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Mapping of flumioxazin
tolerance in a snap bean
diversity panel leads to the
discovery of a master genomic
region controlling multiple
stress resistance genes
Ana I. Saballos1*, Matthew D. Brooks1, Patrick J. Tranel2

and Martin M. Williams II1

1Global Change and Photosynthesis Research Unit, United States Department of Agriculture–
Agricultural Research Service, Urbana, IL, United States, 2Department of Crop Sciences, University of
Illinois, Urbana, IL, United States
Introduction: Effective weed management tools are crucial for maintaining the

profitable production of snap bean (Phaseolus vulgaris L.). Preemergence

herbicides help the crop to gain a size advantage over the weeds, but the few

preemergence herbicides registered in snap bean have poor waterhemp

(Amaranthus tuberculatus) control, a major pest in snap bean production.

Waterhemp and other difficult-to-control weeds can be managed by

flumioxazin, an herbicide that inhibits protoporphyrinogen oxidase (PPO).

However, there is limited knowledge about crop tolerance to this herbicide.

We aimed to quantify the degree of snap bean tolerance to flumioxazin and

explore the underlying mechanisms.

Methods: We investigated the genetic basis of herbicide tolerance using

genome-wide association mapping approach utilizing field-collected data

from a snap bean diversity panel, combined with gene expression data of

cultivars with contrasting response. The response to a preemergence

application of flumioxazin was measured by assessing plant population density

and shoot biomass variables.

Results: Snap bean tolerance to flumioxazin is associated with a single genomic

location in chromosome 02. Tolerance is influenced by several factors, including

those that are indirectly affected by seed size/weight and those that directly

impact the herbicide's metabolism and protect the cell from reactive oxygen

species-induced damage. Transcriptional profiling and co-expression network

analysis identified biological pathways likely involved in flumioxazin tolerance,

including oxidoreductase processes and programmed cell death. Transcriptional

regulation of genes involved in those processes is possibly orchestrated by a

transcription factor located in the region identified in the GWAS analysis. Several

entries belonging to the Romano class, including Bush Romano 350, Roma II, and
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Romano Purpiat presented high levels of tolerance in this study. The alleles

identified in the diversity panel that condition snap bean tolerance to flumioxazin

shed light on a novel mechanism of herbicide tolerance and can be used in

crop improvement.
KEYWORDS
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1 Introduction

Snap bean (Phaseolus vulgaris [L.]) producers face a significant

challenge due to weed contamination in mechanically harvested

beans. The presence of waterhemp (Amaranthus tuberculatus)

exacerbates the issue as the fragile stem pieces are hard to

differentiate from the snap bean pods, leading to contamination.

Waterhemp is among the most common and troublesome weeds in

North American crop production systems (VanWychen, 2015) due

to its high fecundity, discontinuous emergence pattern, rapid

growth rate, and resistance to herbicides of multiple modes-of-

action groups. Unlike major crops such as soybean (Glycine max

(L.) Merr.), transgenic herbicide resistance is not available for snap

bean production, and chemistries suitable for use on snap bean crop

are limited. Expanding the availability and use of herbicides from

different modes of action is one approach to improve weed control

and delay herbicide resistance in weed populations (Gage

et al., 2019).

Flumioxazin effectively controls waterhemp and multiple other

broadleaf weeds (Niekamp et al., 1999); however, it is not labeled for

use in snap bean. One hurdle to registering an herbicide on a new

crop is the unknown level of crop tolerance to the candidate

herbicide. The extent of naturally occurring tolerance to

flumioxazin in snap bean cultivars and its genetic basis

are unknown.

Flumioxazin belongs to the group of protoporphyrinogen oxidase

(PPO)-inhibiting herbicides [Flumioxazin, National Center for

Biotechnology Information, (2024)]. Protoporphyrinogen IX

oxidase (EC 1.3.3.4) is an oxygen-dependent enzyme essential for

the biosynthesis of chlorophyll, catalyzing the oxidation of

protoporphyrinogen IX to protoporphyrin IX in the chloroplast

(Poulson and Polglase, 1975). When PPO is inhibited, its substrate

is exported to the cytoplasm, oxidizing it into protoporphyrin IX. In

the presence of light, protoporphyrin IX produces reactive oxygen

species (ROS), resulting in the loss of chlorophyll and carotenoids,

degradation of lipids and proteins, and disruption of cell membranes

(Nagano, 1999; Maurya, 2020). As a soil-applied herbicide,

flumioxazin is in contact with the seedling from the start of

germination; therefore, defense mechanisms must be active in

germinating seeds. Plants exhibit herbicide tolerance through

target-site and non-target-site resistance mechanisms (TSR and
02
NTSR, respectively). While TSR results from genetic mutations in

the herbicide targets, or from increased target gene copies or its

expression (Gaines et al., 2020), NTSR occurs via various

physiological and biochemical mechanisms. Target-site resistance

to PPO inhibitors due to mutations in one of the two isoforms of

PPO (Lermontova et al., 1997) has been reported in multiple

Amaranthus species including A. artemisiifolia, A. tuberculatus, A.

palmeri, A. retroflexus, and other weed species including Eleusine

indica, and Euphorbia heterophylla (Patzoldt et al., 2006; Lee et al.,

2008; Rousonelos et al., 2012; Giacomini et al., 2017; Bi et al., 2020;

Mendes et al., 2020; Du et al., 2021).

Non-target-site herbicide resistance alters physiological

processes, including absorption, translocation, sequestration, and

metabolism. These processes provide defense against a wide range

of xenobiotic compounds. Metabolic tolerance is likely to be the

mechanism of tolerance to sulfentrazone, another PPO-inhibiting

herbicide, in snap bean (Saballos et al., 2022). It can be mediated by

detoxification of the molecule and by ameliorating its effects in the

cell (Edwards et al., 2011; Cavé-Radet et al., 2020). Mechanisms of

NTSR are more complex than TSR and can impart cross-resistance

to herbicides with different modes of action (Jugulam and Shyam,

2019). Flumioxazin-induced ROS production results in oxidative

stress. The oxidative stress phenomenon accompanies nearly all

plant stresses (Demidchik, 2015) and plants have developed

mechanisms to sense and ameliorate it. Mechanisms linking

processes in respiration, photosynthesis, plant hormones,

antioxidant enzymes, antioxidant compounds and chaperone

proteins protect the cells against oxidation (Lee et al., 2000;

Yamauchi et al., 2012; Luhua et al., 2013; Sah et al., 2016;

Mahmood and Dunwell, 2020; Maurya, 2020; Dumanović et al.,

2021). Those mechanisms are ultimately controlled at the

transcriptional level, with transcription factors (TF) coordinating

downstream gene expression. Understanding the genetic basis and

mechanisms of NTSR is crucial for managing weed herbicide

resistance evolution (Délye, 2012) and aiding in breeding

herbicide-tolerant crops.

Genome-wide association study (GWAS) is used to study traits

without a known genetic structure. This approach involves

scanning the genome of a species to identify markers with

statistical associations with traits of interest (Manolio, 2010).

GWAS is able to identify genomic regions containing loci of
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moderate to large effect (Lipka et al., 2015; Delfini et al., 2021). This

approach has been successful identifying genomic regions

associated with NTSR in crop and weed species. Sehgal et al.

(2024) reported four SNPs significantly associated with reduced

sensitivity to an acetyl CoA carboxylase -inhibiting herbicide in a

diverse population of Digitaria insularis from Brazil. Candidate

genes located in the associated regions were postulated to have

functions in herbicide detoxification and in vacuolar sequestration-

based degradation pathways. Using a snap bean diversity panel, we

identified multiple genomic regions associated with variation in

sensitivity to the PPO- inhibiting herbicide, sulfentrazone (Saballos

et al., 2022). Genes with possible functions in NTSR, including

those encoding cytochrome P450 enzymes and ABC transporters,

were located in the associated intervals.

GWAS-identified regions may contain multiple genes

depending on the population used and marker density.

Additional approaches often are needed to characterize the

possible roles of candidate genes in the expression of the

phenotype. Transcriptional profiling and co-expression network

analysis can be helpful in the identification of gene modules and key

genes responsible for a particular condition. The predicted

functions of the genes composing an associate module shed light

on the biological processes involved in the expression of the

phenotype. Weighted Gene Correlation Network Analysis

(WGCNA) is a technique widely used for finding groups of genes,

called modules, that have highly correlated expression levels across

samples (Langfelder and Horvath, 2008). Through this approach,

co-expression networks are constructed. Gene modules associated

with various traits have been successfully detected in Arabidopsis

(Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays),

soybean, tomato (Solanum lycopersicum), sugarcane (Saccharum

officinarum), and aspen (Populus sp.) (DiLeo et al., 2011; Shaik and

Ramakrishna, 2013; Gerttula et al., 2015; Choe et al., 2016; Ferreira

et al., 2016; Das et al., 2017).

