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Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China,
3Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research
Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse

conditions, develop without the need for fertilization or pollination. Exploring the

physiological and molecular mechanisms behind parthenocarpic fruit

development holds both theoretical and practical significance, making it a

crucial area of study. This review examines how plant hormones and MADS-

box transcription factors control parthenocarpic fruit formation. It delves into

various aspects of plant hormones-including auxin, gibberellic acid, cytokinins,

ethylene, and abscisic acid—ranging from external application to biosynthesis,

metabolism, signaling pathways, and their interplay in influencing parthenocarpic

fruit development. The review also explores the involvement of MADS family

gene functions in these processes. Lastly, we highlight existing knowledge gaps

and propose directions for future research on parthenocarpy.
KEYWORDS
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Introduction

Tomato is one of the world’s most significant vegetable crops due to its economic and

nutritional importance. Tomato fruit development is traditionally divided into five stages

(Ezura et al., 2023). Stage I involves flower maturation before pollination and fertilization

occur. Stage II spans from fertilization to four days post-anthesis, marking the fruit set phase.

Stages III through V encompass fruit growth and ripening. Successful fruit development

hinges on pollination and fertilization, which are susceptible to extreme environmental

conditions such as high or low temperatures (Picken, 1984; Mesihovic et al., 2016). However,
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parthenocarpy, the development of fruit without fertilization

resulting in seedless fruits, can adapt well to unfavorable

conditions (Gorguet et al., 2005).

Reports of parthenocarpy date back to the 1890s. This

phenomenon is prevalent among many horticultural crops such

as tomato (Molesini et al., 2020; Sharif et al., 2022), cucumber (Gou

et al., 2022), eggplant (Zhou et al., 2023), pumpkin (Luo et al., 2021)

and holds significant agricultural value. Parthenocarpy comes in

two main forms: stimulative and natural (Chen et al., 2001; Zhu

et al., 2007). Stimulative parthenocarpy can be induced through

methods like hand-stripping, pollination with sterile pollen or

chemical treatments; however, it’s not inheritable. In contrast,

natural parthenocarpy is genetically determined and subdivides

into obligate and facultative types. Obligate parthenocarpy

consistently yields seedless fruits regardless of conditions, while

facultative parthenocarpy does so only when conditions are

unfavorable—otherwise it can produce seeded fruits with normal

pollination (Mazzucato et al., 1999; Varoquaux et al., 2000).

In plants, auxins and gibberellins are key hormones regulating

parthenocarpy (Pascual et al., 2009; Mignolli et al., 2015), with

auxins functioning upstream of gibberellins (Serrani et al., 2008).

Parthenocarpic tomato varieties exhibit significantly higher levels of

IAA (indole-3-acetic acid) and GA3 (gibberellic acid) in the ovaries

during pre-flowering and flowering stages compared to non-

parthenocarpic types (Hazra et al., 2010). Treatment with either

hormone (IAA or GA3) can promote ovary development, resulting

in seedless fruits (Serrani et al., 2008; Niu et al., 2024). Other

hormones like cytokinins, abscisic acid (ABA), and ethylene also

contribute to parthenocarpic fruit development (Ding et al., 2013;

Shinozaki et al., 2015; Kai et al., 2019). Cytokinins are vital for cell

division and early fruit growth, especially after pollination and

fertilization (Ding et al., 2013). Applying CPPU (N-(2-chloro-4-

pyridyl)-N’-phenylurea) during flowering can induce seedless

tomato fruits (Ding et al., 2013). For parthenocarpic plants, ABA

inhibit fruit set and fruit growth but not the growth of plants

(Rodrigo and Garcıá-Martıńez, 1998). Significant decrease in

abscisic acid content was found in tomatoes ovaries after

completion of pollination and fertilization or treatment with

auxin (Mariotti et al., 2011). Ethylene also plays a role: ACC (1-

aminocyclopropane-1-carboxylic acid) application hinders fruit set

while using an ethylene receptor inhibitor like 1-MCP (1-

methylcyclopropene) on unpollinated ovaries encourages

parthenocarpy (An et al., 2020). However, external hormone

treatments do not affect heredity and may cause malformed fruits

or prevent the proper opening of subsequent flowers, ultimately

leading to low-quality hollow fruits (Abad and Monteiro, 1989).

Advances in genetic engineering have identified genes involved in

hormonal synthesis, transport, and metabolism that can induce

stable inheritable parthenocarpy in tomatoes (Olimpieri et al., 2007;

de Jong et al., 2011; Mignolli et al., 2015).

Parthenocarpy is a valuable trait in horticulture, playing a

crucial role in production practices, particularly in controlled

cultivation environments where pollination is limited. Extreme

weather conditions such as high temperatures with humidity or

cold temperatures with low light can severely impact tomato pollen

development, resulting in reduced fruit yield and quality (Pan et al.,
Frontiers in Plant Science 02
2021). For growers, the parthenocarpic characteristic eliminates the

need for manual labor, bee pollination, and external growth

regulators, ensuring consistent yields and lowering production

costs (Chen et al., 2017; Knapp et al., 2017). Consumers and

processors often prefer seedless fruits; thus, parthenocarpy

enhances the marketability of horticultural products (Pandolfini

et al., 2002; Knapp et al., 2017). Unraveling the molecular

mechanisms behind parthenocarpic fruit development will

provide deeper insights at the molecular level, facilitating the

study of this phenomenon and establishing a robust theoretical

basis for breeding parthenocarpic varieties.
Understanding the role of plant
hormones in parthenocarpy

Typically, fruits form through pollination and fertilization.

However, seedless fruits can develop from unfertilized ovaries

when plant growth regulators are applied during flowering.

