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Introduction: The use of chemical fertilizers in rice field management directly

affects rice yield. Traditional rice cultivation often relies on the experience of

farmers to develop fertilization plans, which cannot be adjusted according to the

fertilizer requirements of rice. At present, agricultural drones are widely used for

early monitoring of rice, but due to their lack of rationality, they cannot directly

guide fertilization. How to accurately apply nitrogen fertilizer during the tillering

stage to stabilize rice yield is an urgent problem to be solved in the current large-

scale rice production process.

Methods: WOFOST is a highly mechanistic crop growth model that can

effectively simulate the effects of fertilization on rice growth and development.

However, due to its lack of spatial heterogeneity, its ability to simulate crop

growth at the field level is weak. This study is based on UAV remote sensing to

obtain hyperspectral data of rice canopy and assimilation with the WOFOST crop

growth model, to study the decision-making method of nitrogen fertilizer

application during the rice tillering stage. Extracting hyperspectral features of

rice canopy using Continuous Projection Algorithm and constructing a

hyperspectral inversion model for rice biomass based on Extreme Learning

Machine. By using two data assimilation methods, Ensemble Kalman Filter and

Four-Dimensional Variational, the inverted biomass of the rice biomass

hyperspectral inversion model and the localized WOFOST crop growth model

were assimilated, and the simulation results of the WOFOST model were

corrected. With the average yield as the goal, use the WOFOST model to

formulate fertilization decisions and create a fertilization prescription map to

achieve precise fertilization during the tillering stage of rice.

Results: The research results indicate that the training set R2 and RMSE of the rice

biomass hyperspectral inversion model are 0.953 and 0.076, respectively, while the

testing set R2 and RMSE are 0.914 and 0.110, respectively. When obtaining the same

yield, the fertilization strategy based on the ENKF assimilation method applied less

fertilizer, reducing 5.9% compared to the standard fertilization scheme.
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Discussion: This study enhances the rationality of unmanned aerial vehicle

remote sensing machines through data assimilation, providing a new

theoretical basis for the decision-making of rice fertilization.
KEYWORDS

unmanned aerial vehicle (UAV), hyperspectral, crop growth models, feature selection,
data assimilation, rice fertilization
1 Introduction

Rice is one of the world’s major food crops (Lv et al., 2018).

Fertilizer, as an important component of rice field management,

directly affects rice yield. Fertilization plans formulated based on the

experience of farmers are prone to excessive fertilization, resulting

in rice lodging or reduced rice yield due to pests and diseases.

Agricultural drones have the advantages of high operational

efficiency and precise spraying, and are currently widely used in

rice monitoring and fertilization operations, providing new choices

for rice field management.

During the growth process of rice, there are two peak periods of

fertilizer demand, namely the tillering stage (Wang et al., 2021) and

the booting stage (Lai and Lin, 2021). The tillering stage is the first

peak fertilizer requirement for rice, and the tillering ability of rice

plays a decisive role in the later stage of rice panicle formation and

growth rate. The growth status of rice is an important basis for

making precise fertilization decisions. Traditional methods of

collecting field samples to obtain the growth status of rice are

costly and time-consuming, making it difficult to meet the

requirements of precise fertilization. Obtaining spectral data

through unmanned aerial vehicle spectroscopy equipment (Liu

et al., 2023a) has the characteristics of low cost and fast

acquisition speed. At present, relevant research mainly constructs

mathematical models of spectral data and physiological parameters

of rice through multispectral and hyperspectral data, achieving

rapid inversion of rice growth and development, and providing

guidance for nitrogen fertilizer management plans (Li et al., 2021;

Lu et al., 2021; Jia et al., 2022; Xu et al., 2023). Wang et al.

constructed a nitrogen concentration model for rice stems and

leaves using hyperspectral data from drones, providing a method

for estimating nitrogen concentration in rice stems and leaf organs

(Wang et al., 2023). Luo et al. used drone multispectral images to

construct a rice yield estimation model for the heading stage, filling

the gap in traditional ground measurements that were only

applicable to rice yield estimation during the booting stage (Luo

et al., 2022). Chen et al. used drones to obtain multispectral data on

rice canopy and established a quantitative inversion model for

monitoring the suitable harvest period of rice, filling the research

gap of combining harvest yield and spectral characteristics (Cong

et al., 2022). Due to the influence of various factors such as variety,
02
climate, soil, and diseases on crop growth and development

(Challinor et al., 2005; He et al., 2019; Deepika and Kaliraj, 2021),

it is a complex process to determine the specific development status

and nitrogen fertilizer demand of crops based on the obtained

physiological parameters. In summary, most current research

focuses on quickly inverting the physicochemical parameters of

rice growth status in a data-driven manner, but due to its lack of

mechanistic mechanisms, it cannot directly guide fertilization.