This study aimed to explore the genetic basis of snap beans’

tolerance to flumioxazin. We sought to identify the specific genomic

regions linked to this tolerance and gain a better understanding of

the biological processes that contribute to it. To achieve these

objectives, we used a diversity panel to evaluate the levels of

flumioxazin tolerance within the crop, combined with genome-

wide association mapping and gene expression data to reveal the

genetic control of this trait.
2 Materials and methods

2.1 Phenotype evaluation, summary
statistics and genome-wide
association studies

2.1.1 Germplasm
377 genotypes of the Snap bean Association Panel (SnAP) were

used in this study (Hart et al., 2015). SnAP represents the diversity

of snap beans grown in the US over the last century. The original

SnAP population was genotyped using Genotyping by Sequencing
Frontiers in Plant Science 03
(GBS) and aligned to the reference Andean G19833 P. vulgaris v2.1

genome sequence (Schmutz et al., 2014). A total of 20,619 SNPs

with a minimum allele frequency of 5% were included in the

analysis (Soler-Garzón et al., 2023).

2.1.2 Field experiment
The study was conducted at the University of Illinois Vegetable

Crop Farm near Urbana, IL. Experiments were planted on July 8th,

2021 and June 2nd, 2022, for the first and second year of the

experiment. The experimental design was a strip plot with three

blocks (replications) as described in Saballos et al. (2022). Plots

received one of two levels within 24 hours after planting: flumioxazin

at 378 g a.i. ha-1 or a nontreated control. The flumioxazin rate, twice the

recommended use rate in soybean for soil at the location, was chosen to

represent an overlap of the highest possible practical rate for maximum

weed control.

Genotype treatment plots consisted of single rows (76-cm

spacing) of individual genotypes transecting both herbicide

treatment strips. Each genotype by herbicide treatment subplot

was 2.4 m in length planted with 30 seeds to a depth of 2.5 cm.

Prior to planting, seed weight was taken from a random sample

of 100 seeds per genotype. The 100-seed weight of the seed lots of

both years were averaged to represent the seed weight of each

genotype. Seed weight was used as a proxy measurement of seed size

(e.g., Giles, 1990; Roy et al., 1996).

2.1.3 Field data collection
For each plot, emerged seedlings with green tissue at the

meristem were counted to determine plant density (PD). This

measure reflects a combination of germination and seedling

establishment. At the same time, individual plant shoot biomass

was determined. The shoot tissue from three randomly selected

plants from each subplot was harvested. Shoots were dried until

constant weight to determine biomass plant-1 (BP). This measure

gives an estimate of seedling growth. The level of tolerance of the

genotypes was calculated from the above measures by expressing

the values of the traits in the treated plots as percentage of the values

in the control plots of the same genotype within the same block

(named PDperc and BPperc). The PD percentage of the control

plots (PDcontrol) was calculated as the number of seedlings

emerged in the control plots divided by the number of planted

seeds (30), expressed as percentage. BPcontrol was the dry shoot

biomass per plant of the genotypes in the control plots.

Daily rainfall and temperature were obtained from a weather

station located within 1 km of the experiments (Illinois State Water

Survey, Champaign, IL). Growing degree days (GDD) were

calculated using the formula:

Tmax − Tmin
2

� �
− Tbase

Where Tmax is the daily maximum air temperature, Tmin is the

daily minimum air temperature, and Tbase is the minimum

development threshold that must be exceeded for growth to

occur. The Tbase was set a 10˚C for common bean (Dethier and

Vittum, 1963).
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2.1.4 Field data analysis
PDperc and BPperc were analyzed by ANOVA with the aov()

function in R studio using the model:

yilk =  m   +  Gi     +  Yl +   (GY)il +  B(Y)k(l)   +   ϵilk

where Yilk is the trait value of the plot in the kth block in the lth

year, with the ith genotype, µ is the overall mean of the experiment,

Gi is the main effect of the ith genotype, Yl is the main effect of the lth

year, (GY)il is the interaction effect between the ith genotype and the

lth year, B(Y)k(l) is the effect of the k
th block nested within the lth year

and ϵilk in the error term associated with plot in the kth block in the

lth year with the ith genotype. All effects were declared significant

at a=0.05.
Broad-sense heritability for PDperc and BPperc was calculated

as a function of variance components, as described in Holland et al.,

2002. Variance components were obtained by fitting a linear model

with the lmer() function using the model above. Marker-based

estimates of narrow-sense heritability were obtained using the

method proposed by Kruijer et al. (2015), using a mixed model in

which genetic relatedness is estimated from genetic markers, and

the trait value at the individual plot level. The model was

implemented with the R package Heritability (Kruijer et al., 2023).

Pearson correlation coefficients expressing the linear

relationship between the best linear unbiased predictions (BLUPs)

of the traits were calculated using the procedures cor and Rcorr of

package Hmisc (R studio). Data were visualized using the

package Corrplot.

2.1.5 Data preparation and GWAS analysis
Normality of the raw data was assessed using the R rstatix

package, Shapiro_test(). Box-Cox transformation was applied when

necessary to improve the normality of the distribution of the trait

values (Box and Cox, 1964). The optimal Lambda values for each

trait were calculated using the function boxcox() of the MASS

package (R studio). The optimal value is the one which results in the

best approximation of a normal distribution curve for transformed

trait data. For traits with negative effect values, a constant was added

to the data to allow for the calculation of Lambda, and the

transformation was applied to the raw values.

BLUPs were determined for the tolerance traits from the

transformed datasets using the function lmer() of the lme4

package, with genotype and block as random effects in the model

for the individual year analysis, and genotype, year, genotype by

year interaction and block within year as random effects for the

joint analysis. The conditional means of the genotypes were

extracted using the function ranef () of the lm4 package.

The best linear unbiased predictions were used as input for the

GWAS model. Forward model selection using the Bayesian

information criterion (BIC) was used to determine the optimal

number of principal components (PCAs) to include in the GWAS

models for each trait.

As a correlation between seed weight and tolerance traits was

observed in the field experiments, GWAS analysis was conducted

with seed weight as covariate to detect tolerance-associated loci

independent of the effect of seed weight.
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The statistical model used in the GWAS was the multi-locus

mixed model (MLMM) as implemented in GAPIT v.3 (Wang and

Zhang, 2021). In the MLMM (Segura et al., 2012), associated

markers are fitted as cofactors for marker test. The cofactors are

adjusted through forward inclusion and backward elimination in

the regression model. The Benjamini and Hochberg (1995)

procedure was used to control multiple testing. The kinship

matrix used for analysis was calculated in GAPIT using the

VanRaden method (VanRaden, 2008). The models included the

optimal number of PC calculated by BIC, the kinship matrix, and

seed weight as covariate. The analysis was run independently for

each year, and jointly for both years.

Linkage disequilibrium decay was calculated using the pairwise

r2 of SNPs within each chromosome. Using the software package

TASSEL Version 5.0 (Bradbury et al., 2007), the genotypic map was

thinned to a minimum distance of 2 KB between SNPs using the

option “Thin Sites by Position” of the “Data” tab. The r2 between

the SNPs was calculated with the option “Linkage disequilibrium”

within the “Diversity” group of the “Analysis” tab. The resulting

matrix was exported to R studio for manipulation and plotting. The

distance between SNPs was divided in bins of 10 kbp, and the

average r2 of the bin was calculated. A line plot was created using

the ggplot2 package with the average r2 of the bin in the x-axis, and

the distance between the SNP at the start of the bin in the y-axis.

2.1.6 Genomic prediction
The two-year averages of the PDperc and BPperc were used to

estimate the breeding value of the snap cultivars using the gBLUP

model (Zhang et al., 2007) as implemented in GAPIT. The average

seed weight of the lots was used as a covariate in the analysis. The

Pearson correlation of the predicted phenotype and the observed

phenotype was calculated to determine the predictive ability (PA).

To evaluate the accuracy of the prediction, a genomic prediction

model was generated using the kinship matrix developed from all

the markers and a random set of 80% of the phenotypes (reference

set). The genotypes were not included in the model generation

constituted the inference set. The model was used to predict the

phenotype of the genotypes in the reference and inference set. The

correlation between the original phenotypes and predicted

phenotypes in the reference and inference set was recorded. The

procedure was repeated 1000 times with randomly selected

reference and inference sets to calculate the average accuracy.

2.1.7 Effect of seed weight and significant SNP
status on the tolerance phenotype

Scatter plots were used to visualize the relationship between

seed weight and PDperc/BPperc values within groups of cultivars

carrying the positive or negative effect allele of the significant SNPs.

Box plots were used to visualize the effect of the allelic status at the

significant SNP on the PDperc and BPperc values of the cultivars.

2.1.8 Haploblock analysis
Linkage disequilibrium blocks surrounding the significant SNPs

were determined using the option extractHaplotype (Barrett et al.,

2004) in HAPPI-GWAS package (Slaten et al. , 2020).
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extractHaplotype calculates pairwise LD between each significant

SNP identified in GWAS and every neighboring SNP in a window.

