 g/kg, total nitrogen of 1.27 g/kg,

available phosphorus of 6.8 mg/kg, and available potassium of

88.4 mg/kg. The soil was air-dried, ground, and passed through a

2 mm sieve, then mixed with quartz sand (particle size 0.106-0.212

mm) in a 7:3 ratio. This mixture helps prevent soil compaction and

improves the soil’s water and air permeability. Each pot contained

1.5 kg of soil mixture. Maize (“Jingtian” purple waxy maize) seeds

were surface-sterilized with 0.1% NaClO and 70% ethanol,

germinated and grown for one week. Then, the maize seedlings

were transplanted into the pot, with one seedling in each pot. All

hypoxia hydrolysates were sterilized using a sterile membrane of

0.22 mm in diameter before being added to the pot. Eleven

treatments were included in the pot experiment with the addition

of different agents as follows: 1) 50 mL of sterile distilled water

served as the blank control (Blank); 2) 50 mL of 1000-times diluted

mushroom bran hypoxia hydrolysate (J1000); 3) 35 mL of 1000-

times diluted mushroom bran hypoxia hydrolysate plus inactivated

SQR9 (J1000+SQR9(I)); 4) 35 mL of 1000-times diluted mushroom

bran hypoxia hydrolysate plus living SQR9 (J1000+SQR9); 5) 35 mL

of 2000-times diluted mushroom bran hypoxia hydrolysate plus

living SQR9 (J2000+SQR9); 6) 35 mL of 5000-times diluted

mushroom bran hypoxia hydrolysate plus living SQR9 (J5000

+SQR9); 7) 50 mL of 1000-times diluted hypoxia hydrolysate of

tobacco waste materials (Y1000); 8) 35 mL of 1000-times diluted

hypoxia hydrolysate of tobacco waste materials plus inactivated

SQR9 (Y1000+SQR9(I)); 9) 35 mL of 1000-times diluted hypoxia

hydrolysate of tobacco waste materials plus living SQR9 (Y1000

+SQR9); 10) 35 mL of 2000-times diluted hypoxia hydrolysate of

tobacco waste materials plus living SQR9 (Y2000+SQR9); 11) 35

mL of 5000-times diluted hypoxia hydrolysate of tobacco waste

materials plus living SQR9 (Y5000+SQR9). The dilution ratio of the

hydrolysate was determined based on the results of the chemotaxis

assay (Supplementary Figure S1). SQR9 was cultured for 24 hours at

35°C, and the concentration of SQR9 in the culture was 5×108

CFUs/mL. SQR9 cells were obtained by centrifugation, and

resuspended in the same volume of water. 15 mL of the SQR9

suspension was added to each pot. Inactivated SQR9 was obtained

by autoclaving at 121°C for 2 hours. Ten replicates were included

for each treatment, which were randomly blocked. Maize and
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rhizosphere soil were sampled after 7 and 14 days, respectively. The

pot experiment was concluded after the collection on the 14th day.
2.5 Analysis of SQR9 abundance in
maize rhizosphere

2.5.1 Collection of rhizosphere soil
The excess soil on the roots was gently shaken off, and then

these roots were transferred into a sterile 50 mL centrifuge tube

containing PBS-S buffer (6.33 g/L NaH2PO4·H2O, 16.5 g/L

Na2HPO4·7 H2O, 200 mL/L Silwet L-77). The tubes were shaken

at 180 rpm for 20 min and then vortexed at maximum speed for 15

seconds before being centrifuged at 5500 g for 5 min to remove the

supernatant. The remaining rhizosphere soil was used to

extract DNA.

2.5.2 Quantification of SQR9 by RT-qPCR
The rhizosphere soil DNA was extracted using the FastDNA®

SPIN Kit for Soil (Mpbio, America), strictly following the steps in the

instructions. Specific primers for SQR9 were designed targeting a

unique genomic island of SQR9 (Wang et al., 2019), which were F

5’-ATAGCAAGAGCGAGGCAGAAGT-3’ and R 5’-CAGAGGA

ATCATCAACACCAACAGT-3’. RT-qPCR amplification was

performed on the Applied Biosystems 7500 Real-Time PCR system

using the Premix Ex Taq™ kit (Takara, Dalian, China). The PCR

reaction mixture contained 10.0 mL of Premix Ex TaqTM (2×), 0.4 mL
of each primer (10 mmol/L), 0.4 mL of ROX Reference Dye II (50×), 20

ng of DNA template, and a final volume of 20 mL with sterile water.