Studies show that gibberellins, auxins, and cytokinins have the

capacity to promote parthenocarpy, whereas abscisic acid and

ethylene have inhibitory effects on this process (Maroto et al.,

2005; Nitsch et al., 2009; Shinozaki et al., 2015; Kai et al., 2019;

Molesini et al., 2020; Niu et al., 2024).
Understanding the molecular
mechanisms behind auxin-
induced parthenocarpy

Auxin is essential for regulating plant growth, development, and

fruit setting. Studies show that auxin levels rise significantly in

ovaries after successful pollination and fertilization (Gillaspy et al.,

1993; Zhang et al., 2021). Parthenocarpic tomato varieties naturally

have higher auxin concentrations in their ovaries compared to

normal fruits, enabling them to develop without fertilization (Qiu,

1984; Gorguet et al., 2005; Zhang et al., 2021). Applying exogenous

auxin to unfertilized ovaries can also induce parthenocarpy (Nitsch

et al., 2009). Furthermore, enhancing the expression of genes related

to auxin production can trigger parthenocarpy and promote fruit

development in tomatoes (Rotino et al., 1997; Matsuo et al., 2020).

Within 48 hours after pollination, there’s an upsurge of auxin-

responsive genes, resulting in the activation of auxin signaling

(Vriezen et al., 2008). Transcriptomic analyses reveal that

expanding locular cells in pollinated fruits predominantly express

genes associated with synthesis, transport, and response to auxin

(Lemaire-Chamley et al., 2005).

Indole-3-acetic acid (IAA) is the most common phytohormone

of the auxin class. It is synthesized through both tryptophan-

dependent and independent pathways (Jahn et al., 2021). Recent

discoveries have unveiled numerous catalytic enzymes and key

regulatory genes involved in the tryptophan-dependent pathway

for auxin production, while the alternative pathway remains less

understood. Consequently, research on the tryptophan-dependent

route is more advanced (Zhao, 2010). Researchers typically
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categorize the tryptophan-dependent pathways into four branches

based on their main intermediates: indole-3-pyruvic acid (IPyA),

tryptamine (TAM), indole-3- acetaldoxime/indole-3-acetonitrile

(IAOx-IAN), and indole-3-acetamide (IAM) (Zhao, 2010; Jahn

et al., 2021). Studies reveal that Agrobacterium tumefaciens’ iaaM

gene converts tryptophan to IAM, which then hydrolyzes to IAA,

promoting local IAA synthesis (Gaudin and Jouanin, 1995). To

investigate local auxin production’s impact on fruit development,

researchers used the placenta- and ovule-specific promoter DefH9

to drive targeted expression of iaaM in tomatoes (Table 1). This

initial discovery provided insights into the direct impact of auxin on

fruit growth, leading to the development of transgenic plants with

parthenocarpic abilities (Rotino et al., 1997). Similar outcomes with

parthenocarpic fruits were observed in other genetically modified

species like raspberries and strawberries expressing specific iaaM

(Table 1) (Mezzetti et al., 2004; Yin et al., 2006; Costantini et al.,

2007). In Solanaceae plants, studies found that a naturally occurring

parthenocarpic mutant pad-1 exhibited elevated auxin levels within

its ovaries. The non-functional allele pad-1 was identified as pivotal

for this trait (Table 1) (Matsuo et al., 2020); it normally facilitates

IPyA conversion to Trp in eggplant ovaries, thus restraining de novo
Frontiers in Plant Science 03
IAA synthesis. Pad-1’s function appears critical for preventing

excessive IAA buildup in unfertilized ovaries (Matsuo et al., 2020).

Auxin transport, which is essential for plant growth and

development, involves both long-distance and short-range

movement through cell membranes (Teale et al., 2006; Hammes

et al., 2022). Key players in this process are the auxin transporters:

the PIN-FORMED (PIN), AUXIN1/LIKE-AUX1 (AUX/LAX), and

ATP-binding cassette subfamily B/multidrug resistance/

phosphoglycoprotein (ABCB/MDR/PGP) families (Zazimalova

et al., 2010). These membrane proteins reside on the plasma or

intracellular membranes. The AUX/LAX transporters facilitate

incoming auxin flow, whereas the PIN and ABCB families mainly

handle outgoing flux (Zazimalova et al., 2010). Most PIN proteins

are strategically positioned on cell membranes to direct precisely the

polar transport of auxin (Krecek et al., 2009; Adamowski and Friml,

2015). Blocking this directional transport with NPA (N -1-

naphthylphthalamic acid)—an inhibitor—during tomato

flowering can induce parthenocarpy (Serrani et al., 2010). SlPIN4

of the PIN family plays an important role in auxins regulation of

fruit set in tomato; silencing it causes the development of seedless

fruits (Table 1) (Mounet et al., 2012). Additionally, SlPIN8 silencing
TABLE 1 Genes associated with hormone regulation in tomato parthenocarpy.

Underlying pathway Gene ID Cause References

Auxin biosynthesis genes DefH9-iaaM overexpressing Ficcadenti et al., 1999

PAD-1 Solyc03g120450 silencing Matsuo et al., 2020

Auxin transport genes PIN4 Solyc05g008060 silencing Mounet et al., 2012

PIN8 Solyc02g087660 silencing Gan et al., 2019

AUCSIA-1 Solyc10g054660 silencing Molesini et al., 2009

AUCSIA-2 Solyc01g110540 silencing Molesini et al., 2009

Auxin receptor and signaling transduction genes TIR1 Solyc09g074520 overexpressing Ren et al., 2011

IAA9 Solyc04g076850 silencing Wang et al., 2005; Zhang et al., 2007

ARF5 Solyc04g081240 silencing Liu et al., 2018c

ARF7 Solyc07g042260 silencing de Jong et al., 2009

ARF8 Solyc03g031970 silencing Goetz et al., 2006

Gibberellin biosynthesis genes GA20ox1 Solyc03g006880 overexpressing Garcıá-Hurtado et al., 2012

Gibberellin metabolism genes GA2ox1 Solyc05g053340 silencing Martıńez-Bello et al., 2015