For the analysis, a window size of 10000 kbp was used. The

haploblocks were defined as regions in which the upper and

lower 95% confidence bounds on normalized measure of allelic

association (D’) between pairs of SNPs are >0.98 and >0.70,

respectively (Gabriel et al., 2002).
2.2 Differential expression, mutation
analysis and GO term enrichment analyses

2.2.1 Plant material
Twelve cultivars were included in the experiment. Tolerant

response was represented by six cultivars with PDperc > 62% and

BPperc > 50%. Six cultivars with PDperc< 16% and BPperc< 47%

represented sensitive response. To control for the effect of seed

weight, the selection was restricted to genotypes with 100-seed wt.

between 42.44 and 50.33 g based on the average of the 2021 and

2022 seed lots. The genotype name, market class, seed weight, allelic

status at associated SNP marker and response to flumioxazin of the

genotypes included are presented in Supplementary Table 1.

Seeds were sown in 27.8 × 53.3 cm flats containing fine quartz

sand. Thirty seeds of each cultivar were planted 1 cm deep. Flats

were kept at 26°C and watered regularly to maintain soil moisture.

Whole seedlings were harvested when the cotyledons had fully

emerged. Seedlings were flash-frozen in liquid nitrogen

immediately after harvest. Herbicide was not applied, with the

assumption that differential gene expression contributing to

tolerance would be constitutive (Giacomini et al., 2018).

2.2.2 RNA extraction
Total RNA was obtained from four independent biological

repeats, each pooled from 4 plants (16 plants total per genotype).

Each frozen sample was ground to a fine power using a coffee grinder

cooled with dry ice and extracted using E.Z.N.A Plant RNA kit I

(Omega Bio-tek, Norcross, CA), and on-column DNase digestion

was performed according to the manufacturer’s protocol. Paired

reads were sequenced on a NovaSeq S4 flow cell (Illumina, San

Diego, CA). Processing of the initial reads was performed using the

Illumina analysis pipeline. Additional filtering was performed by

removing adaptor sequences and low-quality bases.

2.2.3 Differential expression analysis
After demultiplexing, adapter trimming, and filtering for low

quality reads using the BBDuk tool in the BBtools suite of

bioinformatic tools, version 38.94 (Bushnell, 2022), reads were

aligned (Haas, 2003) to the Phaseolus vulgaris v2.1 reference

genome (DOE-JGI and USDA-NIFA, 2023), downloaded from

Phytozome v13 (Goodstein et al., 2012). Gene-level counts were

obtained using featureCounts (Liao et al., 2014). Differentially

expressed (DE) genes were identified between sensitive and

tolerant lines using DESeq2 (Love et al., 2014). Differentially

expressed genes between the tolerant and sensitive cultivars were

identified with a cutoff of fold-change ≥ 1.5 and adjusted p-value ≤

0.1 (Benjamini and Hochberg, 1995).
Frontiers in Plant Science 05
2.2.3.1 GO term analysis of differentially expressed genes

An enrichment analysis was performed to discover significantly

overrepresented functional categories. We functionally classified

DEG according to GO terms using agriGO v.2 (Tian et al., 2017),

using the Hochberg multi-test adjusted p-value of the F statistic<

0.01. Only significant GO term represented for at least 3 entries in

the query list were considered. The GO annotation system is based

on three structured vocabularies that describe gene products in

terms of their associated biological processes, cellular components,

and molecular functions. Upregulated and downregulated DEG

were analyzed separately. The results were visualized using the

online tool REVIGO (Supek et al., 2011).
2.2.4 Variant discovery and annotation
Read manipulation, alignment and variant calling were

performed with bioinformatic tools available at the University of

Illinois Carl R. Woese Institute for Genomic Biology High

Performance Computing cluster. Reads were filtered and trimmed

for quality using the BBDuk tool (Bushnell, 2018). The 15 right-most

bases were forced trimmed, and additional low-quality bases were

trimmed until the overall read quality was above 30. Filtered reads

were aligned using HISAT2 2.2.1 (Kim et al., 2019) to the P. vulgaris

V2.1 reference genome. Only reads that mapped uniquely to one

position in the genome were considered. The output BAM files were

filtered to eliminate reads with mapping quality below 30 using

SAMtools 1.12 (Li et al., 2009). BCFtools 1.12 (Danecek et al., 2021)

was used to generate the genotype likelihood at each genomic

position for the 48 samples and identify SNPs. For BCFtools

mpileup command, -C 50 option was used to downgrade the

mapping quality for reads containing excessive mismatches. For

BCFtools call command, a p-value threshold of 0.0001 was used.

The resulting VCF file was filtered using BCFtools filter command for

calls of quality ≥ 40, supported for 8 or more reads. SNPmarkers with

missing values in > 24 samples were eliminated.

2.2.5 Determination of the effect of genetic
variant in gene coding sequences

The mutational landscape of the expressed genes in the six

tolerant and six sensitive genotypes was investigated using the

program SnpEff (Cingolani et al., 2012a). SNP were annotated on

their genomic locations and their potential coding effects. The

resulting annotated VCF file was filtered using SnpSift (Cingolani

et al., 2012b) for homozygous SNP scored as having high or

moderate impact in the protein sequence. To determine variants

associated with the tolerant or sensitive status of the genotypes, a

case-control association analysis with the variant-allele frequencies

was done using the SnpSift Case-Control tool. The statistical test

used was Fisher’s exact test for the dominant and recessive models.

Variants with p-value< 0.001 were considered candidate

causal mutations.
2.2.6 Network analysis
We used weighted gene co-expression network analysis

(WGCNA) to identify co-expressed gene modules in the dataset

(Langfelder and Horvath, 2008, 2012). The normalized expression
frontiersin.org

https://doi.org/10.3389/fpls.2024.1404889
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saballos et al. 10.3389/fpls.2024.1404889
data of the samples (obtained with the R package Deseq2, Love et al.,

2014) was examined using a Euclidean distance-based sample

network to detect outliers, with a -2.5 threshold (Horvath, 2011).

After outlier elimination, 16 individual samples, representing 4

susceptible cultivars, and 14 individual samples, representing 5

tolerant cultivars were included in the network analysis. Each

cultivar was represented by at least 2 samples, with each sample

composed of tissue from four seedlings. The analysis was performed

using the R package WGCNA (Langfelder and Horvath, 2008, 2012),

with signed network type and power 20. The eigengene value of the

module in each sample represent the summarized expression of a

group of co-expressed genes. We fitted a univariate regression model

between the module eigengene and the trait values to identify

differentially expressed modules between our tolerant and sensitive

samples, using the function lmfit of the R package limma (Ritchie

et al., 2015). Modules were considered differentially expressed in the

tolerant vs sensitive samples if the Benjamini and Hochberg (1995)

adjusted p-value was ≤ 0.001. Modules with high trait significance

may represent pathways associated with the expression of the trait.

Within modules, genes with high intra-modular connectivity (hub

genes) can be considered as the module representative.
2.2.7 Correlating gene expression patterns
expression of flumioxazin tolerance

For modules 16, 59, 18, and 65, the relationship between the

average module eigengene expression value and the 2-year average

PDperc of the cultivars was determined using the cor function in the

Stats package (R studio). The Pearson correlation coefficient

between those variables was determined for all cultivars included

in the network analysis and for those within the tolerant and

susceptible groups individually.
2.2.8 Transcription factor binding site
motifs search

Analysis of Motif Enrichment software package v.5.5.5 (McLeay

and Bailey, 2010) part of the MEME suite (Bailey et al., 2015,

available online at https://meme-suite.org), was used to search for

enriched motifs in the upstream DNA sequences of the genes

present in each of the modules. The sequences were searched

against a set of 872 motifs, obtained from the A. thaliana

database of transcription factors binding sites (O’Malley et al.,

2016). For AME to determine which motifs are relatively

enriched in one set of sequences, it must use background

sequences as a control against which to test for enrichment. A

larger set of control sequences allows higher sensitivity. It is

recommended to use at least 1000 sequences in the control group

if the primary sequence number is< 500. For this analysis, a control

set of 2000 genes randomly selected from modules not significantly

associated with the tolerant or sensitive status of the cultivars was

used to score for enrichment, exceeding the recommended amount.