The crop growth model is a highly mechanistic model that takes

into account the temporal characteristics of crop growth and

development and the instantaneous characteristics of physiological

parameter acquisition. By using data assimilation methods to

combine the obtained physiological parameters with the crop growth

model, the growth process simulation of the crop growth model is

corrected through physiological parameters, Realizing real-time

correction of crop growth and development and nitrogen fertilizer

management plans has become a feasible approach for generating

precise fertilization plans. The crop growth model combines multiple

disciplines such as crop physiology, meteorology, soil science,

hydrology, etc. Based on crop physiology theory, a dynamic model

of crop growth and development under the influence of environmental

factors such as soil, water, and fertilizer is constructed, and a large

amount of field measurement data is used to simulate the crop growth

process. Based on different theoretical foundations and research

objects, commonly used crop growth models currently include

APSIM (Kumar et al., 2021), DSSAT (Ma et al., 2020), ORYZA2000

(Lu et al., 2019), WOFOST (Ju et al., 2023), etc. Data assimilation was

first proposed by Charney (Charney et al., 1969) and was initially used

in fields such as numerical weather forecasting and ocean circulation

models. Because the essence of data assimilation is to integrate new

observation data during the dynamic operation of the data model,

achieve real-time correction of model trajectory, and improve the

estimation accuracy of the model, data assimilation has been widely

applied in fields such as ocean monitoring (Tang et al., 2020), soil

monitoring (Zhou et al., 2022), and crop growth simulation (Dong

et al., 2013). At present, there is not enough research in the field of crop

growth model data assimilation. Chen et al. studied the potential of

assimilating LAI for early season crop yield prediction and obtained

wheat yield prediction (Chen and Tao, 2020).Li et al. combined the

CERES-Wheat model with remote sensing data using an integrated

Kaiman filter to optimize the key wheat parameter LAI (Li et al., 2011).
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Pique et al. assimilated satellite remote sensing data into cropmodels to

estimate the daily carbon dioxide flux and carbon budget components

of wheat (Pique et al., 2020).

In summary, it is feasible to combine hyperspectral inversion

technology with data assimilation methods and crop growth

models. However, current research focuses more on improving

the accuracy of growth models and yield prediction, and does not

link this method with precision fertilization. As shown in Figure 1,

this study first constructed a rice biomass hyperspectral inversion

model using unmanned aerial vehicle (UAV) rice canopy

hyperspectral data and rice biomass data to achieve rapid

acquisition of rice biomass data; Then, using rice biomass as the

assimilation parameter, the ensemble Kalman filter algorithm

(ENKF) and four-dimensional variational algorithm (4D-Var) are

used to simulate the rice growth process based on data assimilation;

Finally, with the average yield as the target, the fertilization plan

obtained from WOFOST will be used as the final fertilization plan.

By constructing a fertilization prescription chart, variable

fertilization of rice will be achieved, and the fertilization plan will

be evaluated based on the final yield.
2 Materials and methods

2.1 Experimental design

The experimental site is located at the Precision Agriculture

Aviation Research Base of Shenyang Agricultural University in
Frontiers in Plant Science 03
Gengzhuang Town, Haicheng City, Liaoning Province (40° 58

‘45.39 “N, 122° 43’ 30.00” E). The experimental site is in a warm

temperate monsoon climate zone, with a mild climate throughout

the area, an average annual temperature of 10.4 °C, and a rainfall of

721.3 millimeters. The experimental variety is the mid to late-

maturing japonica rice “Shennong 9816” widely planted in the

Liaoning region. The variety has a growth period of 157 days and an

average yield of 9000 kg/ha.

The data collection for inverting biomass modeling and

localizing crop growth models was conducted from June to

September 2020. Rice canopy hyperspectral reflectance

measurements were conducted once a week throughout the entire

growth period of rice, and field experiments were conducted to

measure LAI. At the same time, four samples were taken from each

plot to measure biomass.

The topdressing experiment was conducted from June to

September 2021, and the experimental community was designed

with 5 nitrogen fertilizer gradient treatments (Figure 2), namely N0,

N1, N2, N3, and N4; Each community is separated by a field ridge.

Among them, N0 is the control group, that is, no basal fertilizer is

applied; N3 is the local standard nitrogen fertilizer application level,

with a nitrogen fertilizer application rate of 200 kg/ha. N1 and N2

are low nitrogen fertilization levels, with application rates of 100 kg/

ha and 150 kg/ha, respectively; N4 is a high nitrogen fertilization

level, with an application rate of 250 kg/ha; The application of

phosphorus and potassium fertilizers is carried out according to

local standard application rates, with a standard application rate of

144 kg/ha for phosphorus fertilizer and 192 kg/ha for potassium

fertilizer. The base fertilizer in each experimental community is
FIGURE 1

Overview of the research.
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applied at 50% of different nitrogen fertilizer gradients, tillering

fertilizer is applied according to crop growth variables, panicle

fertilizer is applied at 20% of the local standard nitrogen base

fertilizer application level, and other field management is carried

out at the local normal level.
2.2 Data acquisition

2.2.1 Drone rice canopy hyperspectral acquisition
This study used the M600 PRO six-rotor unmanned aerial

vehicle from Shenzhen DJI Innovation Company as the flight

platform, and the hyperspectral imager used the GaiaSky-mini

built-in push broom airborne hyperspectral imaging system from

Sichuan Shuangli Hepu Company. The hyperspectral band range is

400–1000 nm, with a resolution of 3.5 nm and 170 effective bands.

The acquisition time for a single image is 15 seconds, the frame rate

is 162 frames/s, and the drone flies at an altitude of 100m and a

spatial resolution of 7cm. This study selected the time for collecting

hyperspectral data from drones between 12:00–14:00, and

performed dark current correction and whiteboard correction on

the hyperspectral imager before takeoff. At the same time, place a

1.5m * 1.5m diffuse reflection plate with a reflectance of 60% in each

hyperspectral acquisition area for later reflection data correction.