GA2ox2 Solyc07g056670 silencing Martıńez-Bello et al., 2015

GA2ox3 Solyc01g079200 silencing Martıńez-Bello et al., 2015

GA2ox4 Solyc07g061720 silencing Martıńez-Bello et al., 2015

GA2ox5 Solyc07g061730 silencing Martıńez-Bello et al., 2015

Gibberellin signaling transduction genes DELLA Solyc11g011260 silencing Martı ́ et al., 2007

Ethylene receptor and signaling transduction genes ETR1 Solyc12g011330 silencing Shinozaki et al., 2015

TPR1 Solyc07g006180 overexpressing Lin et al., 2008

EIN2 Solyc09g007870 silencing Zhu et al., 2006

Abscisic acid biosynthesis genes NCED1 Solyc07g056570 overexpressing Kai et al., 2019

Cytokinin biosynthesis genes IPT overexpressing Mao et al., 2002
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not only affects the vegetative growth of tomato, but also severely

affects pollen development and ultimately leads to parthenocarpic

fruits (Table 1) (Gan et al., 2019). Lastly, research reveals that

targeting Aucsia—a gene family implicated in tomato fruit

regulation—via RNAi technology spurs seedless fruit formation

while dramatically amplifying IAA levels within flower buds before

bloom initiation (Table 1) (Molesini et al., 2009).

The auxin receptor is essential for recognizing auxin, allowing it

to bind and initiate several downstream reactions (Mockaitis and

Estelle, 2008). Auxin facilitates the direct interaction between the

Aux/IAA transcriptional repressor proteins and the TIR1/AFB

auxin receptors. This binding encourages the breakdown of Aux/

IAA proteins, which lifts suppression on ARF transcription factors

and activates plant auxin signaling (Leyser, 2018). The TIR1/AFB

protein, a critical element in this pathway, occupies a pivotal role.

As a member of the F-box gene family, TIR1 encodes for the auxin

receptor protein. Overexpression of SlTIR1 affects floral organ

formation and results in parthenocarpy in tomatoes (Table 1)

(Ren et al., 2011). PslTIR1, the homologous TIR1 in plum, was

also found to induced parthenocarpic fruits formation in tomato

(El-Sharkawy et al., 2016). Additionally, studies show that auxin

signal transduction is a complex process governed by multiple

factors and pathways. Shortly after exposure to auxin, there’s a

notable increase in the expression of early auxin response genes,

categorized into three families: SAUR, GH3, and Aux/IAA (Luo

et al., 2018). The Aux/IAA family plays a pivotal role in gene

regulation following auxin exposure. It interacts with auxin

response factors (ARFs), forming dimers that inhibit ARFs’

transcriptional regulatory functions (Leyser, 2018). ARFs are

specialized transcription factors binding to the AuxRE (TGTCTC)

sequence in early auxin-response gene promoters to regulate their

expression (Ulmasov et al., 1995). Research indicates that both

ARFs and Aux/IAAs contribute to tomato fruit development and

parthenocarpy. Reducing SlIAA9 expression results in a pleiotropic

phenotype. It has simple leaves and fruit development is triggered

before fertilization. This rapid enlargement of the ovary leads to the

distancing of the stigma from stamens, thereby disrupting self-

pollination and favoring the development of seedless fruit (Wang

et al., 2005). Similarly, tomatoes with the SlIAA9 loss-of-function

mutant ‘entire’ show parthenocarpic traits but retain wild-type

appearance (Table 1) (Hu et al., 2023). Furthermore, IAA9 has

been extensively studied and modified by cutting-edge technologies

(Ueta et al., 2017; Mubarok et al., 2023). The combined action of

ARF7 and IAA9 regulates parthenocarpy in tomatoes; double

mutants display an even more pronounced phenotype (Figure 1)

(Hu et al., 2018). Compared to the low expression levels in tomato

pollinated ovaries, SlARF5 displays high levels in ovaries under

emasculation. Silencing SlARF5 results in seedless fruits post-

emasculation (Table 1) (Liu et al., 2018c). Transgenic tomatoes

expressing reduced levels of SlARF7 develop heart-shaped fruits

with thicker skins due to cell expansion—a sign of parthenocarpy as

well (de Jong et al., 2009). SlARF8 disrupts post-fertilization

induction of fruit and seed development by inhibiting carpel

development (Goetz et al., 2006). slarf8A, slarf8B mutant

combinations produced seedless parthenocarpic fruits (Hu et al.,

2023; Israeli et al., 2023). slymiR167-SlARF8A/B-SlGH3.4 is an
Frontiers in Plant Science 04
important regulatory module during the development of locular

and placenta tissues of tomato fruits (Hua et al., 2024). ERECTA

(ER) is a receptor-like kinase (RLK) family protein known for its

involvement in diverse developmental processes. It modulates fruit

development via auxin signaling in tomato (Chen et al., 2024).
Understanding the molecular
mechanisms behind gibberellin-
induced parthenocarpy

Gibberellin is a tetracyclic triterpenoid compound, with over a

hundred types identified in various organisms (Hedden, 2020).

Gibberellins stimulate cell division and growth, initiate seed

germination, contribute to determining plant sex ratios, and can

induce the formation of seedless fruit (Gao and Chu, 2020; Mäkilä

et al., 2023). The parthenocarpic fruit (pat) gene is a recessive

mutation enabling parthenocarpy, producing seedless fruits without

pollination and fertilization (Beraldi et al., 2004). Studies on

parthenocarpic tomato varieties with pat, pat-2 and pat-3/pat-4

genotypes reveal that gibberellin biosynthesis plays a crucial role

during early fruit development (Table 2). In pat-2 ovaries, the levels

of GA20 rise significantly, while those of GA19 fall. Conversely, in

varieties carrying the pat-3/pat-4 genotype, activation of the

gibberellin hydroxylation pathway occurs earlier (Fos et al., 2000).