For each gene, the sequence information in FASTA format of the

segment 1200 bp upstream of the transcription start site was

downloaded from the Phytozome 13 database, reference genome
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Phaseolus vulgaris v.2, using the Biomart tool. The motif

enrichment test was Fisher’s exact test (one-tailed).
2.3 Candidate genes putative functions

The functional annotations were downloaded from the

Phytozome 13 database using the Biomart tool. Putative function,

experimental evidence, and phenotype of mutants for the

Arabidopsis homologs of the P. vulgaris genes were obtained

from the TAIR database (Arabidopsis.org).
3 Results

3.1 Environmental conditions

Growing degree days from planting to three weeks later were

relatively similar across years (Supplementary Figure 1A). Water

supply (rainfall plus supplemental irrigation) differed between years

(Supplementary Figure 1B). The experiment in 2021 had about

double the amount of water compared to 2022. In 2021, eight days

after planting, a high rainfall event resulted in soil splashing on the

expanding leaves of emerged seedlings. This resulted in severe burn

on most plants two days later.
3.2 Distribution of traits in the
association panel

The original (non-transformed) phenotypic values of the

genotypes for each trait were evaluated by year to analyze their

distribution (Supplementary Figure 2). Normality tests failed to reject

the assumption of normality for seed weight; PDperc and BPperc

were skewed to the right in both years, reflecting the sensitivity of

most entries to flumioxazin. For both herbicide tolerance traits, the

values in 2021 were lower than those in 2022. The greater water

supply in 2021 likely contributed to greater herbicide mobilization

and bioavailability, compared to 2022. The transformed phenotypic

values were closer to normality, but no transformation resulted in

Shapiro-Wilk statistic > 0.05 (Supplementary Figure 3).
3.3 Pearson’s correlation coefficient of
traits across years and ANOVA

Despite year-to-year variation, the values of traits were positively

correlated across years (Figure 1). The strength of the relationship

was high for seed weight (r = 0.82). Under control conditions, the PD

and BP traits in 2021 and 2022 were moderately correlated (r = 0.50

and 0.57 for PDcontrol and BPcontrol, respectively). For the

tolerance traits, PDperc had a moderately high correlation across

years (r = 0.69), while BPperc had a lower correlation (r = 0.34). It is

possible that environment had a greater effect on BPperc than other

traits. It is known that the phytotoxicity of flumioxazin is dependent
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on soil moisture (Sebastian et al., 2016). Wetter growing conditions

may have increased injury in partially tolerant genotypes in 2021

compared to 2022. In addition, flumioxazin phytotoxicity is more

severe if applied post-emergence, even in crops for which it is

registered as preemergent weed control (McNaughton et al., 2014).

The high rainfall event in 2021 during emergence of seedlings may

have splashed the herbicide onto the leaves, increasing the level of

injury and reducing the correlation between years. Analysis of

variance confirmed the significant effect of genotype and year in

the response of snap bean to flumioxazin (Table 1). The significant

cultivar-by-environment interaction indicated that cultivars could

have different responses across environmental conditions; however, a

majority of the most tolerant cultivars were consistent across years,

indicating that cultivars with genetic tolerance to flumioxazin are

likely to express the trait under different environmental conditions.
3.4 Correlation among traits

Pearson analysis of correlation among traits revealed a significant

positive correlation between seed weight and both PDperc and

BPperc (r = 0.49 and r = 0.57, respectively), while it was negatively

correlated with PD under control conditions (r = -0.14). The

correlation between PDperc and BPperc was positive (r = 0.67). In

contrast, PDcontrol and BPcontrol were not correlated. This suggests

that in the control treatment, genetic factors that promote

germination and growth are mainly unrelated to each other,

whereas in the herbicide treatment, shared genetic factors may

influence both germination and growth. The positive correlations

observed between BPperc and BPcontrol in both years indicate that

seedling vigor contributes to flumioxazin tolerance.
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3.5 Response of snap bean cultivars
to flumioxazin

There were varying degrees of sensitivity to flumioxazin among

genotypes, affecting both plant density and biomass. Some genotypes

were highly tolerant, some showed intermediate response, and the

majority were sensitive. The ten most tolerant and ten most sensitive

genotypes are shown in Table 2. It is noteworthy that most accessions

with high flumioxazin tolerance belong to the market class

“Romano”, characterized by a flat pod phenotype, and seed weight

above the panel average. In the full panel, the means of the traits

PDperc and BPperc of the cultivars classified as “Romano” were

significantly different from the combined mean of the other classes,

based on the Welch two sample t-test (p value = ≤3.40e-06).
3.6 Trait heritability

High broad-sense heritability (H2 = 0.79) was observed in PDperc

(Table 3). In a highly inbred population such as SnAP, the dominance

effects do not contribute to the phenotype of the lines (Falconer and

Mackay, 1996). Therefore, the broad-sense heritability should

approximate the narrow-sense heritability. Nonetheless, the

narrow-sense heritability was moderate (h2 = 0.57). Similarly, the

broad-sense heritability estimate for BPperc was moderate (H2 = 0.49,

Table 3), and the narrow-sense heritability was low (h2 = 0.19). These

results indicated that genetic improvement of flumioxazin tolerance

would be more successful in increasing the germination percentages

under preemergence application of the herbicide than the biomass

accumulation after emergence. The lower heritability of BPperc could

reflect the lower level of tolerance to the post-emergence exposure to

flumioxazin, which resulted in extensive damage to seedlings in 2021.
TABLE 1 Analysis of variance.

PDperc

Factors Sum Sq DF F value Pr(>F)

Cultivar 447750 379 11.04 < 2.2e-16

Year 117459 1 1097.77 < 2.2e-16

Cultivar x Year 100984 376 2.51 < 2.2e-16

Block (Year) 2166 2 10.12 4.30e-05

Residuals 163066 11524
fro
BPperc

Factors Sum Sq DF F value Pr(>F)

Cultivar 418883 379 2.66 < 2.2e-16

Year 309378 1 745.32 < 2.2e-16

Cultivar x Year 207969 375 1.34 1.33e-04

Block (Year) 5281 2 6.36 1.78e-03

Residuals 596489 1437
Significance of main effects of snap bean cultivar, year and block, and their interactions on
crop response in the field experiment. PDperc, Plant density in flumioxazin treated plots as
percentage of non-treated plots. BPperc, Dry biomass per plant in flumioxazin treated plots as
percentage of non-treated plots.
FIGURE 1

Pearson correlations among traits across the two years of the study.
The color and size of the circle depict the strength of the relationship.
Only correlations with p ≤0.05 are shown. SeedWt, 100-seed weight
in grams of planted lots. PDcontrol, percentage of emerged plants out
of 30 planted seeds in the control plots. PDperc, emerged plants in
the treated plots as percentage of emerged plots on the control plots.
BPcontrol, dry weight per plant in grams in control plots. BPperc, dry
weight per plant in the treated plots expressed as percentage of the
weight per plant in the control plots.
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3.7 Genome-wide association studies

3.7.1 Significant genomic locations for plant
response to flumioxazin

Analysis of the pairwise r2 between marker demonstrates that

LD decays rapidly between 0 and 2 Mbp of distance, reaching< 0.5

at 162 Kbp of distance between markers in average (Supplementary

Figure 4). As the extent of LD determines the required number of

SNP markers and the mapping resolution (Flint-Garcia et al., 2003),
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it would be expected that a marker density of at least 6.2 SNPs/Mbp

would be needed to efficiently detect associated loci.

To reduce the environmental influence, GWAS analysis was

performed using the BLUP of the traits; therefore, most of the

remaining phenotypic variation is expected to be due to genotype

differences. For both PDperc and BPperc, a genomic region delimited

by three linkedmarkers was detected in joint years and individual years

analyses (Table 4; Figure 2). The chromosomal region in which the

significant SNPs are located has a marker density of 50–75 SNP/Mbp

(Figure 2A). Examination of the quantile-quantile plots reveal that

most of the p-values follow a uniform distribution, apart from a few

SNP with very low p-values, likely indicating that the model

successfully accounted for covariance and population structure. The

marker density in the significant region Depending on the year and

trait, one of three SNPs was significantly associated with the tolerance

traits within a 162.9 kbp segment in chromosome 2. Two of the SNPs

are in the overlap region of two LD blocks (34,370,893 to 34,499,850

bp, and 34,465,460 to 34,584,048 bp) while the third SNP belongs to an

LD block from 34,582,408 to 34,667,949. The significant SNPs in this

region explained a high proportion of the PDperc phenotypic variance
TABLE 2 List of snap bean genotypes in the SNAP diversity panel most tolerant and more sensitive to flumioxazin based on the tolerance evaluated as
the average plant density and biomass per plant, in a field experiment near Urbana, IL in 2021 and 2022.