The PCR program consisted of an initial denaturation at 95°C for 30 s,

followed by 40 cycles of denaturation at 95°C for 5 s and annealing and

extension at 60°C for 34 s. The threshold cycle (Ct) values were

automatically calculated by the system. The melt curve analysis was

conducted at the end of the PCR run to evaluate amplification

specificity. Before that, a standard curve was created according to the

above procedure.
2.6 Maize growth analysis

Plant height and shoot dry weight were measured for three

randomly selected maize seedlings from each treatment. Due to the

short growth cycle set for the maize plants, a significant portion of

the root system was lost during the collection of sufficient

rhizosphere soil; therefore, root biomass data were not recorded.
2.7 Statistical analysis

Differences among the treatments were calculated and

statistically analyzed with a one-way analysis of variance

(ANOVA). Duncan’s multiple range test was used when the one-

way ANOVA indicated significant differences (p< 0.05). All

statistical analyses were carried out with SPSS BASE ver.11.5

statistical software (SPSS, Chicago, IL, USA).
Frontiers in Plant Science 04
3 Results

3.1 Hydrolysis of the agricultural wastes for
organic acids production

To produce organic acids through hydrolysis from agricultural

wastes such as mushroom bran and tobacco waste materials,

the factors affecting hydrolysis efficiency were investigated to

obtain the optimal reaction parameters. These factors include the

initial pH, temperature, sediment inoculum, moisture and

reaction time.

The effects of temperature, inoculum, and moisture on the

production of organic acids during the hypoxic hydrolysis of

mushroom bran and tobacco waste were largely consistent.

Specifically, the concentration of produced organic acids initially

increased and then decreased with rising incubation temperature

(ANOVA, mushroom bran: p< 0.001; tobacco waste: p< 0.001) and

inoculum (ANOVA, mushroom bran: p< 0.001; tobacco waste:

p< 0.001), while it gradually decreased with increasing moisture

(ANOVA, mushroom bran: p< 0.001; tobacco waste: p< 0.001)

(Figures 1B–D, 2B–D; Supplementary Table S3). However, the

effects of initial pH and incubation time on organic acid

production differed between the two substrates. For mushroom

bran, the organic acids gradually increased with a higher initial pH

(ANOVA, p< 0.001), whereas for tobacco waste, it exhibited the

opposite trend (ANOVA, p< 0.001) (Figures 1A, 2A). Additionally,

organic acid production from mushroom bran increased with

incubation time (ANOVA, p< 0.001), reaching a plateau at 156 h,

while for tobacco waste, it initially increased and then decreased

with prolonged incubation time (ANOVA, p< 0.001)

(Figures 1E, 2E).

In summary, for the hydrolysis of mushroom bran, the optimal

initial pH, temperature, inoculum, moisture and time were 8.0,

35°C, 10%, 80% and 156 h, respectively. For the hydrolysis of

tobacco waste, the optimal initial pH, temperature, inoculum,

moisture and time were 5.0, 35°C, 15%, 80% and 144 h, respectively.

Orthogonal experiments were also conducted to determine the

optimal hydrolysis conditions for producing organic acids from

both wastes. Five-factor two-level orthogonal experiments were

designed based on the results of the single factor experiments,

resulting in eight different combinations for mushroom bran

(Supplementary Table S1) and tobacco waste materials

(Supplementary Table S2). Since the system with a moisture

content of 80% was too viscous for solid-liquid separation after

hydrolysis, moisture contents of 85% and 90% were used in the

orthogonal design. Both mushroom bran (Figure 3A) and tobacco

waste materials (Figure 3B) showed the highest production of

organic acids in combination No. 8 of Supplementary Tables S1,

S2. Therefore, the optimal hypoxia hydrolysis conditions were an

initial pH of 8.0, a temperature of 40°C, a sediment inoculum of

15%, a moisture content of 85%, and a hydrolysis time of 168 h for

mushroom bran. For tobacco waste materials, the optimal

conditions were an initial pH of 6.0, a temperature of 40°C, a

sediment inoculum of 15%, a moisture content of 85%, and a

hydrolysis time of 144 h.
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3.2 Effect of hydrolysate on maize
rhizosphere colonization of PGPR
strain SQR9