Using the SpectraVIEW software paired with the airborne

hyperspectral imager, preprocess the obtained unmanned aerial

vehicle hyperspectral remote sensing images with lens, uniformity,

reflectance, etc., and finally obtain the rice canopy hyperspectral

reflectance image.
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2.2.2 Obtaining agricultural parameters of rice
The leaf area index (LAI) of the rice canopy throughout the

entire growth period in the experimental community is an

important target result for parameter calibration in the WOFOST

model. When measuring the LAI of the entire growth period, the

LAI-2200C plant canopy analyzer (Wang et al., 2020) was used to

collect data. When collecting, place the fisheye lens above and below

the canopy to measure the radiation value (A value) without

obstruction and the radiation value (B value) below the canopy.

To ensure the accuracy of measurement results, the average LAI of

three points collected from each experimental field is taken as the

measured LAI of the experimental community.

This study requires obtaining aboveground dry matter weight

for inversion modeling of rice biomass. When measuring the dry

matter weight of the sample on the ground, destructive sampling is

first conducted on the rice in each community. The sample is taken

to the laboratory, and then placed in an oven to kill at 105 °C for 30

minutes. After that, the sample is dried at 80 °C to a constant

weight; Afterwards, measure the dry matter mass of the dried

sample. The obtained agronomic parameters of rice are shown

in Table 1.
TABLE 1 Agricultural parameter statistical data.

Min Max Average Standard deviation

Biomass(t/ha) 0.009 1.34 0.37 0.32

Leaf area index 0.44 5.36 3.82 1.57
FIGURE 2

Test plot design.
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2.3 Construction of a hyperspectral
inversion model for rice biomass

To modify the growth simulation process of the WOFOST

model by assimilating rice biomass data, it is necessary to quickly

obtain rice field biomass data. This study constructs a hyperspectral

inversion model for rice biomass using rice canopy spectral data to

achieve rapid acquisition of rice biomass data. The model extracts

hyperspectral features of the rice canopy using a Continuous

Projections Algorithm (SPA), and constructs a rice biomass

inversion model based on an Extreme Learning Machine (ELM).

The construction process of the rice biomass inversion model is

shown in Figure 3.

2.3.1 Selection of hyperspectral features in
rice canopy

Due to the high dimensionality of rice canopy hyperspectral

data obtained by drones, it contains a large amount of redundant

information. Directly using raw data for inversion modeling can

significantly improve the computational time of the model and

reduce its inversion accuracy. Continuous Projections Algorithm

(SPA) is a forward variable selection algorithm that minimizes

vector space collinearity and is commonly used for screening

spectral feature variables (Zhang et al., 2023). This study uses

SPA to extract features from hyperspectral data, and the extracted

spectral reflectance of the feature bands is used as input for

subsequent inversion models. SPA starts by selecting a

wavelength and then merges another variable at each iteration

until a specific number of defined variables are completed. It is

used to select the wavelength with the least redundant spectral

information to solve the collinearity problem. The core formula of

SPA is as follows.

(1) Initialize:

n = 1, xj ∈ Xj, j = 1⋯, J

(2) Determine variables for unselected bands:

S = Xi, 1 ≤ i ≤ J, i ∉ k(0),⋯, k(N − 1)f gf g
(3) Calculate the projection mapping for unselected and

initialized bands:

Pxj = xj − (xTj xi)xi(x
T
i xi)

−1, xi ∈ S
Frontiers in Plant Science 05
(4) Determine maximum projection:

k(n) = max(jjPxjjj), xj ∈ S

(5) Assignment:

xj = Pxj,   j ∈ S

(6) Determine the selection of band sequence:

k(n); n = 0,⋯,N − 1f g
Among them, X is the spectrum, k(0) is the initial band, the

number of bands to be extracted is N , the spectral matrix is column

J , the unselected variable in the original matrix is S, and the

orthogonal projection is Pxj.
2.3.2 Rice biomass inversion modeling
To achieve rapid inversion modeling of rice biomass data, this

study takes the training set rice characteristic spectral reflectance

and biomass data as inputs, constructs a rice biomass inversion

model based on Extreme Learning Machine (ELM) (Deng et al.,

2019), and inputs the test set spectral data into the model as result

validation. ELM is a machine learning method based on

Feedforward Neural Network (FNN) and its backpropagation

algorithm improvement. Compared with shallow learning systems

such as Support Vector Machines, ELM has more advantages in

learning ability and generalization ability.

Before constructing the model, in order to reduce the risk of

overfitting, enhance generalization ability, and avoid the impact of

sample differences, the sample dataset composed of unmanned

aerial vehicle canopy hyperspectral data and biomass obtained

from field experiments was randomly divided into two groups in

a ratio of 7:3 as training and testing sets for constructing biomass

inversion models and model evaluation.