Genotype SnapID PI no. Type Seed Wt Pod Shape PDperc BPperc

Tolerant

Trend* SnAP356 NA Romano 62.54 Flat 81.3 86.1

Bush Romano 350 SnAP056 PI 538770 Romano 45.805 Flat 62.5 98.1

Roma II SnAP279 PI 549997 Romano 47.29 Flat 75.9 68.2

Romano Purpiat SnAP282 NA Romano 37.285 Flat 54.9 89.2

DMC 06–01 SnAP095 PI 560313 Romano 45.35 Flat 73.6 63.5

Jumbo SnAP187 PI 550044 Romano 52.635 Flat 63.5 65.3

Moncayo SnAP227 PI 598219 Romano 37.635 Flat 78.7 50.7

Romano 118 SnAP280 NA Romano 47.685 Flat 63.3 59.9

Bountiful SnAP045 PI 598998 Fresh market 45.81 Flat 70.8 53.0

DMC 06–39 SnAP096 PI 560314 Romano 60.625 Flat 57.4 56.1

Sensitive

Redon SnAP269 PI 639240 Processing 10.235 Round 2.0 7.5

Lakeland SnAP200 PI 549978 Processing 31.711 Round 2.7 5.7

Wax 216 SnAP369 PI 550408 wax - dual 31.935 Round 2.4 5.5

DMC 04–01 SnAP087 PI 564075 Processing 36.72 Round 2.8 4.1

Booster SnAP044 NA Processing 10.315 Round 1.7 6.5

Polder SnAP258 PI 603217 Processing 20.545 Round 1.8 5.8

Juliet SnAP186 NA Fresh market 17.465 Craseback 0.6 5.6

Landmark SnAP202 NA Fresh market 36.05 Craseback 1.0 1.0

Isar SnAP180 NA Fresh market 13.685 Round 1.6 0.5

Selecta SnAP294 NA Processing 11.37 Round 0.0 0.0
*Cultivar Trend present in the SnAP does not correspond to the publicly available germplasm collection entry PI 550128.
SnapID, Identification number given in the SnAP. PI no., Plant identification number in the U.S. National Plant Germplasm System. PDperc, Plant density in flumioxazin treated plots as
percentage of non-treated plots. BPperc, Dry biomass per plant in flumioxazin treated plots as percentage of non-treated plots. NA, no information available
TABLE 3 Broad and narrow sense heritability of flumioxazin tolerance
traits in snap bean as measured in a field experiment near Urbana, IL, in
2021 and 2022.

Trait
Broad-

sense (H2)
Narrow-
sense (h2)

95% CI
of h2

PDperc 0.79 0.57 0.51–0.63

BPperc 0.49 0.19 0.13–0.25
PDperc, Plant density in flumioxazin treated plots as percentage of non-treated plots. BPperc,
Dry biomass per plant in flumioxazin treated plots as percentage of non-treated plots.
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(PV) in the joint-year analysis (80.10%). For BPperc, the SNP explained

34.43% of the PV.

3.7.2 Genomic prediction
GAPIT estimated genomic breeding values as well as their

prediction accuracy. The PDperc estimates under the gBLUP

model using the full panel were highly correlated with the

observed 2-year average phenotypic values for PDperc (r = 0.96).

The accuracy of genome prediction was investigated through cross-

validation. The average value of the correlation in 1000 runs was r =

0.79 with a standard deviation of 0.01 for the reference set, and r =

0.52 with a standard deviation of 0.10 for the inference set. For

BPperc, the correlation between the predicted and observed values

was 0.60. The accuracy of the prediction was low, with the 1000 runs

average of r = 0.58 and r = 0.20 for the reference and inference set,

respectively. Cultivars with predicted PDperc values > 40% per

market class are presented in Table 5. Such cultivars are a source of

tolerance alleles for snap bean breeding programs.

3.7.3 Influence of seed weight and allelic status
at the significant genomic interval on
flumioxazin tolerance

The influence of seed weight and allelic status is evident in the

scatter plots of 2-year average PDper by seed weight when the

population is divided by the allelic status at the significant SNP. In

agreement with correlation analysis between the traits’ BLUP, there

is a positive correlation between seed weight and the average of

observed PDperc; however, the strength of the correlation varies

depending on the allelic status of the cultivars at marker

S02_34499796, the SNP marker most significantly associated with

the tolerance. Across the whole panel, the correlation of seed weight
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with PDperc was r = 0.49, while the correlation between the same

variables using only the population of entries with the positive effect

allele was r = 0.64, and the correlation of the entries with the

negative effect allele was r = 0.40 (Figure 3A). The effect of the allelic

status can be visualized in the box plots of all the cultivars with

contrasting alleles. The difference between the means of the two

groups is 23.64 percentage points, which is significant at a ≤ 0.05

(Figure 3B). It is evident from the graph that the combination of

heavier seed (> 40 g per 100-seed) and presenting the favorable

(GG) version of the significant marker is likely to confer

commercially viable tolerance to flumioxazin at the 2X

recommended rate. For the BPperc trait, the correlation with seed

weight was moderate for the set of the cultivars with the positive

effect allele (r = 0.42) and low for the cultivars with the negative

effect allele (r = 0.35) (Figure 3C). The mean difference between the

group of cultivars with the favorable allele and the ones without is

8.13 percentage points (Figure 3D). Although the difference

between the groups is relatively small, it is significant at a ≤ 0.05.

3.7.4 Gene models in the haploblock interval
Genes within the region delimited by the start of haploblock of

markers S02_34465460 and S02_34499796, and the end of

haploblock of marker S02_34628362, were further investigated.

Tolerance to PPO-inhibitors such as flumioxazin can be due to

TSR, in which changes in the PPO enzymes prevent the binding of

the herbicide molecule. Alternatively, NTSR mechanisms confer

tolerance via lower absorption and mobilization of the herbicide,

degradation, sequestration and excretion of the herbicide molecule,

or amelioration of the damage caused by the free radicals. Genes

with homology to genes with validated function in those processes
TABLE 4 Genomic regions associated with plant density percentage (PDperc) and biomass per plant percentage (BPperc) identified under the
MLMM model.

Marker Chr Pos MAF Adj. p-value PV (%)

Joint 2021–2022 analysis

PDperc 2Y transformed

S02_34499796 2 34,499,796 0.22 4.81E-36 80.10

BPperc 2Y transformed

S02_34499796 2 34,499,796 0.22 2.05E-07 34.43

2021 analysis

PDperc 21 transformed

S02_34465460 2 34,465,460 0.21 1.18E-13 55.18

BPperc 21 transformed

S02_34465460 2 34,465,460 0.21 8.04E-07 42.15

2022 analysis

PDperc 22 transformed

S02_34499796 2 34,499,796 0.22 1.51E-31 74.27

BPperc 22 transformed

S02_34628362 2 34,628,362 0.22 8.59E-05 27.73
PV, phenotypic variance explained.
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and present in the haploblock of the associated SNP could be

candidate genes for tolerance to flumioxazin.

The single region detected in the GWAS analysis could suggest

TSR. However, the genes encoding the PPO enzymes in the

P. vulgaris reference genome version 2 are located in Chr01:

33,098,528–33,103,479 bp and Chr07: 18,072,151–18,094,811 bp

for PPO1 and PPO2, respectively. Therefore, TSR is not responsible

for the tolerance observed in the SnAP.

Nineteen gene models are located in the haploblocks for the

significantly associated SNPs (Table 6). The putative functions and
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functional domains of the genes found in the interval were

compared to those in the models for xenobiotic detoxification

and oxidative stress tolerance from Edwards et al. (2011); Cavé-

Radet et al. (2020), and Rigon et al. (2020), to identify genes with

possible roles in the mechanisms of tolerance. In previous work

with another PPO-inhibiting herbicide, sulfentrazone, genes

encoding cytochrome P450 enzymes, possibly involved in

herbicide degradation, and ABC transporters, possibly involved in

xenobiotic sequestration, were found in the intervals (Saballos et al.,

2022). Surprisingly, no genes coding for proteins with homology to
B

C

A

FIGURE 2

Manhattan plots summarizing the results of the genome-wide association analyses for the two-year average of flumioxazin tolerance traits for the
377 cultivars of the Phaseolus vulgaris snap bean association panel grown at Urbana, IL, USA, in 2021 and 2022. (A) Circular Manhattan plots of the
MLMM analyses. Rings from outer boundary to center: Chromosome number, SNP marker density, significance of each marker association with
BPperc trait, significance of each marker association with PDperc trait. The vertical axis shows the -log10 of the p-value of the association. The red
dashed line represents the significance threshold. Red asterisk indicates the position of significant SNP markers. (B) Quantile-quantile plots depicting
the observed (Y-axis) and expected (X-axis) -log10 of the p-value. (C) Graphical representation of the linkage disequilibrium within the overlapping
haploblocks. Significantly associated SNP markers are shaded. Yellow: Detected in year 2022 and joint-years analysis. Grey: Detected in 2021
analysis. Blue: Detected in 2022 analysis.
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proteins directly implicated in herbicide tolerance are located in the

interval, opening the possibility that novel mechanisms of NTSR are

controlling the tolerance to flumioxazin in snap bean. Three

predicted proteins designated as oxidoreductases are present.

Oxidoreductases could be part of the processes that maintain the

cell’s redox status and ameliorate oxidative stress. Three predicted

proteins in the interval contain DNA-binding domains, which

could implicate them in the regulation of transcription of other

genes involved in processes that ultimately result in the snap bean

response to flumioxazin.
3.8 RNA sequence analyses

3.8.1 RNA sequencing
Gene expression was measured by sequencing RNA from

germinating seedlings of 12 snap bean cultivars. Tolerance and

sensitivity were represented each by 6 cultivars and 4 biological

replicates, except for two cultivars that had 3 replicates each. For

each sample, at least 50 million filtered reads were obtained and the
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alignment rate to the P. vulgaris genome was greater than 89%

(Supplementary Table 2).