Plant gibberellin production involves mevalonate (MVA)

transitioning through plastids and endoplasmic reticulum to yield

kaurene intermediates via enzymes; these then convert into various

forms of gibberellins (GAs) in the cytoplasm thanks to enzymes like

GA20 oxidase (GA20oxs), GA3 oxidase (GA3oxs), and GA2

oxidase (GA2oxs) (Hedden, 2020). Research indicates that

enzymatic activity from GA2oxs inhibits seedless fruit

development or parthenocarpy, both GA20oxs and GA3oxs

endorse it (Wang et al., 2020). In tomatoes, overexpression of
TABLE 2 Germplasm resources of parthenocarpy in tomatoes.

Gene
Gene
on chromosome Variety References

pat
(HB15A) chr3

Montfavet
191

Beraldi
et al., 2004

pat-2 chr4 Severianin Lin et al., 1984

pat-3/pat-4 chr4 RP75/79
Pascual
et al., 2009

pat4.1 chr4 IL5-1
Gorguet
et al., 2008

pat4.2 chr4 IVT-line 1
Gorguet
et al., 2008

pat5.1 chr5 IL5-1
Gorguet
et al., 2008

pat9.1 chr9 IVT-line 1
Gorguet
et al., 2008

pat-
k (AGL6) chr1 MPK-1

Takisawa
et al., 2018
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genes related to GA20oxs increases the plant’s natural gibberellin

levels, leading to seedless fruit formation. Tomatoes with

parthenocarpic ability display elevated expression of genes

associated with GA20oxs and GA3oxs, whereas those linked to

GA2oxs are less expressed (Garcıá-Hurtado et al., 2012; Martıńez-

Bello et al., 2015; Okabe et al., 2019; Takei et al., 2019). Additionally,

external hormone application can activate the GA signaling

pathway, promote gene expression related to both GA20oxs and

GA3oxs, while reducing gene expression related to GA2oxs, thereby

increasing the level of gibberellins within plants to induce

parthenocarpy (Gorguet et al., 2005; Liu et al., 2018b; Cong

et al., 2019).

Without fertilization, applying gibberellins externally can

induce parthenocarpy by activating the GA signaling pathway

(Gorguet et al., 2005). The gibberellic acid insensitive (GAI),

repressor of GAI (RGA), and scarecrow (SCR) (GRAS) family is a

class of transcription factors crucial for plant responses to adversity,

stress, and aspects of growth and development. DELLA proteins are

involved in parthenocarpy and serve as negative regulators of the

GA response (McGinnis et al., 2003; Ueguchi-Tanaka et al., 2005;

Murase et al., 2008). The breakdown of these proteins is a key step

in propagating GA signals (Ito et al., 2018). Arabidopsis thaliana has

five DELLA genes. Mutants lacking these five genes show similar

seedless fruit traits underlining the importance of the GA signaling

pathway in fruit development without fertilization (Dorcey et al.,

2009; Fuentes et al., 2012). In tomato plants, mutants with an

altered SlDELLA gene (PROCERA) and those with reduced

expression via RNA interference can develop seedless fruits

(Martı ́ et al., 2007; Carrera et al., 2012; Livne et al., 2015).

However, SlDELLA RNAi tomatoes produce smaller and

noticeably elongated fruits compared to normal ones due to

reduced circumference while maintaining width (Table 1) (Martı ́
et al., 2007). Furthermore, GA signaling factor SlMYB33, which was

depressed by GA treatment, induced parthenocarpic fruit set in

tomato (Niu et al., 2024).
Understanding the molecular
mechanisms behind other hormone-
induced parthenocarpy

Cytokinin, a plant hormone, stimulates cell division and

differentiation in plant growth and contributes to parthenocarpy

(Vivian-Smith and Koltunow, 1999; Mok and Mok, 2001).

Following successful pollination and fertilization, cytokinins

accumulate significantly, playing a crucial role in the initial

phases of fruit development. Applying CPPU and 2,4-D to

flowering watermelons can boost fruit set rates without negatively

impacting fruit quality (Maroto et al., 2005). Initially used to induce

seedless grapes, CPPU has been shown to produce seedless grapes in

24% to 44% of cases (Iwahori et al., 1988). While cytokinins can

induce parthenocarpy in various crops, they are primarily used in

cucurbit crops (Su et al., 2021). As early as 1955, Skoog and Miller

first discovered agonist (kinetin, KT), followed by zeatin (ZT),

isopentenyl adenine (iP), and others cytokinins (Miller et al.,
Frontiers in Plant Science 05
1955). The key enzymes for cytokinin synthesis, isopentenyl-

transferases (IPTs), were first found in Agrobacterium rhizogenes

(Zhang, 2013; Nguyen et al., 2021). In cucumbers, CsIPT2

expression is higher in parthenocarpic fruit than in pollinated

fruit, indicating its significant role in cucumber parthenocarpy

regulation (Zhang, 2013). Moreover, IPT overexpression in

tomatoes has been shown to increase cytokinin levels and

produce parthenocarpic fruit (Table 1) (Mao et al., 2002).

Ethylene, a pivotal plant hormone, primarily governs

parthenocarpy by suppressing fruit set and interacting with other

hormones. Reduced ethylene levels in the ovary facilitate

parthenocarpy. Yet, when pollinated tomatoes receive treatment

with ACC, an ethylene precursor, it may trigger fruit dropping

(Shinozaki et al., 2015). The iaa9–3 tomato mutant, which is

naturally parthenocarpic, exhibits a decreased in ethylene levels

similar to the reduction observed in normal tomatoes post-

pollination. Introducing the ethylene inhibitor 1-MCP to

unpollinated tomatoes can induce parthenocarpy (Shinozaki et al.,

2015); fruits resulting from this resemble those of the sletr1–1

mutant which is insensitive to ethylene and show elongation

along with notable cell enlargement (Table 1) (Shinozaki

et al., 2015).