2.3.3 Evaluation criteria for inversion results
For the inversion results of rice biomass inversion models, this

study uses R2 and Root Mean Square Error (RMSE) to determine

the inversion accuracy. R2, also known as correlation index, is

mainly used to describe the linear relationship between two

variables and is usually used to determine the degree of fit of

regression models. It is between 0 and 1, and the higher the R2 value,

the smaller the sum of squared residuals, and the better the fitting
FIGURE 3

Hyperspectral inversion method for rice biomass.
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degree. It is used to measure the deviation between observed values

and true values, and the calculation method is as follows:

R2 =
ESS
TSS

= 1 −
RSS
TSS

= o
n
j=1(Xpred,j − Xmeas)

2

on
j=1(Xmeas,j − Xmeas)

2

= 1 −o
n
j=1(Xmeas,j − Xpred,j)

2

on
j=1(Xmeas,j − Xmeas)

2

Among them, TSS is the sum of population squares, ESS is the

sum of regression squares, RSS is the sum of residual squares, Xpred

is the predicted value, Xmeas is the observed value, Xmeas is the

average of the observed values, and n is the sample size.

RMSE, also known as root mean square error, is used to

measure the average deviation between model predictions and

observations. The smaller the RMSE, the better the regression

performance of the model. The calculation method is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j=1(Xpred,j − Xmeas,j)
2

n

s

Among them, Xpred is the predicted value, Xmeas is the observed

value, and n is the sample size.
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2.4 Constructing rice fertilization decision
based on WOFOST model data assimilation

This study corrected the WOFOST model by assimilating the

rice biomass inversion results with the local model output biomass.

The output yield of the modified model is the simulated yield under

the current fertilization scheme in the experimental plot. Based on

simulated yield, adjust the fertilization amount of the WOFOST

model to achieve the goal of output yield approaching the average

yield of the variety, formulate fertilization decisions, and construct a

fertilization prescription map according to the fertilization

decisions to achieve fertilization. The process diagram for making

fertilizer application decisions is shown in Figure 4.
2.4.1 Parameter acquisition and construction of
WOFOST model

The WOFOST (World Food Studies) model is a single site

based simulation system developed by the University of

Wageningen in the Netherlands. It was originally developed to

evaluate the production potential of tropical regions and the impact

of meteorological and hydrological conditions on annual crops.
FIGURE 4

Fertilization decision making. Parameters of WOFOST were calibrated with average yield and measured LAI to localize the model. The model output
biomass was assimilated with the inversion model output biomass to obtain the assimilated biomass, which was then used to formulate the
fertilization decision.
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Compared with traditional crop growth models, the WOFOST

model focuses more on simulating annual field crops. Compared

with the SUCROS model developed in the same “De Wit school”,

the WOFOST model is more universal and only requires adjusting

relevant crop parameters to simulate different crops such as rice

(Zhou et al., 2018; He et al., 2019). WOFOST, as a mechanistic

model, starts from the fundamental theories of crop physiology,

ecology, physics, and other disciplines to model and simulate the

physiological and physical processes of crop growth and

development, which can provide more accurate predictions of

crop growth, development, and yield. Based on simulating crop

physiological processes, including CO2 assimilation, crop

respiration, crop transpiration, and dry matter distribution (de

Wit et al., 2019). This model can simulate crop growth with a

time step of days and supports three modes: simulating potential,

limiting water, and limiting nutrients. The WOFOST model is

currently widely used in crop yield estimation (Liu et al., 2023b),

analyzing the effects of fertilization (Tang et al., 2023) and irrigation

(Amiri et al., 2022) factors on crop growth and development

processes, and other fields. Its input parameters include

agricultural management, crop parameters, soil parameters, scene

parameters, weather parameters, etc. The main process of the

WOFOST model is shown in Figure 5.

The traditional WOFOST model is written in FORTRAN

language, but with the development of computer technology,
Frontiers in Plant Science 07
FORTRAN language is difficult to integrate with tools such as

databases and has poor flexibility. Therefore, researchers such as De

Wit have re-implemented the WOFOST model using Python

language (de Wit et al., 2019).PCSE (The Python Crop

Simulation Environment) is a Python software package that

includes models such as WOFOST and LINGRA (Dewenam

et al., 2021). Compared to traditional WOFOST written using

FORTRAN language or FORTRAN Simulation Environment

(FSE), PCSE is more versatile. Currently, PCSE supports two

versions of WOFOST models, WOFOST72 and WOFOST80.

This study compared the effects of two versions of the WOFOST

model on crop growth and development under different fertilization

strategies, and selected a model version that is more suitable for

simulating the impact of fertilization strategies on crop growth

and development.

To simulate local crops using the WOFOST model, the first step

is to conduct research on model localization. For easily obtainable

parameters, this study will use some rice crop parameters,

experimental field soil parameters, scene parameters, average

weather conditions in the past three years, and crop sowing,

irrigation, and fertilization information obtained through actual

measurement methods to input into the model. Due to some crop

parameters in the WOFOST model that cannot be calibrated

through experiments, based on the average yield of this rice

variety “Shennong 9816” and the measured leaf area index in the
FIGURE 5

WOFOST model structure process (de Wit et al., 2019).
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2020 field experiment, parameter optimization algorithms were

used to localize the model, and the accuracy of the parameter

optimization results was determined by combining experimental

data. Input the parameters obtained by localizing the above model

into the WOFOST model, and simulate the output results of

aboveground biomass, yield, fertilization amount, etc. based on

the current production plan.
2.4.2 Research methods for data assimilation
Single remote sensing data to guide fertilizer chasing has the

characteristics of strong observation ability and real-time, but it

lacks mechanism; the WOFOST model simulates the process of

crop growth and development day by day from the perspective of

crop growth mechanism, but a single model simulation lacks the

simulation of uneven spatial distribution (heterogeneity). The

coupling of four-dimensional variational algorithm (4D-Var) and

ensemble Kalman filtering algorithm (ENKF) with localized

WOFOST model output biomass results and remote sensing

inversion biomass results can achieve complementary advantages

and disadvantages, and calculate the simulated yield under current

growth conditions.