3.8.2 Differential expression and GO term
enrichment of the flumioxazin
tolerant transcriptome

Differentially expressed genes between the tolerant and sensitive

cultivars were identified with cutoffs of fold-change ≥ 1.5 and adjusted

p-value ≤ 0.1. A total of 1297 genes were identified as differentially

expressed with 720 genes upregulated and 577 genes downregulated

in the tolerant versus sensitive groups of cultivars (Figure 4).

All differentially expressed genes were functionally classified

by Gene Ontology term enrichment analyses (Supplementary

Figures 5, 6). Of the 1297 DEG, 757 genes were associated with

GO terms. Upregulated genes were enriched for GO terms related to

biological processes involved in protein-DNA assembly, cellular

components involved in chromosome organization, and

molecular function in oxidoreductase activity. Down-regulated

genes were enriched in multiple terms, most notably for cellular

components related to cellular and organelle membrane, Golgi
TABLE 5 SNP bean cultivars with predicted PDperc values > 40% across market class and sieve size.

Cultivar name SnapID
Predicted
PDperc

Observed
PDperc SeedWt.

Allelic
status Type Sieve size

Bountiful SnAP045 62.16 70.82 45.81 GG Fresh market Flat

Kentucky Wonder Bush SnAP189 47.76 53.02 46.49 GG Fresh market 4–5

Burpee’s Stringless SnAP052 45.69 49.40 41.94 GG Fresh market 5

Climbing French SnAP075 48.63 45.75 53.36 GG
Fresh
market pole Flat

Magnum SnAP209 40.13 43.22 46.75 GG KY flat Flat

Green Arrow SnAP161 40.52 44.90 25.08 GG NA 3–4

Bush Blue
Lake Supreme SnAP054 40.97 49.30 46.41 GG Processing 4–5

Trend SnAP356 73.27 81.27 62.54 GG Romano Flat

Moncayo SnAP227 68.99 78.72 37.64 GG Romano Flat

Romano 118 SnAP280 63.16 63.33 47.69 GG Romano Flat

Roma II SnAP279 68.46 75.90 47.29 GG Romano Flat

Bush Romano 350 SnAP056 62.35 62.50 45.81 GG Romano Flat

DMC 06–01 SnAP095 65.66 73.55 45.35 GG Romano Flat

Jumbo SnAP187 64.51 63.52 52.64 GG Romano Flat

Romano Purpiat SnAP282 52.08 54.87 37.29 GG Romano Flat

Gina SnAP149 52.70 56.18 48.47 GG Romano Flat

DMC 06–39 SnAP096 61.42 57.43 60.63 GG Romano Flat

Navarro SnAP230 42.68 49.27 41.41 AA Romano Flat

Wax Romano 82264 SnAP370 42.42 44.37 41.72 AA Romano Flat

Bush Romano 71 SnAP058 48.22 38.48 45.50 GG Romano Flat

Roma SnAP278 40.87 43.98 39.31 GG Romano Flat
Predicted and observed values refer to the plant density in flumioxazin treated plots as percentage of non-treated plots. Allelic status refers to SNP marker S02_34499796. NA, no
information available.
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apparatus and vesicles; molecular function of protein binding, and

ligase and helicase activity; and biological processes related to

protein localization.

3.8.3 Effect of genetic variants in gene
coding sequences

We used the sequence information obtained from the RNA

sequencing of tolerant and sensitive cultivars to investigate

sequence variation of the genes expressed during germination in

the GWAS interval and surrounding 1000 kbp area. Of the 23 gene

models located within that region, 20 were expressed in all cultivars.

Phvul.002G183400, Phvul.002G183450, and Phvul.002G184000 did

not produce reads in any sample, agreeing with the data available at

the bean expression atlas (O’Rourke et al., 2014) in which those genes

had very low levels of expression in all tissues evaluated. It is unlikely

those genes play a significant role in flumioxazin tolerance. Of the

expressed genes, 12 had variants that were significantly associated

with the phenotype and that would likely result in moderate to high

impact mutations in the protein products (Table 7).
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3.8.4 Network analysis and GO term enrichment
of phenotype associated modules

We used weighted gene co-expression network analysis

(WGCNA) to identify co-expressed gene modules across 30

samples representing 9 cultivars of snap bean. The cultivars

included in the experiment represented contrasting responses to

flumioxazin within a narrow range of seed weight. In addition, the

cultivars classified as tolerant carry the positive effect allele of the

SNP markers in the GWAS identified region. This region explains

most of the variance; therefore, it is likely that all the tolerant

cultivars share the same tolerance mechanism. Twelve gene

modules were significantly associated with the tolerance status

with an adjusted p-value ≤ 0.001. The correlation between the

average eigengene value of the cultivars for the each of the

significant modules and their 2-year average PDperc values

ranged from r = -0.98 to -0.64 and r =0.99 to 0.65 for the

modules downregulated and upregulated in the tolerant cultivars,

respectively. Modules with |r| > 0.75 were further investigated. Two

of the modules are composed of genes whose expression was
B
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FIGURE 3

Effect of genotype at SNP marker S02_34499796 and seed size on the response to flumioxazin of the cultivars in the snap bean association panel.
(A) Relationship between seed weight and plant density percentage for cultivars with positive effect allele (light grey triangles), and negative effect
allele (dark grey circles). (B) Box-and-Whisker plots showing the distribution of PDperc values in cultivars of the SnAP carrying the positive (light grey
fill) and negative (dark grey fill) effect alleles. Boxes represent median and interquartile range, the mean is depicted by an x. (C) Relationship between
seed weight and biomass per plant percentage for cultivars with positive effect allele (light grey triangles), and negative effect allele (dark grey
circles). (D) Box-and-Whisker plots showing the distribution of BPperc values in cultivars of the SnAP carrying the positive (light grey fill) and negative
(dark grey fill) effect alleles. Boxes represent median and interquartile range, the mean is depicted by an x.
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upregulated in the tolerant samples and two are downregulated

(Supplementary Figure 7; Supplementary Tables 3–6). Only

modules 16 and 18 showed consistent expression patterns in all

samples within cultivars of same tolerance status, with |r| > 0.98.

Upregulated modules included 16 and 59. For module 16, the

correlation coefficient of the average eigengene value of all the

cultivars and their PDperc values was r = 0.99. The correlation

coefficients of those variables within the cultivars with tolerant or

sensitive response were not significant at a ≤ 0.05 (Supplementary

Figure 8A). Module 16 contains 380 gene models, of which 206 have

associated GO terms. Two GO terms are enriched in the module,

both related to oxidoreductase activity. This includes six predicted

cytochrome P450 enzymes whose homologs are involved in

flavonoid, phytoalexin, suberin and wax biosynthesis and are

upregulated in response to biotic and abiotic stresses in other

species. Notably, Phvul.010G013100, coding for a homolog of

maize cytochrome P450 enzyme CYP81A9 is present in this

module. CYP81A9, synonym Nsf1, is responsible for the

detoxification of a wide range of herbicides in maize (Nordby

et al., 2008). The soybean homolog to Phvul.010G013100,

CYP81E22 has been identified as the causative gene for the

sensitivity of soybean to the herbicide bentazon (Kato et al.,

2020). Oxidoreductases, oxygenases and peroxidases are also

present in this module. Enzymes in those classes are thought to

be involved in ROS stress amelioration and maintenance of the
TABLE 6 Gene models located in the chromosome 02 region associated with flumioxazin tolerance and their predicted functions.

Gene Name Gene Start (bp) Gene End (bp) Description GO Description

Phvul.002G183200 34,383,753 34,385,842 NADH dehydrogenase transmembrane subunit Oxidoreductase activity

Phvul.002G183300 34,386,082 34,392,004 Uncharacterized conserved protein

Phvul.002G183400 34,403,190 34,404,179 AGAMOUS-LIKE 82 DNA binding

Phvul.002G183450 34,407,410 34,410,148 NAD+ ADP-ribosyltransferase activity

Phvul.002G183500 34,414,042 34,418,557 Ubiquitin-conjugating enzyme E2

Phvul.002G183600 34,419,868 34,422,386 Protein of unknown function

Phvul.002G183700 34,421,845 34,422,455

Phvul.002G183800 34,426,045 34,427,997 PPR repeat family (PPR_2) Protein binding

Phvul.002G183900 34,428,903 34,439,086 2OG-FE II oxygenase family protein oxidoreductase activity

Phvul.002G184000 34,446,710 34,447,897 Clathrin assembly protein Phospholipid binding

Phvul.002G184100 34,465,644 34,467,876 Unknown

Phvul.002G184200 34,468,080 34,481,795 Solute carrier family 39 (zinc transporter) Membrane

Phvul.002G184300 34,495,833 34,497,370 Flavonone synthase Catalytic activity

Phvul.002G184400 34,503,835 34,506,648 2-oxoglutarate and FE(II)-dependent oxygenase oxidoreductase activity

Phvul.002G184500 34,518,080 34,519,970 Basic pentacysteine1-related protein Nucleic acid binding

Phvul.002G184700 34,552,415 34,555,140 Serine-threonine-protein kinase Nucleic acid binding