After obtaining the organic acids from the hydrolysis of mushroom

bran and tobacco waste materials, their effect on the rhizosphere

colonization of the PGPR strain SQR9 was evaluated. The results

showed that diluted mushroom bran hydrolysates increased the maize

rhizosphere colonization of SQR9 at both sampling times (7 and 14

days after planting) (Figures 4A, B). Compared to the water control, the
Frontiers in Plant Science 05
diluted mushroom bran hydrolysate significantly (ANOVA, p< 0.001)

enhanced SQR9 colonization in the maize rhizosphere, with the effect

increasing alongside higher dilution factors (Figures 4A, B;

Supplementary Table S3). This result is consistent with the findings

from the chemotaxis assay conducted in vitro (Supplementary Figure

S1), demonstrating that the enhancement of SQR9 colonization by the

organic acids in the mushroom bran hydrolysate depends on an

appropriate concentration range. The 5000-fold dilution of the

mushroom bran hydrolysate provided the optimal enhancement of

SQR9 colonization in the maize rhizosphere (Figures 4A, B).
FIGURE 2

Organic acids production in different conditions with tobacco wastes in single factor experiment. Significant differences among the different
treatments are indicated by different letters (p< 0.05).
FIGURE 1

Organic acids production in different reaction conditions with mushroom bran in single factor experiment. Significant differences among the
different treatments are indicated by different letters (p< 0.05).
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As expected, the blank, 1000-times diluted hydrolysate alone,

and 1000-times diluted hydrolysate with inactivated SQR9 controls

did not detect SQR9 colonization, demonstrating the specificity of

the q-PCR primers for SQR9 (Qiu et al., 2014). Additionally,

compared to 7 days after maize planting (Figure 4A), the SQR9

colonization in the maize rhizosphere was 2-4 times higher after 14

days (Figure 4B). This indicates that SQR9 exhibits ongoing

chemotactic activity towards the rhizosphere throughout

maize growth.

The diluted hydrolysate of tobacco waste materials showed a

similar effect on SQR9 rhizosphere colonization (Figures 5A, B).

However, unlike the mushroom bran hydrolysate (Figures 4A, B),

the 2000-fold diluted tobacco waste hydrolysate exhibited the highest

enhancement of SQR9 colonization at both maize sampling times

(Figures 5A, B), which was consistent with the chemotaxis experiment

results in vitro (Supplementary Figure S1). These results suggest that

the hydrolysates of agricultural waste can be used as an assistant agent

for PGPR to enhance their rhizosphere colonization and, hopefully,

their plant beneficial function performance.
Frontiers in Plant Science 06
3.3 Effect of hydrolysate on SQR9-
promoted maize growth

Strain SQR9 has been demonstrated as an efficient beneficial

rhizobacterium for plant growth promotion (Shao et al., 2015). It is

expected that enhancing SQR9’s rhizosphere colonization with the

hypoxic hydrolysates of agricultural wastes will also enhance its

ability to promote plant growth. Maize growth was investigated by

measuring shoot height and shoot dry weight for the different

treatments. The results showed that all treatments involving

SQR9 promoted maize growth (Figures 6A–D). The application

of diluted hypoxic hydrolysates of mushroom bran and tobacco

waste materials, in addition to SQR9, further enhanced the growth-

promoting effect on maize. Although there were no significant

differences (ANOVA, p > 0.05) in shoot dry weight among the

different dilution treatments of the hydrolysates, the 2000-fold

dilution had the best effect (Figures 6A–D; Supplementary Table

S3). These results suggest that the hydrolysates can be used with

PGPR to improve its beneficial function.
FIGURE 4

Copy number of SQR9 in different treatments with mushroom bran hypoxia hydrolysate dilutions after 7 days (A) and 14 days (B) of planting.
Significant differences among the different treatments are indicated by different letters (p< 0.05).
FIGURE 3

Organic acids production of different combinations in orthogonal experiment: (A) mushroom bran hypoxia hydrolysis; (B) tobacco wastes hypoxia
hydrolysis. Significant differences among the different treatments are indicated by different letters (p< 0.05).
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4 Discussion