Data assimilation is a method of continuously integrating

external observation information in the dynamic operation

simulation of numerical models to achieve automatic model

adjustment. It is now widely used in weather forecasting and

automotive navigation systems. According to the correlation

mechanism between data assimilation algorithms and models,

data assimilation methods can be divided into two categories:

continuous data assimilation algorithms such as three-

dimensional variational algorithms (Storto and Tveter, 2009), and

four-dimensional variational algorithms (Kärcher et al., 2018), and

sequential data assimilation algorithms such as ensemble Kalman

filters (Pu and Hacker, 2009) and particle filters (Li et al., 2019).

The variational assimilation algorithm is a method that uses the

principle of variation to globally adjust simulation results using all

observed values. By minimizing the cost function, the analysis field

is optimized in a statistical sense. The core idea is to transform the

assimilation problem of observations into a variational problem

with constraints, which are dynamic simulation equations. The

main process of the four-dimensional variational algorithm (4D-

Var) is as follows:

(1) State Vector:

xt+1 = mt(xt)

(2) Observations:

yt = ht(xt) + e t

(3) Cost Function:

J(x0) =
1
2
(x0 − xb)

TB−1(x0 − xb) +
1
2o

N

t=0
(ht(xt) − yt)R

−1
t (ht(xt) − yt)
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J(x0) =
1
2
(x0 − xb)

TB−1(x0 − xb) +
1
2o

N

t=0
(ht(m0→t(x0))

− yt)
TR−1

t (ht(m0→t(x0)) − yt)

J(x0) =
1
2
(x0 − xb)

TB−1(x0 − xb) +
1
2
(ĥ (x0) − ŷ )TR−1(ĥ (x0) − ŷ )

(4) Optimization:

m J(x0) = B−1(x0 − xb) + j(ĥ (x0) − ŷ )TR−1(ĥ (x0) − ŷ )

Among them, x and y are the model state prediction and

observation values, respectively; x0and xb are the initial and

background fields of the model state variables, while xb is a prior

estimate of x0; B and R are the covariance matrices of background

error and observation error, respectively; ht is the observation

operator; yt is the observation vector at time t; xt is the predicted

value of the model at time t; J is the Jacobian matrix.

The Ensemble Kalman Filter (ENKF) algorithm based on

statistical estimation theory solves the problem of nonlinear

operators in a set form, and the extension method of the

Ensemble Kalman Filter algorithm can also achieve ideal results

under non-Gaussian conditions (Grooms, 2022). The working

principle can be briefly summarized as follows: the simulation

state advances over time until the observation data is analyzed,

and the model state is adjusted based on the uncertainty of the

model state. This will cause the simulation state to “jump” to a new

state and continue to move forward. The Ensemble Kalman Filter

algorithm mainly consists of two parts: prediction equation and

update equation, and its main process is as follows:

(1) Variable prediction:

XF
k = MXA

k−1

(2) Prediction error analysis:

PF
kH

T = (XF
k − �XF

k )(HXF
k −H �XF

k )
T

HPF
kH

T = (HXF
k −H �XF

k )(HXF
k −H �XF

k )
T

(3) Calculate the gain matrix:

Kk = PF
kH

T
k ½Rk +HkP

F
kH

T
k �−1

(4) Update variables:

XA
k = XF

k + Kk½yk −HkX
F
k �

Among them, X is the set of model state variables with

disturbances; M is the prediction matrix; PF is the covariance of

the prediction field error; PA is the covariance of the analysis field

error; F represents prediction; A represents analysis; K is the gain

matrix; H is the observation operator; R is the covariance of

observation error; y is a set of observations with perturbations.
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This study used the four-dimensional variational algorithm and

ensemble Kalman filtering algorithm to assimilate the inverted

biomass with the output biomass of the localized model. The

WOFOST model was modified, and the output yield of the

modified model is the simulated yield under the current

growth trend.

2.4.3 Generate UAV operation prescription map
Based on the fertilization plans of each experimental plot, the

required fertilization amount for rice tillering stage in each

experimental plot is adjusted to make the simulated yield output

of the WOFOST model modified by two assimilation algorithms

approach the average yield of the rice variety. Divide each

experimental plot into two equal parts, and apply two

assimilation algorithms to correct the model. Output the required

amount of fertilizer when the yield reaches the average yield,

generate fertilizer decisions, and draw a fertilizer application

prescription map for plant protection drones based on the

amount of fertilizer. Guide the drones to carry out variable

fertilizer application operations for rice.
3 Results and analysis

3.1 Hyperspectral inversion results of
rice biomass

3.1.1 Selection of hyperspectral features in
rice canopy

This study used SPA for feature selection of rice canopy

hyperspectral data, with a range of 5–30 bands. The selected

bands were internally cross-validated using a correction set. Based

on the root mean square error of cross-validation (RMSECV) of the

validation results, the rice biomass hyperspectral feature bands were

selected. The lowest RMSECV value is the optimal subset

wavelength data. As shown in Figure 6, when using SPA for
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feature band screening, the overall RMSECV shows a downward

trend as the number of screening variables increases. When

RMSECV is at its lowest, 7 spectral characteristic bands were

extracted, with wavelengths of 406, 418, 448, 613, 716, 763, and

919nm, respectively.