The pathway for synthesizing ethylene chiefly involves S-

adenosylmethionine (SAM) synthase, 1-aminocyclopropane-1-

carboxylic acid (ACC) synthase, and ACC oxidase (ACO) (Yang

and Hoffman, 1984). Ethylene’s biological role hinges on its signal

transduction path: initiated by ETR family receptor detection and

conveyed through CTR kinases as well as EIN3/EILs until activating

downstream responders like the ERF family genes—which then

modulate further gene expression. While regulators within both the

ETR family and CTR kinase group predominantly mediate negative

feedback for ethylene responses, elements such as EIN2 alongside

downstream actors like EIN3/EILs champion positive control

(Table 1) (Mata et al., 2018; Ma and Dong, 2021). SlTPR1 can

interact with ethylene receptors NR and LeETR1. Overexpression of

SlTPR1 can result in parthenocarpic fruits and also lead to the

formation of abnormal and sterile flowers. Overexpression of

SlTPR1 in Arabidopsis can generate similar phenotypes (Lin et al.,

2008). Silencing of LeEIN2 in plants leads to delayed fruit

development and ripening, as well as a reduced number of seeds

compared to the wild type, resulting in a phenotype similar to

parthenocarpy (Zhu et al., 2006).

Abscisic acid (ABA) impedes plant growth, particularly in

parthenocarpic plants where it curtails both growth and their

ability to develop fruit without fertilization (Rodrigo and Garcıá-

Martıńez, 1998). In tomatoes, ABA levels drop notably after

pollination or auxin treatment (Mariotti et al., 2011). The

synthesis of ABA is primarily regulated by the enzyme 9-cis-

epoxycarotenoid dioxygenase (NCED), which converts 9-cis-

epoxycarotenoid into the C15 precursor of ABA, zeaxanthin

(Schwartz et al., 1997). A marked increase in ABA concentration

and NCED1 expression occurs in tomato ovaries during the three

days leading up to and including flowering. Overexpressing

SlNCED1 also raises ABA levels, disrupting hormonal balance in

the ovary and leading to parthenocarpic fruit production (Table 1)

(Kai et al., 2019).
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Recent studies have revealed that other hormones like

polyamines (PA), melatonin (MT), and brassinolide (BR) can

provoke parthenocarpy as well (Fos et al., 2003; Liu et al., 2018a).

Chalcone synthase (CHS) gene initiates flavonoid biosynthesis.

However, when this gene is silenced by RNAi in tomatoes, we

observed not only a decrease in total flavonoid content,

transcription levels of chs1 and chs2 genes, and CHS activity, but

also the occurrence of parthenocarpic fruits (Table 3) (Schijlen

et al., 2007).
The interplay of various hormones
in parthenocarpy

Parthenocarpy can only be induced when plant hormones are

balanced. If the level of any hormone in the ovary is too high or too

low, it hinders parthenocarpy (Chen et al., 2001). Research shows

that a mix of hormones more effectively induces parthenocarpy

than a single hormone, which often results in misshapen fruit and

reduced quality. For instance, using just CPPU or gibberellin (GA3)

to induce parthenocarpy in tomatoes leads to smaller fruits (Matsuo

et al., 2012). Using only auxin (indole-3-acetic acid, IAA) produces

thicker-skinned fruits compared to those from pollination.

However, applying 2000 mg of GA3 with 2–20 ng of synthetic

auxin 2,4-D yields fruits comparable in size and shape to naturally

pollinated ones (Serrani et al., 2007). A combination of gibberellin

and cytokinin also creates normal-sized fruits with increased weight

compared to those induced by CPPU or GA3 alone (Ding et al.,

2013). In fruit trees like pears, using GA4 + 7 alone elongates the

fruit; however, adding multiple hormones such as polychlorazole

mitigates this effect and improves appearance (Liu et al., 2018b).
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Combining various hormones proves to be a more effective

strategy for inducing parthenocarpic fruit formation, suggesting

that plant parthenocarpy is governed by a complex network

involving synergistic hormone interactions (Sharif et al., 2022).

Auxin and gibberellin, produced in seeds post-fertilization, are

crucial for kick-starting fruit development (He and Yamamuro,

2022). Moreover, applying these hormones externally can trigger

the growth of seedless fruits, underscoring their importance in

initiating this process. The interplay between auxin and gibberellin

in regulating fruit set has been thoroughly researched; current

understanding posits that auxin influences gibberellin activity

(Serrani et al., 2007; Ozga et al., 2009). In Arabidopsis, either the

auxin response induced by pollination or the auxin treatment can

cause an increase in endogenous GA biosynthesis. However, adding

gibberellins doesn’t immediately affect internal levels of auxins

(Dorcey et al., 2009). In Arabidopsis della mutants, additional

auxin does not intensify the seedless fruit trait—this suggests that

effective auxin signaling requires activation of the GA-DELLA

pathway (Fuentes et al., 2012). Research indicates that SlARF7

serves as both a repressor of auxin signaling and a participant in

the GA signaling pathway during tomato fruit set, playing a crucial

dual role in regulating this process (de Jong et al., 2011). Molecular

evidence shows that SlARF7 interacts with SlDELLA proteins to

form a complex that negatively regulates its target genes (Figure 1)

(Hu et al., 2018). Despite their collaborative roles in promoting

parthenocarpy, auxins primarily encourage fruit expansion through

increasing cell layers while gibberellins mainly enhance cell

elongation—their coordinated action ensures proper development

of the fruit (Serrani et al., 2008).

Cytokinins primarily facilitate parthenocarpy by stimulating

cell division and increasing cell numbers (Matsuo et al., 2012). After
TABLE 3 Additional genes regulating tomato parthenocarpy.