The yield of organic acids from hypoxic hydrolysate is

influenced by various factors, including initial pH, temperature,
Frontiers in Plant Science 07
inoculum size, moisture content, and fermentation time (Chen

et al., 2013, 2007; Lee et al., 2014). The results indicate that the

optimal initial pH and fermentation time for producing organic

acids differ between mushroom bran and tobacco waste materials.
FIGURE 6

The promoting effects of different dilution treatments of hypoxic hydrolysates of mushroom bran (A, C) and tobacco waste (B, D) on maize growth.
Significant differences among the different treatments are indicated by different letters (p< 0.05).
FIGURE 5

Copy number of SQR9 in different treatments with hypoxia hydrolysate dilutions of tobacco wastes after 7 days (A) and 14 days (B) of planting.
Significant differences among the different treatments are indicated by different letters (p< 0.05).
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To achieve higher levels of organic acid production, strategies such

as enhancing hydrolysis to generate more soluble substrates and

inhibiting methanogen activity are crucial. Methanogens consume

organic acids, particularly acetic acid, to produce methane, creating

an inverse relationship between their growth and the accumulation

of organic acids (Yuan et al., 2006). When methanogen activity is

inhibited, the concentration of organic acids can increase, leading to

higher yields. Previous studies have indicated that the growth of

methanogens is inhibited when the pH is less than 6.5, which favors

the accumulation of organic acids (Fang and Liu, 2002). Wang et al.

(2014) found that organic acid production at pH 6.0 was higher in

anaerobic digestion of food waste, but Yuan et al. (2006) reported

that short-chain fatty acid production from sludge was higher at pH

values ranging from 8.0 to 11.0.

Temperature affects the production of organic acids mainly by

influencing the growth of microorganisms, the activities of

enzymes, and the hydrolysis rate (Shi et al., 2024). The optimum

growth temperature for most anaerobic microorganisms is 35°C.

The results of this study showed that the production of organic

acids was highest at a temperature of 35°C for both mushroom bran

and tobacco waste materials, which is consistent with the results of

previous studies (Jiang et al., 2013). However, when considering the

composition of VFAs, the optimal temperature varies. During

anaerobic fermentation at 35°C and 45°C, acetic acid and

propionic acid are the most produced acids, whereas butyric acid

becomes the main product at 55°C (He et al., 2012). Nonetheless,

our study does not extensively focus on the impact of temperature

on the composition of VFAs, as all of these acids are key

components in eliciting PGPR chemotaxis (Feng et al., 2019).

Hydrolytic bacteria and acidogenic bacteria are the two main

functional microorganisms that promote VFA production. The

inoculum is the fundamental driver that accelerates the process

due to profuse anaerobic flora (Zhou et al., 2018). The number of

functional bacteria depends on the inoculum concentration.

Generally, a lower inoculum concentration contributes to acid

accumulation within a suitable concentration range of 10% to

30%. We found that the production of VFAs was highest at an

inoculum concentration of 15%, whether it was mushroom bran or

tobacco waste materials (Figures 3A, B). This demonstrates that the

inoculum concentration should not be too low, as it would result in

an insufficient number of hydrolytic bacteria. However, if the

concentration is too high, there may be a deficiency of nutrients

available in the substrate limiting microbial activity.

Moisture content also affects substrate concentration. A high

substrate concentration with low moisture content is advantageous

for acid accumulation within the appropriate range, whereas too much

moisture can inhibit microbial activity, resulting in a lower VFAs yield

(Yellezuome et al., 2024). Our study showed that the VFAs yield was

the highest when the moisture content was 85% (Figures 3A, B).

In theory, a longer fermentation time has advantages in

producing VFAs from acidogenic fermentation because

microorganisms have more time to react with the substrate

(Zhang et al., 2024b). Peces et al. (2021) suggested that the

highest VFAs yield occurred between 4 and 8 days. We observed

the highest production of VFAs when the fermentation time was
Frontiers in Plant Science 08
168 h for mushroom bran and 144 h for tobacco waste materials

(Figures 3A, B), which falls within the normal fermentation time.

The chemotactic response of PGPR to organic acids is

dependent on the concentration of these acids. For instance,

Bacillus amyloliquefaciens SQR9 exhibits a significant chemotactic

reaction to 20 mmol l-1 of citric acid when the rhizosphere of

cucumber is infected by pathogens (Liu et al., 2014). This indicates

that the concentration of organic acids directly affects the

chemotactic efficacy of PGPR. In our study, we observed that the

optimal dilution for tobacco waste hydrolysate was 2000-fold, while

for mushroom bran hydrolysate, it was 5000-fold (Supplementary

Figure S1). Interestingly, the initial organic acid content of the

tobacco waste hydrolysate was higher than that of the mushroom

bran hydrolysate (Figures 3A, B).