3.1.2 Hyperspectral inversion of rice biomass
This study constructs a rice biomass inversion model based on

the ELM model, using the spectral and biomass data extracted from

the rice characteristic bands in section 3.1.1 as input. The inversion

results of the model are shown in Figure 7. It can be seen from the

results that the model has a high accuracy in inverting rice biomass,

with training sets R2 and RMSE of 0.953 and 0.076, respectively; The

test sets R2 and RMSE are 0.914 and 0.110, respectively. Overall, the

rice biomass inversion model combining SPA feature selection and

ELM can effectively estimate rice biomass information, providing

data support for subsequent data assimilation modeling.
3.2 Simulation results of rice growth
process based on WOFOST
data assimilation

This study obtained field data based on the parameter

requirements of the WOFOST model, including some rice crop

parameters, experimental field soil parameters, scene parameters,

average weather conditions in the past three years, as well as crop

sowing, irrigation, and fertilization. For parameters that are difficult

to determine, parameter optimization algorithms were used to

calibrate them in order of the growth period, measured leaf area

index, and average yield of the studied crops. By using the

WOFOST model to simulate the rice growth process, the

localized WOFOST rice growth process was obtained as shown in

Figure 8. Figure 8A shows the localization process of the model

based on observed LAI, and Figure 8B shows the output biomass of

the localized model. The output results of the model are consistent

with the measured results, and the successful localization of the
FIGURE 6

Selection results of SPA for hyperspectral characteristic bands of
rice biomass.
FIGURE 7

Results of rice hyperspectral biomass inversion model.
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model simulates the growth and development of rice in the

experimental field, laying a foundation for further research on

data assimilation and guidance for top dressing.

The study first compares the results of two versions of the

WOFOST model with different fertilization strategies in simulating
Frontiers in Plant Science 10
crop growth and development. Simulate input parameters using the

same agricultural management, crop parameters, soil parameters,

scene parameters, and weather parameters, only changing the

nitrogen application rate in the fertilization strategy. Based on the

local standard nitrogen-based fertilizer application level of 200 kg/
A B

FIGURE 8

Localization results of the WOFOST model. Among them, panel (A) shows the localization process based on observed LAI, and panel (B) shows the
comparison of biomass output of the model before and after localization.
FIGURE 9

LAI and TAGP output of different versions of WOFOST under different nitrogen conditions.
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ha in the experimental field, reduce it by 30% and 70% respectively,

and apply it in one go. Observe the crop simulation situation. As

shown in Figure 9, the output results of the model indicate that the

simulation of crop growth and development process by the

WOFOST72 model is less affected by fertilization strategies, while

WOFOST80 can significantly affect crop growth and development

process through fertilization strategies. Based on the aim of this

study to investigate the impact of fertilization strategies on rice, the

WOFOST80 version was selected to simulate the growth and

development process of rice, and fertilization decisions were made

by assimilating aboveground biomass.

The assimilation localization model outputs aboveground

biomass and inverted biomass from the unmanned aerial vehicle

canopy hyperspectral data on June 28, 2021, to obtain the

assimilated biomass. Except for control groups 1 and 8

experimental fields, the assimilated biomass of the other groups is

shown in Figure 10. From the perspective of the fertilization

gradient of base fertilizer, the observed biomass values in each

field are consistent with the fertilization gradient of base fertilizer.

Among them, fields 4 and 5 have a standard nitrogen fertilization

gradient N3, and the observed values are close to the output values

of the model. After assimilation, the results are consistent with the

simulation results of the model; Fields 9 and 10 have a high nitrogen

fertilization gradient N4, and their assimilated biomass results are

higher than the standard situation. Fields 2 and 7 have a low

nitrogen fertilization gradient N1, and its assimilated biomass
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results are lower than the standard situation with significant

differences. Fields 3 and 6 have a low nitrogen fertilization

gradient N2, with the assimilation results slightly lower than the

standard situation and consistent with the bottom fertilizer

gradient. The assimilation results of field 3 are higher than the

standard situation and have a similar trend to the N4 gradient

assimilation results. The reason may be that the soil nutrient

content is higher, and rice absorbs more nutrients in the early

stage and grows better. From the perspective of the assimilation

effect, the assimilated biomass assimilation results of the 4D-Var

algorithm are lower than those of the Ensemble Kalman Filter

algorithm (ENKF), especially in fields 2 and 7 with a low nitrogen

gradient N1 for fertilization. Overall, the assimilation results

simulated the growth of rice in the experimental field well,

providing an accurate data source for making fertilization

decisions based on the simulation results of the rice growth

process in the future.
3.3 Analysis of rice topdressing results
based on simulation results of rice
growth process

This study used the fertilization amount of rice in the

experimental field as the standard, and included three rounds of

fertilization: base fertilizer, tillering fertilizer, and panicle fertilizer.
FIGURE 10

The assimilation results of WOFOST and inverted biomass. The vertical axis represents aboveground biomass (output parameter TAGP in the
WOFOST model).
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The base fertilizer is applied according to the fertilization gradient,

and the ear fertilizer is applied according to the standard

fertilization scheme. This study mainly focuses on precise

fertilization of tillering fertilizer. Each experimental plot is divided

into two equal parts, and fertilization decisions are made based on

the assimilated biomass results obtained from the Ensemble

Kalman Filter (ENKF) algorithm and the Four Dimensional

Variational Algorithm (4D-Var) algorithm. The fertilization

prescription for plant protection drone fertilization is shown in

Figure 11, which is formulated based on the fertilization decisions.