Family Gene ID Cause References

R2R3 MYB GAMYB1 Solyc01g009070 silencing da Silva et al., 2017

R2R3 MYB GAMYB2 Solyc06g073640 silencing da Silva et al., 2017

TOPLESS TPL1 Solyc03g117360 silencing He et al., 2021

HD-ZipIII HB15A Solyc03g120910 silencing Clepet et al., 2021

DOF DOF10 Solyc02g090310 silencing Rojas-Gracia et al., 2019

CYP78A KLUH Solyc03g114940 overexpressing Gupta et al., 2021

rol rolB overexpressing Shabtai et al., 2007

high fruit set under stress HFS silencing Meco et al., 2019

Arlequin Alq silencing Ribelles et al., 2019

SPL/NZZ HYDRA Solyc07g063670 silencing Rojas-Gracia et al., 2017

F-box HWS Solyc01g095370 silencing Damayanti et al., 2019

chalcone synthase CHS Solyc09g091510 silencing Schijlen et al., 2007

chalcone synthase CHS Solyc05g053550 silencing Schijlen et al., 2007

ent-copalyl diphosphate synthase CPS Solyc06g084240 silencing Hu et al., 2018

small parthenocarpic fruit
and flower SPFF Solyc04g077010 silencing Takei et al., 2019
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flowering, the level of active cytokinins in unfertilized ovaries drops

sharply, suggesting a strong link between early fruit development

and ovarian cytokinin levels (Shinozaki et al., 2015). Some studies

suggest that CPPU application boosts IAA levels in the ovary,

thereby encourag ing parthenocarpy . When ‘Pandex ’

(parthenocarpic) and ‘Khira’ (non-parthenocarpic) varieties, along

with their F1 hybrids, were treated with CPPU during bloom, a

significant rise in IAA was noted in the ovaries of ‘Pandex’ (Kim

et al., 1992). Additionally, CPPU treatment has been shown to

increase endogenous GA3 levels (Chai et al., 2019). Experiments on

tomatoes reveal that applying cytokinins to unfertilized ovaries

promotes fruit growth; however, this effect is completely blocked

when PAC—a gibberellin synthesis inhibitor—is used concurrently.

This indicates that cytokinins may be crucial for regulating both cell

division and gibberellin production in tomatoes (Matsuo et al.,

2012; Ding et al., 2013). In pears, research shows that the expression

pattern of transcription factor PbRR9 involved in cytokinin

signaling mirrors that of auxin synthesis gene PbYUC4 but

contrasts with abscisic acid synthesis gene PbNECD6’s pattern

(Cong et al., 2020). Molecular evidence confirms PbARR9 directly

interacts with both PbYUC4 and PbNECD6—suggesting cytokinins

drive parthenocarpy by upregulating auxin-related genes while

downregulating those associated with abscisic acid production

(Cong et al., 2020).

The ethylene-insensitive sletr1–1 mutant exhibits notably

higher gibberellin levels in its fruit compared to wild-type

tomatoes. Gibberellin synthesis gene GA20ox3 transcripts rise,

whereas those of the metabolism genes GA2ox4 and GA2ox5 fall

(Shinozaki et al., 2015). Auxin levels, however, remain relatively

stable. Treating sletr1–1 plants with PAC, a gibberellin synthesis

inhibitor, can prevent the development of seedless (parthenocarpic)

fruit, suggesting that ethylene influences fruit set through the

gibberellin pathway (Table 1) (Shinozaki et al., 2015). Following
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pollination, there is a marked decrease in the expression of genes

associated with ethylene biosynthesis and signaling (Nitsch et al.,

2009). Concurrently, abscisic acid (ABA) biosynthesis gene

expression decreases while ABA degradation gene expression

increases (Nitsch et al., 2009). Moreover, in tomato ABA mutants

(not/flc), cells within the fruit are smaller; abscisic acid content

drops without significant changes in auxin levels; yet ethylene

release escalates (Nitsch et al., 2009). This suggests that ABA and

ethylene may synergize with each other to regulate fruit set.
Molecular mechanisms of MADS-box
gene regulation in parthenocarpy

Angiosperms typically have four layers of floral organs in their

buds, which are, from the outermost to the innermost, the sepals,

petals, stamens, and pistils (López-Martıńez et al., 2024). Each layer

serves a distinct role in reproduction: sepals protect the bud;

colorful petals attract pollinators; stamens produce pollen grains;

and pistils, housing ovules, lead to seed production post-

fertilization. The “ABC model” effectively illustrates how genes

shape this conservative floral structure (Irish, 2017). Crucially,

MADS-box genes are key regulators of floral organ and fruit

development, with an expanding list identified in the regulation

of parthenocarpy in tomatoes.

The B-class genes within the MADS-box family play a crucial

role in the development of petals and stamens in flowering plants

(Kramer et al., 1998; Theißen et al., 2016). One such gene, TAP3

(TOMATO APETALA3), demonstrates the significance of B-class

genes. Mutations in TAP3, specifically the EMS mutant sltap3 and

plants with reduced SlTAP3, lead to notable transformations:

anthers become sepals, stamens turn into carpels, pollen is

aborted, and fruits without seeds are formed due to the expansion
FIGURE 1

Auxin and gibberellin interactions in tomato fruit set. Prior to pollination, the SlARF7/SlIAA9 complex acts as an inhibitor of auxin signaling, while the
DELLA protein binds with ARF7 when both auxin and gibberellin levels are low. Together, these proteins suppress tomato fruit set by downregulating
EXP5 expression. The SlARF7/SlIAA9 complex also represses genes responsible for gibberellin production (GA20ox1 and GA3ox1), resulting in
reduced gibberellin content. Following pollination, increased auxin within the fertilized ovule leads to IAA9 breakdown. Concurrently, higher
gibberellin levels facilitate DELLA degradation. With both DELLA and SlIAA9 removed, ARF7 activates specific genes responsive to auxins that
encourage fruit set.
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and enlargement of ovary wall cells (de Martino et al., 2006).

Muntant of carpelloid stamen and parthenocarpy (csp) was

identified parthenocarpy. It was a novel allelic mutation of TAP3

(Li et al., 2024). Additionally, two related B-class genes, SlGLO1 and

SlGLO2, show higher expression levels during the early

development stages of petals and stamens (Geuten and Irish,

2010). In plants where both SlGLO1 and SlGLO2 are suppressed,

a similar transformation occurs as in sltap3 mutants, with petals

changing into sepals, stamens into carpels, and resulting in the

production of seedless fruits (Table 4, Figure 2) (Geuten and

Irish, 2010).