This disparity may reflect the different types and bioactive

effects of organic acids present in the two hydrolysates.

Specifically, the mushroom bran hydrolysate might contain more

effective organic acids, such as citric acid, that have a more

pronounced chemotactic effect on SQR9. Citric acid is not only a

common plant root exudate but it also plays a crucial role in

attracting and colonizing PGPR (Zhang et al., 2023). In contrast,

although the tobacco waste hydrolysate has a higher overall organic

acid content, these acids may not be as effective as those in the

mushroom bran hydrolysate, or their combination may not be as

conducive to eliciting a chemotactic response from SQR9.

Furthermore, the different chemotactic responses may be

related to the molecular structure and functional properties of the

organic acids (Zhang et al., 2024a). Small molecule organic acids,

such as citric acid might be more easily detected by SQR9, triggering

a stronger chemotactic response. In contrast, larger or more

complex organic acids might require higher concentrations or

specific environmental conditions to produce a similar effect

(Feng et al., 2022). This could explain why SQR9 shows a

significant chemotactic response in mushroom bran hydrolysate

even at higher dilution ratios (5000-fold).

The research demonstrates significant commercial potential in the

hypoxic hydrolysis of mushroom bran and tobacco waste materials to

produce organic acids, which can be utilized to enhance plant growth

and support beneficial microbial colonization. This approach offers

several key advantages, including the development of eco-friendly

biofertilizers that improve plant health by fostering PGPR

colonization. It also provides a sustainable solution for waste

management by converting agricultural and industrial byproducts

into valuable products.

However, commercializing this technology involves addressing

several challenges. Scaling up from laboratory to industrial

production requires effective process control and consistency, which

can be managed by implementing advanced fermentation technologies

and conducting pilot studies. Cost efficiency is another concern, as the

initial production and setup costs may be high. Solutions include

optimizing the fermentation process to lower costs and exploring less

expensive raw material options. Ensuring product stability and quality

is crucial, which necessitates strict quality control measures and

standardized procedures. Market acceptance may also be a barrier, as

new products often face skepticism. Overcoming this involves
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educating the market, providing samples, and showcasing the benefits

through case studies.

Compared to traditional chemical fertilizers, this method has

advantage due to its environmental benefits and the use of waste

materials, aligning with sustainability goals. Although it may involve

a more complex production process and higher initial costs, it offers

long-term benefits by improving soil health and plant resilience.

Overall, the research presents a promising alternative to conventional

fertilizers, with the potential to boost agricultural productivity and

support sustainable waste management practices. By addressing the

outlined challenges and leveraging the unique benefits, this

technology could be effectively integrated into the market, offering

both environmental and economic advantages.

This study has several limitations. Firstly, the specific organic acid

components in the hypoxic hydrolysate were not effectively analyzed,

resulting in an unclear understanding of the key chemotactic

substances for PGPR. This uncertainty limits the ability to further

optimize the fermentation process. Secondly, although the chemotactic

response of SQR9 to the hypoxic hydrolysate was observed in

laboratory experiments, the molecular mechanisms by which the

hydrolysate induces SQR9 colonization in the maize rhizosphere

remain unexplored. Additionally, since this study is based on pot

experiments, the future application of PGPR in field trials is crucial. In

actual agricultural settings, the effectiveness of PGPR may be affected

by various soil types and environmental conditions. Therefore,

additional field studies will be essential to validate the findings from

laboratory experiments and evaluate the practical potential of this

technology in real-world agricultural production.
5 Conclusion

Hypoxic hydrolysis of mushroom bran and tobacco waste was

used to produce organic acids. Optimal conditions varied slightly

between the two: mushroom bran needed pH 8.0, 40°C, 15%

inoculum, 85% moisture, and 168 hours, while tobacco waste

required pH 6.0, 40°C, 15% inoculum, 85% moisture, and 144

hours. Diluting the hydrolysates (5000-fold for mushroom bran and

2000-fold for tobacco waste) boosted the growth-promoting effects

of the PGPR strain SQR9 in maize. This suggests that hypoxic

fermentation can turn agricultural waste into effective microbial

fertilizers, reducing reliance on chemical alternatives and

promoting sustainable farming.
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