The unit yield and fertilization situation of each experimental field

are shown in Figures 12, 13.

From the perspective of yield, the yield of experimental fields 1

and 8 based on the N0 fertilization gradient is significantly lower

than the standard gradient yield. Among them, the lower yield of

field 1 compared to field 8 is due to the occurrence of serious

diseases. Except for fields 2 and 7 based on the N1 fertilization

gradient, the overall yield of all other fertilization gradients tends to

be consistent and the difference is small. Fields 4 and 5 based on

standard fertilization gradient N3 have higher yields than other

fertilization gradients, indicating that the standard fertilizer

quantity is reasonable. Based on the N2 fertilization gradient, the

fertilization gradients in fields 3 and 6 are consistent but there is a

significant difference in yield. The higher yield in field 3 is consistent

with the trend during assimilation. The reason for this may be

related to factors such as higher soil nutrient content in field 3,

which leads to more nutrients absorbed by rice in the early stage

and better growth. The overall yield is lower than the average crop

yield, which may be due to differences in meteorological data

compared to the average weather data of the past three years.

From the perspective of fertilization amount, compared to the

ENKF, the fertilization amount formulated based on the

assimilation results of the 4D-Var method is higher, and the yield

indicates that the yield of fertilization based on the two assimilation

algorithms is the same. Therefore, when the rice yield reaches a
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consistent level, the required fertilization amount based on the

ENKF fertilization strategy is lower, which is more in line with the

requirements of economic and reducing nitrogen fertilizer use in

the rice production process.
4 Discussion

4.1 Rice biomass inversion model based on
hyperspectral data

In order to quickly obtain rice biomass information at the field

scale and better quantify the growth of rice, this study collected

hyperspectral data of unmanned aerial vehicle canopy and field

experiment data that can reflect the biomass status of rice in 2020 as

model inputs, combined with spectral processing and machine

learning algorithms to obtain a rice biomass inversion model. In
FIGURE 12

Bar chart of unit yield in each experimental community.
FIGURE 13

Fertilization amount during tillering stage (pure nitrogen).
FIGURE 11

Prescription diagram for top dressing of plant protection drone
operation (urea application for tillering fertilizer, with nitrogen
content of 46%).
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2021, when conducting experiments to formulate fertilization

decisions, this model was used to invert rice biomass as a state

variable for data assimilation, achieving rapid and non-destructive

monitoring of rice growth status.

The tillering stage is one of the peak nitrogen requirements for

rice, but for row sown crops that have not yet been sealed, the overall

biomass and leaf area index of rice plants in the early stage are

relatively low, and the reflectance is easily submerged by interfering

ground objects. Nutrient growth is crucial for the entire growth

process and is also a focus of remote sensing monitoring. The

hyperspectral data used to construct rice biomass inversion models

during the tillering stage contains a large amount of redundant

information. The next step is to introduce the mixed pixel

decomposition method of hyperspectral images for satellite remote

sensing images (Xusu, 2016; Yu et al., 2022 )into rice canopy spectra

to remove factors such as water bodies, accurately obtain rice canopy

spectral data, remove redundant information unrelated to biomass,

and improve inversion efficiency.

The range of canopy spectra obtained by drones in this study is

400–1000nm. The large amount of original spectral data, severe

collinearity between spectral wavelengths, and redundant

information can lead to long model operation time and decreased

classification accuracy. Using SPA to extract sensitive feature bands

of biomass from preprocessed full band canopy hyperspectral data,

selecting feature wavelengths that contain the most spectral

information, the least redundant information, and the least

collinearity to solve the above problems. When RMSECV reached

its lowest value, seven characteristic bands sensitive to biomass in

the canopy spectrum were selected.

Considering the complex characteristics of the spectra extracted

by SPA, it may be difficult to establish a linear relationship between

traditional statistical models and biomass. Therefore, this study

takes the reflectance corresponding to the 7 feature bands selected

by SPA as the model input, and rice biomass as the model output to

construct an ELM based biomass inversion model. From the results,

it can be seen that the constructed model can effectively estimate the

biomass information of rice, better reflect the growth status of rice,

and provide data support for subsequent data assimilation. This

study only used one year of data to construct an inversion model

and applied it in the second year. The amount of data is relatively

small, and the training set can be expanded to improve the

universality of the model in the future. ELM, as a machine

learning algorithm based on feedforward neural networks, has the

advantages of fast learning speed and strong convergence ability,

but it also has the problem of easily falling into local optimal

solutions. At present, research mainly focuses on optimizing

algorithms for ELM (Liu et al., 2020), seeking better weight and

bias configurations to improve the inversion accuracy and global

search ability of algorithms.
4.2 Variable fertilization decision based on
WOFOST model assimilation

Considering the advantages of the WOFOST model, which

focuses on simulating annual field crops and has a relatively
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complete simulation of fertilizer, this study uses the WOFOST

model to simulate the growth process of rice. In terms of

WOFOST yield simulation, this study focuses on the differences

in rice growth caused by nutrition, and other influencing factors

such as disease and pest stress have not been considered. From the

results, it can be seen that the output LAI and biomass of the

localized model are consistent with the measured results, indicating

the feasibility and accuracy of using parameter optimization

algorithms to localize crop growth models. However, the accuracy

of other output results of the model, such as the weight of each

organ, needs to be verified in subsequent work.