In Arabidopsis, the AGAMOUS gene (AG; a C-class gene)

controls the development of stamens and carpels (Becker, 2003).

In tomatoes, TOMATO AGAMOUS 1 (TAG1) is mainly expressed

in these same floral parts (Pnueli et al., 1994). TAG1 down-

regulation transgenic plants were obtained by using the antisense

technology. These plants showed a transformation of the third

flower whorl into petal-like structures and produced parthenocarpic

fruit (Pnueli et al., 1994). Additionally, another C-class gene known

as TOMATO AGAMOUS-LIKE 1 (TAGL1) influences tomato

flowers, early fruit growth, and ripening stages. When TAGL1 was

overexpressed in plants driven by the 35S promoter, aberrant

expression occurred in leaves and sepals. This resulted in

premature closure of sepals during fruit development that

hindered normal opening. The pollen was sterile and the ovary

enlargement led to seedless fruits forming (Vrebalov et al., 2009).

Furthermore, the Alq-TAGL1 mutant also forms seedless fruits and

matures early, confirming the involvement of TAGL1 in fruit

development (Table 3, Figure 2) (Ribelles et al., 2019).

The D-class gene SlAGL11 (TOMATO AGAMOUS-LIKE 11) is

expressed in both flowers and fruits, with particularly high levels

during the early stages of fruit development. RNAi plants yield fruits

with seeds; however, these seeds are smaller and the total fruit

weight is reduced by 20%. No other significant phenotypic

differences exist (Ocarez and Mejıá, 2016; Huang et al., 2017).

Overexpression of SlAGL11 results in similar abnormalities as seen

in SlAGL1 overexpression, including distorted floral organ

formation at initial bud stages, discoloration of sepals, a fleshy

texture, and failure to open completely even when mature

(Vrebalov et al., 2009). The carpels are entirely enclosed within
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the flower structure, leading to nonviable pollen and consequently

seedless or minimally-seeded mature fruits that exhibit

parthenocarpic traits (Table 4, Figure 2) (Huang et al., 2017).

The E-class gene TM29 (Tomato MADS 29) plays a critical role

in the development of tomato floral organs and fruit, particularly in

sustaining meristematic tissue (Ampomah-Dwamena et al., 2002).

In typical wild-type tomatoes, TM29 is active within all four whorls

of the flower structure. Using co-suppression and antisense

strategies, scientists have reduced TM29 expression, yielding

genetically modified plants with distinct changes in their flowers:

petals and stamens turn green instead of yellow, stamens and

carpels become sterile—though these carpels may still produce

seedless fruit (Ampomah-Dwamena et al., 2002). Another E-class

member is AGL6 (Dreni and Zhang, 2016). The SlAGL6

(AGAMOUS-like 6) variant in tomatoes influences the creation of

seedless fruits as well (Klap et al., 2017). An EMS-induced mutant of

slagl6 produced parthenocarpic fruits under high temperature

conditions. The size and shape of the fruit and pollen fertility

were not affected, making it a valuable tomato parthenocarpic

germplasm (Klap et al., 2017). In-depth studies on this slagl6

mutation revealed that during ovule maturation, the innermost

endothelium layer fails to differentiate into integuments. However,

by upregulating the cytochrome P450 cell proliferation regulator

SlKLUH, there was excessive proliferation of the integument cells,

which stimulated the expansion of the ovary wall, leading to non-

fertilization-dependent seedless fruit formation (Table 3) (Gupta

et al., 2021).

Additionally, the type II MIKCC subfamily member TM8

(Tomato MADS 8) is essential in tomato development.

Overexpression of TM8 results in abnormal stamen formation,

reduced pollen viability, and altered expression of key flower

genes including B, C, and E-class genes. Conversely, plants

containing the repressed TM8: SRDX gene develop oval ovaries

and seedless fruits (Daminato et al., 2014). The repercussions of

TM8’s ectopic expression on reproductive structures underline its

significance in the morphogenesis of tomato flowers and fruit.

Therefore, by comprehensively regulating the MADS-box genes to

control the phenotype of parthenocarpic fruit formation in

tomatoes, changes also occur in the reproductive organs, such as

floral organ homology (TAG1, TAP3, GLO1, GLO2, TM29, TM8),
TABLE 4 Involvement of MADS-box gene family in tomato parthenocarpy.

Class of Homeotic Genes Gene ID Cause References

B Class TAP3 Solyc04g081000 silencing de Martino et al., 2006

B Class GLO1 Solyc08g067230 silencing Geuten and Irish, 2010

B Class GLO2 Solyc06g059970 silencing Geuten and Irish, 2010

C Class TAG1 Solyc02g071730 overexpressing Pnueli et al., 1994

C Class TAGL1 Solyc07g055920 overexpressing Vrebalov et al., 2009; Ribelles et al., 2019

D Class AGL11 Solyc11g028020 overexpressing Huang et al., 2017

E Class TM29 Solyc02g089200 silencing Ampomah-Dwamena et al., 2002

type II MIKCC AGL6 Solyc01g093960 silencing Klap et al., 2017

type II MIKCC TM8 Solyc03g019710 silencing Daminato et al., 2014
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sepal thickening (ALQ-TAGL1, TAG1, AGL11), petal-like stamens

(TAG1), and stamens with carpel-like features (TAP3, GLO1,

GLO2) (Table 4, Figure 2).
The other regulators involved in the
regulation of parthenocarpy

Parthenocarpic fruit development is also influenced bymiRNAs.

The HD-Zip III transcription factor gene family is the target of

miRNA165/166. Overexpressing miRNA165 reduces HD-Zip III

gene expression, causing abnormal carpels (Zhou et al., 2007).