Phvul.002G184800 34,581,234 34,585,239 Serine-threonine-protein kinase BRI1-LIKE 2 protein kinase activity

Phvul.002G184900 34,607,469 34,617,874 Transmembrane 9 superfamily protein Integral component of membrane

Phvul.002G185000 34,613,244 34,614,758 Unknown
FIGURE 4

MA-Plot of gene expression comparison between tolerant and
susceptible cultivars. Differentially expressed genes were those
with a fold-change ≥ 1.5 and adjusted p-value ≤ 0.1 and are
represented by red and blue points for those that are upregulated
and downregulated, respectively. Black circles indicate expressed
genes that fall within the GWAS interval. Four genes that are in the
GWAS interval and differentially expressed at the above cutoffs
are labeled.
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redox status of the cell (Dumanović et al., 2021). Gene models

Phvul.006G075800 and Phvul.006G075900 are similar to Medicago

truncatula RIP1. The peroxidase enzyme encoded by this gene

functions on the removal of toxic reductants, and it is induced in

response to colonization by symbiotic Rhizobium bacteria,

pathogen attack and oxidative stress (The UniProt Consortium,

2022; accession number Q40372). Gene model Phvul.002G206900

is annotated as brassinosteroid insensitive 1-associated receptor

kinase 1 (BAK1). In Arabidopsis, BAK1 is a multifunctional protein

involved in promotion of seedling growth (Ladwig et al., 2015) and

control of cell-death. It positively regulates the brassinosteroid

(BR)-dependent plant growth pathway and negatively regulates

the BR- independent cell-death pathway (He et al., 2007). Other

genes in module 16 code for proteins with functions related to the

cell wall, including five genes coding for phenylpropanoid

biosynthesis enzymes likely involved in lignin synthesis, and three

pectinesterase enzymes likely involved in modification of cell walls.

For module 59, the overall correlation coefficient was r = 0.80.

The correlation coefficient between the eigengene value and the

PDperc of the cultivars within response status tolerant was not

significant. The eigengene value and the PDperc had a high

correlation coefficient (r = 0.96) in the cultivars within response
Frontiers in Plant Science 14
status sensitive (Supplementary Figure 8B). This could indicate that

in the absence of the favorable allele, other factor(s) may be

influencing the expression of the genes in the module, providing

increased tolerance. Module 59 contains 61 gene models, of which

42 have associated GO terms. Enriched GO terms for carbohydrate

metabolic processes were detected in module 59. As with module

16, multiple genes with homology to genes coding for enzymes

implicated in cell wall biogenesis and modification are present,

including cellulose and phenylpropanoid biosynthesis.

Down regulated modules included modules 18 and 65. For

module 18, the overall correlation coefficient was r = -0.98. The

correlation coefficients of the cultivars within response status were

not significant (Supplementary Figure 8C). Module18 is composed

of 292 gene models, of which 162 have associated GO terms.

Overrepresented terms include those processes related to

programmed cell death, immune response, pathogenesis, and

lipid modifications. Multiple nucleotide-binding site leucine-rich

repeat (NBS-LRR) apoptotic ATPases are present in this module.

Homologs to these genes in Arabidopsis and soybean have been

identified as possible disease resistance proteins through the

hypersensitive response (Ashfield et al., 2004; Bezerra-Neto et al.,

2020). The hub gene in this module, Phvul.004G154900, is a protein
TABLE 7 Sequence variation associated with tolerance phenotype in genes expressed during germination in 12 snap bean cultivars.

Position Chr02 (bp) Effect Change Adj. p-value Gene model

34,386,501.00 Stop lost c.1780T>C|p.Ter594G extension 1.14E-25 Phvul.002G183300

34,386,534.00 Missense c.1747A>G|p.Asn583Asp 1.14E-25 Phvul.002G183300

34,387,606.00 Missense c.1304C>T|p.Pro435Leu 1.14E-25 Phvul.002G183300

34,389,673.00 Missense c.775C>G|p.Pro259Ala 1.14E-25 Phvul.002G183300

34,391,800.00 Missense c.13C>A|p.His5Asn 4.63E-25 Phvul.002G183300

34,414,612.00 Missense c.23A>T|p.Gln8Leu 1.55E-17 Phvul.002G183500

34,422,373.00 Missense c.179A>G|p.Gln60Arg 3.03E-08 Phvul.002G183700

34,426,282.00 Missense c.7T>G|p.Trp3Gly 1.42E-14 Phvul.002G183800

34,426,288.00 Missense c.13G>A|p.Asp5Asn 5.51E-15 Phvul.002G183800

34,426,901.00 Missense c.626C>G|p.Ala209Gly 2.48E-14 Phvul.002G183800

34,429,049.00 Missense c.961T>C|p.Ser321Pro 5.79E-08 Phvul.002G183900

34,438,914.00 Missense c.124C>G|p.Leu42Val 8.55E-04 Phvul.002G183900

34,481,437.00 Missense c.54G>C|p.Leu18Phe 4.63E-25 Phvul.002G184200

34,481,457.00 Missense c.34T>C|p.Ser12Pro 4.63E-25 Phvul.002G184200

34,496,654.00 Missense c.517T>A|p.Leu173Met 2.47E-12 Phvul.002G184300

34,554,524.00 Missense c.787G>A|p.Val263Ile 4.05E-21 Phvul.002G184700

34,582,695.00 Missense c.2293C>G|p.Leu765Val 1.81E-15 Phvul.002G184800

34,584,048.00 Missense c.940G>A|p.Ala314Thr 2.41E-24 Phvul.002G184800

34,614,063.00 Start lost c.2T>A|p.Met1? 1.92E-11 Phvul.002G185000

34,614,365.00 Missense c.304T>C|p.Ser102Pro 3.01E-11 Phvul.002G185000

34,616,880.00 Missense c.302T>C|p.Val101Ala 2.43E-27 Phvul.002G184900

34,648,219.00 Missense c.1742T>G|p.Phe581Cys 6.94E-24 Phvul.002G185150
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kinase superfamily protein, similar to leaf rust 10 disease-resistance

locus receptor- like protein kinase-like2 of A. thaliana. For module

65, the overall correlation coefficient was r = -0.89. The correlation

coefficients of the cultivars within response status were not

significant (Supplementary Figure 8D). Module 65 is composed of

63 gene models, of which 35 have associated GO terms. Like module

18, module 65 has over-representation of GO terms related to

immune response and programmed cell death. The hub gene,

Phvul.002G323704, is a leucine-rich repeat protein, containing

the NB-ARC domain, a novel signaling motif found in bacteria

and eukaryotes, shared by plant resistance gene products and

regulators of cell death.
3.8.5 Transcriptional regulatory elements in
the flumioxazin tolerance-associated
genomic interval

While the network analysis offers insight into the genes and

biological processes likely involved in flumioxazin tolerance in snap

bean, the relationship between them and the genomic interval

identified by GWAS remains to be explained. One possibility is

the presence of transcription factors (TF) that act in the cis-

regulatory elements of the genes. To investigate this possibility,

we searched for TF in the set of genes in or near the GWAS interval.

The genes were selected by three conditions: expressed in the snap

bean cultivars at germination, located in the associated interval or

100Kb upstream or downstream of it, and presenting sequence

variations of moderate or high effect significantly associated with

the phenotypes (p value< 0.05). Two expressed transcription factors

are located in the interval: Phvul.002G184500, a BBR-BPC family

TF, and Phvul.002G184700, a C2H2 family TF. Only

Phvul.002G184700 presents a sequence variation associated with

the phenotype of the cultivars, and this variation is predicted to

cause a Val263Ile substitution. C2H2 are one of the largest families

of eukaryotic TF. In plants, increasing evidence has indicated that

C2H2-type zinc finger proteins play important roles in abiotic and

biotic stress resistance (Kiełbowicz-Matuk, 2012; Han et al., 2020).
3.8.6 Enriched motifs in upstream sequence of
genes in significantly associated modules

We investigated the molecular mechanisms of transcriptional

regulation of a set of genes belonging to modules associated with the

tolerance status of the tested cultivars. Under the hypothesis of co-

regulation, it is expected that the genes belonging to a module

would share binding sites for the transcription factors regulating

their expression. Module 16, the most significantly associated

module, which was upregulated in the tolerant entries, was

enriched in a motif corresponding to the binding site for

Arabidopsis C2H2 family transcription factor AT1G27730 (Salt

tolerance zinc finger 10), involved in salt tolerance and response to

photooxidative stress (Mittler et al., 2006). The motif is present in

the upstream sequence of 54.33% of the genes in the module,

including Phvul.010G013100 (Table 8). Upregulated Module 59 is

enriched for a motif corresponding to the binding site of

AT1G73730, ethylene-insensitive3-like 3 TF, present in 14.75% of

the gene’s upstream sequences.
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In downregulated modules, module 18 presented enrichment in

the motif corresponding to the binding site of AT5G58620, tandem

zinc finger protein 9, involved in control of defense gene expression

(Maldonado-Bonilla et al., 2013). This motif is present in 34.48% of

the upstream sequences of the genes in the module. No enriched

motifs were found in the upstream sequences of genes in module 65.
5 Discussion

At a rate of 378 g a.i. ha-1, flumioxazin is injurious to many snap

bean cultivars, but not all. On average, flumioxazin decreased plant

density by 84.36% and biomass per plant by 59.49%, relative to the

nontreated control. The extent of injury was greater in a year when

a high rainfall event occurred as seedlings were emerging. Previous

studies in snap bean found crop injury from sulfentrazone, another

soil applied PPO-inhibitor, varies with environmental conditions,

including soil moisture (Saballos et al., 2022). In soybean,

flumioxazin applied preemergence caused injury to seedlings after

a rain event seven days after planting (Priess et al., 2020), but

varietal differences in tolerance were observed. The increased injury

we observed in 2021 compared to 2022 was likely due to the rain

event that occurred eight days after planting.