Although the WOFOST model has strong mechanistic

properties, it often requires a large number of parameters to be

configured, and it is often used to simulate a region. To simulate the

growth and development of fields at the field level, it is necessary to

introduce remote sensing data with strong observation ability, and

real-time performance, but lack of rationality to achieve the spatial

heterogeneity of WOFOST model simulation results.

The final yield of each experimental plot was used as the

evaluation criterion for fertilization decision-making. The

experimental results showed that the yield of each experimental

plot had the same trend as the fertilization gradient. For individual

communities with significant differences in yield, the analysis may

be influenced by differences in meteorological data input from the

model and meteorological conditions in the experimental year, as

well as input parameters such as soil fertility. The next step is to

consider incorporating soil fertility into fertilization decision-

making to improve the accuracy of model simulation and develop

more accurate fertilization decisions. In terms of crop growth

models, crop growth models such as ORYZA2000 that are

suitable for simulating rice growth and development and have

complete fertilization strategies can be attempted to make

fertilization decisions. The experiment evaluates the advantages

and disadvantages of each model in fertilization strategies using

the same assimilation algorithm.

Using the fertilization amount in each experimental plot as the

evaluation criterion for topdressing decision-making, the precise

topdressing decision-making developed by this research method

achieved relatively ideal yield results, and compared with traditional

topdressing research that only relies on inversion data, it is more

interpretable and solves the problem of lack of rationality. The

experimental results show that the selection of standard fertilizer is

reasonable, and the yield of each fertilization plot based on precise

fertilization decision-making tends to be consistent. The

experimental plot based on the fertilization gradient N1 has a low

amount of bottom fertilizer application, and later fertilization

cannot make up for the poor growth of rice in the early stage, so

the final yield is lower than other experimental plots. The

fertilization strategy formulated by the WOFOST model based on

the Ensemble Kalman Filter algorithm to assimilate biomass under

the same fertilization gradient reduces the average fertilization

amount by 2.7kg/ha compared to the Four-Dimensional

Variational Algorithm when obtaining the same yield. The next

step is to compare the yield obtained from fertilization strategies

formulated by multiple assimilation algorithms, and find more

accurate assimilation algorithms for more fertilization strategies.
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In addition, multivariate assimilation can be combined with other

data such as Leaf Area Index (LAI) and Soil moisture content (SM)

to further improve the simulation accuracy of the model for actual

situations and formulate more accurate fertilization decisions.
5 Conclusion

In order to accurately obtain the growth status of rice in each

experimental plot, this study first constructed a hyperspectral

inversion model for rice biomass. In 2020, field experiments were

conducted to obtain rice growth process data. The hyperspectral data

of rice canopy was used as input, and the continuous projection

algorithm (SPA) was used to extract the hyperspectral features of rice

canopy. Based on the ELM model, rice biomass inversion was

implemented to achieve the goal of rapid acquisition of rice biomass

data. The fertilization experiment was conducted in 2021, using ENKF

and 4D-Var methods to assimilate and invert biomass results, and the

localized WOFOST output aboveground biomass data to modify the

WOFOFT model, so that the model can better simulate the growth

status of each experimental plot. The output of the modified model is

the simulated yield under the current fertilization scheme of the

experimental plot. Using the WOFOST model to develop

fertilization strategies and construct a prescription diagram for plant

protection drone fertilization operations, with the average yield of the

rice variety as the target, to achieve variable fertilization.

This study addresses the lack of mechanisms in traditional

fertilization strategies based on unmanned aerial vehicle canopy

hyperspectral data. By introducing remote sensing data, the

WOFOST model simulation results have spatial heterogeneity,

making it more suitable for simulating rice growth in small areas

and formulating fertilization strategies. From the perspective of

assimilation data, using aboveground biomass instead of previous

studies using leaf area index (LAI) as assimilation data, and

introducing the assimilation results into the decision-making of

fertilization during the rice tillering stage, this is a new attempt.

The research results indicate that the assimilation results of

both algorithms have achieved good assimilation effects, and the

fertilization strategies formulated based on the two assimilation

algorithms have achieved consistent yields compared to standard

fertilization gradient fields. The fertilization strategy based on the

ENKF assimilation method resulted in less fertilizer application and

a 5.9% reduction compared to the standard fertilization scheme

when achieving yields that were consistent with the fertilization

strategy based on the 4D-Var assimilation method. Therefore,

selecting reasonable biomass inversion methods, assimilation
Frontiers in Plant Science 14
parameters, assimilation algorithms, and crop growth models is

beneficial for the formulation of precision fertilization decisions.
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