Suppressing miRNA165/166 enhanced HD-Zip III transcription

factors gene expression, leading to shorter stamens in transgenic

plants. This indicates that HD-Zip III family genes were involved in

anther development; their increased expression may also induce

male sterility (Jia et al., 2015). SlHB15A is a member of the HD-Zip

III family in tomato. Mutations in SlHB15A result in seedless

tomatoes pointing to its inhibitory role on unfertilized fruit

development. Moreover, wild-type plants’ fertility significantly

drops under cold stress, unlike mutants of SlHB15A—which

implies its potential for breeding parthenocarpic varieties

(Table 3) (Clepet et al., 2021). The R2R3-MYB family comprises

GAMYB-like factors; studies show that tomato’s SlGAMYB1/2 are

reduced by miR159 during ovary development of parthenocarpic

specimens (Table 3) (da Silva et al., 2017).

The transcriptional co-repressor TOPLESS has been shown to

interact with Aux/IAA and ARF, key elements of the auxin

signaling pathway (Szemenyei et al., 2008; Hao et al., 2014; He

et al., 2021). In Arabidopsis thaliana, the TPL gene is active during

pollen and ovule development. Examination of the tpl-1 mutant

showed that 43.8% of its ovules were degenerated while a further

41.8% turned out to be sterile, indicating that At-TPL plays a critical

role in ovule formation as an essential gene in this process (Wei

et al., 2015). In tomatoes, silencing SlTPL1 via RNA interference
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(RNAi) demonstrated that reduced SlTPL1 expression under

emasculation and high temperatures results in the production of

seedless fruits—a likely consequence of increased cytokinin levels in

the ovaries (Table 3) (He et al., 2021).

The transgenic tomato obtained by introducing the ovary-

specific promoter TPRP fused with the root locus B (RolB) gene

into tomato was able to bear parthenocarpy under extreme high and

low temperatures, with better yields and qualities than that of WT,

and effectively addressed the issue of hollow fruit (Shabtai

et al., 2007).

SlDOF10 is a gene coding a DNA-binding with one finger

(DOF) transcription factor which is activated in unpollinated

ovaries of the parthenocarpic plants. Down-regulation of

SlDOF10 activity led to the phenotype of parthenocarpic fruit set

(Rojas-Gracia et al., 2019).

Mutant of High Fruit Set under stress (HFS) is parthenocarpic,

meaning pollination is not required for fruit set. Tomato ‘hfs’

mutants do not affect normal growth phases but significantly

boost both fruit set and yields under heat or saline conditions.

Additionally, they offer advantages like improved flavor profiles and

a higher sugar-acid balance favored during thermal stress. (Table 3)

(Meco et al., 2019).

TheAlq tomatomutant, which causes pre-anthesis ovary swelling

and increased fruit setting, results in facultative parthenocarpic fruits

and does not affect yield under salt stress conditions (Ribelles et al.,

2019). At the same time, cell division in the Alqmutant ovary and the

expression of genes related to the auxin and gibberellin signaling

pathways are altered (Ribelles et al., 2019).

Research has found that the SlSPL/HYDRA gene is a key factor

in initiating tomato gametogenesis. Mutations in the HYDRA gene

in plants lead to incomplete development of male and female

gametophytes. The development of the female gametophyte sac

results in the formation of parthenocarpy fruits. Additionally, there

are changes in the expression of genes related to gibberellin

metabolism pathways (Rojas-Gracia et al., 2017).
FIGURE 2

The ABCDE model genes of the MADS-box family are linked to tomato parthenocarpy. Genes marked in red indicate that overexpression results in
parthenocarpy, while those in blue suggest that silencing the gene induces parthenocarpy.
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Mutation of the F-box gene hws in tomato leads to the

formation of facultative parthenocarpic fruit and reduces fertility,

as well as changing leaf morphology. These phenotypes may be

associated with the downregulation of auxin signaling pathway

genes and the upregulation of miRNA expression in hws (Table 3)

(Damayanti et al., 2019).

Finally, a novel small parthenocarpic fruit and flower (spff)

mutant in the tomato was identified. The mutant showed both

vegetative and reproductive phenotypes including altered axillary

shoot development, male sterility, delayed flowering, and

parthenocarpic production of small fruits (Takei et al., 2019).
Conclusions and perspectives

In recent years, with the development of protected horticulture,

the demand for seedless crop varieties in agriculture has been

increasing. Although tomatoes have many parthenocarpy

resources, their practical agricultural use is limited due to

undesirable side effects. Consequently, there’s a pressing need to

expedite the breeding of parthenocarpic tomato cultivars.

Additionally, several issues require further clarification.

Omic research techniques are prevalent in plant science, with

numerous studies utilizing RNA-seq, DAP-seq, and ChIP-seq to

investigate parthenocarpic fruit development. However, there’s a

scarcity of research on proteomics and metabolomics in seedless

fruits. While exogenous hormone treatments can induce

parthenocarpy, they often cause undesirable effects. Exploring

new inducers using metabolomics and other omics technologies

represents an exciting field for future research.

Research into the regulatory mechanisms of parthenocarpic fruit

formation has primarily focused on internal factors; however, studies

examining the interplay between external and internal influences

remain scarce. Understanding how these mechanisms operate under

adverse conditions continues to be a significant knowledge gap.

To date, tomato research on genes associated with

parthenocarpy has concentrated on those regulating endogenous

hormones or flower organ development through MADS regulators.

Despite numerous gene discoveries related to this trait, molecular

markers closely linked to it have yet to be identified. Developing

such markers will aid in detecting, evaluating, and breeding for

parthenocarpy in tomatoes and other fruit horticulture crops.

Finally, while much research has been conducted on the

molecular mechanisms underlying tomato parthenocarpy, key

genes involved remain unidentified. Investigating their specific

genetic functions is crucial. Leveraging genetic traits and

molecular markers to breed new varieties represents a vital

direction for future work in this field.
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