Currently, flumioxazin is not registered for use in snap bean.

Prior to registering an herbicide for a specialty crop, sufficient

product performance and crop safety data are required (Kunkel

et al., 2008). Our research demonstrates that tolerance to

flumioxazin exists in snap bean; however, this tolerance is limited

to certain cultivars, particularly those in the market class Romano.

Although flumioxazin is unlikely to be a viable herbicide for weed

control in snap bean in the immediate future, investigation of the

genetic basis for this flumioxazin tolerance contributes to the

broader, mechanistic understanding of plant response to

xenobiotics in the environment.

Snap bean cultivar tolerance to flumioxazin is controlled by

genetic factors. In this study, tolerance was expressed the most as

plants germinated and emerged, and to a lesser extent, as seedlings

grew. Flumioxazin tolerance measured as PDperc is more stable

than tolerance measured as BPperc, with greater heritability. In

addition, GWAS analysis was able to detect a genomic location that

is responsible for most of the phenotypic variation for PDperc. This

same region explains only a moderate amount of the variation for

BPperc. This indicates that the variation of BPperc is influenced by

additional genetic factors that were not identified using the strict

thresholds in this analysis. Seed germination and seedling growth

are two different but related physiological phenomena that are likely

controlled by different sets of genes (Bentsink and Koornneef,

2008). The correlations between the traits in control conditions

and under herbicide stress support the idea that the expression of

the tolerance as PD and BP may be controlled by overlapping but

different sets of factors. PDcontrol and PDperc had a low and

negative correlation, indicating the specific factors influencing the

germination of snap bean exposed to flumioxazin are different from

the factors controlling germination under control conditions. In

contrast, BPcontrol and BPperc were positively correlated with each
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other, indicating common factors influencing early biomass

accumulation in both conditions. The genetics of early seedling

growth are thought to be complex and involve processes related to

the initial seed weight, the mobilized fraction of seed reserve, and

the conversion efficiency of mobilized seed reserves to seedling

tissues (Yang andWen, 2017). Therefore, the tolerance measured as

BPperc may be influenced by multiple genes with small effects that

also act on the BP under control conditions, in addition to the

common factor with PDperc. Flumioxazin tolerance, specially

measured as PDperc, is heritable and stable. For five of the most

tolerant snap bean entries, average plant density and biomass per

plant reductions due to exposure to 2X the dose offlumioxazin were

less than 30% and 19%, respectively. The results of this study also

show that highly tolerant entries withstand flumioxazin under

varied environmental conditions. The genetic variability present

in the snap bean panel can be used to further understand how plants

respond to flumioxazin.

In this study, tolerance to flumioxazin was largely influenced by

two factors: seed weight and the presence of the favorable allele of

the significant SNP. Market class “Romano” cultivars tend to have

large seed size above the panel average (38.22g vs 27.30g) and are

enriched for the presence of the favorable allele likely due to the

prevalence of cultivar “Roma” in their pedigrees. Previous research

on dry and snap beans revealed that different market classes and

seed weights respond differently to various herbicides, such as

flumioxazin and sulfentrazone (Urwin et al., 1996; Soltani et al.,

2003, 2004, 2005, 2006; Wilson, 2005; Hekmat et al., 2007; Saballos

et al., 2022). Generally, larger-seeded cultivars showed greater

tolerance in these studies. This correlation between seed weight/

size and herbicide tolerance has been observed in other species and

herbicides as well. Larger seed size results in more robust seedlings,

which have greater ability to withstand stress (Winn, 1988; Pluess

et al., 2005; Ambika et al., 2014). Therefore, the link between seed

size and herbicide tolerance may be due to seedling vigor. Larger

seedlings are more likely to survive injury, which enables them to

metabolize the herbicide and recover. However, seed size alone does

not completely account for flumioxazin tolerance, as seen in the

significant difference in tolerance between the populations of

cultivars carrying the advantageous and disadvantageous allele of

the significantly associated maker. Therefore, the genetic factors

that determine flumioxazin tolerance are likely a combination of

those indirectly influenced by seed size/weight and those that

directly affect the herbicide’s metabolism or reduce its damage.

GWAS analysis identified a single genomic location strongly

associated with tolerance, which explains a large percentage of the

phenotypic variability. The high accuracy of a genomic prediction

model that includes seed weight and SNP effects suggests that

breeding for increase tolerance to flumioxazin is possible.

While the single genomic location associated with the tolerance

could be the result of TSR mechanism, neither of the genes coding

for PPO enzymes in snap bean are in the associated region.

Herbicide tolerance through TSR often results in a fitness penalty

for the plant (Williams et al., 1995; Vila-Aiub et al., 2009). In this

study, tolerance to flumioxazin was positively correlated with

seedling biomass accumulation in the nontreated control,

suggesting that general mechanisms conferring seedling vigor play
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a role in conferring tolerance to flumioxazin. Under the hypothesis

of NTSR, enhanced metabolism would degrade the herbicide before

it becomes lethal to the plant. Increased hormone levels may

increase seedling vigor, allowing more plants to escape herbicide

toxicity. The phytotoxicity of flumioxazin is due to the creation of

singlet oxygen by protoporphyrin IX in the cytoplasm. Biological

processes activating antioxidant enzymes through the salicylic and

jasmonic acid pathways (Ananieva et al., 2002; Kaya and Doganlar,

2016) and elevated amounts of non-enzymatic antioxidants such as

tocopherols, carotenoid, glutathione, and ascorbate (Kusvuran

et al., 2016) have been proposed as the underlying mechanisms of

tolerance to herbicides that create oxidative stress. While we

identified a miss-sense mutation in a gene located in the GWAS

interval predicted to code for an oxidoreductase enzyme, no

homologs of this enzyme have been directly implicated in

herbicide tolerance. It is unlikely that the lack of the activity of

this single enzyme is responsible for the differences in tolerance

observed in this study.

Results of the network analysis support the hypothesis of NTSR

mediated by general stress tolerance. We identified two main

pathways associated with flumioxazin tolerance. Upregulated

modules are dominated by proteins involved in oxidoreduction

processes. ROS homeostasis plays a central role in abiotic stress

tolerance in plants (Nadarajah, 2020; a review). Genes coding for

proteins such as L-ascorbate peroxidase (gene model

Phvul.002G104700), involved in the ascorbate glutathione cycle,

point to the possible roles of the genes in the up-regulated modules

in general stress tolerance. The module also contains a homolog of

genes directly implicated in herbicide response. Phvul.010G013100

codes for a homolog of cytochrome P450 enzymes known to be

responsible for the detoxification of a wide range of herbicides in

maize [CYP81A9 (Nordby et al., 2008)] and the herbicide bentazon

in soybean [CYP81E22 (Kato et al., 2020)]. An intriguing link

between the upregulated and downregulated modules is

Phvul.002G206900, coding for a receptor kinase homolog of

Arabidopsis BAK1. BAK1 negatively regulates the BR-

independent cell-death pathway (He et al., 2007). Double mutants

of bak1 and its paralog bkk1 present spontaneous autoimmune

response, mediated by NBS-LLR proteins (Wu et al., 2020).

Downregulated modules are dominated by NBS–LRR proteins.

LRR proteins recognize specific pathogen-derived products and

mediate a resistance response that includes a type of cell death

known as the hypersensitive response (HR). It is tempting to derive

the conclusion that the higher levels of LRR proteins result in

increased cell death in sensitive plants. However, most LRR proteins

are specific to their elicitor, so it would be a novel process for them

to mediate a systemic cell death in response to flumioxazin. The

involvement of disease resistance genes in the response to

flumioxazin in snap bean needs to be elucidated.

While the network analysis offers insight into the genes and

biological processes likely involved in flumioxazin tolerance, the

relationship between them and the genomic interval identified by

GWAS remains to be explained. The associated modules are

composed of hundreds of genes in multiple chromosomes,

suggesting a common regulatory element orchestrating their

coordinated expression. One possibility is the presence of
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transcriptional factors that act in the cis-regulatory elements of

the genes. To investigate this possibility, we searched for

transcription factors in a set of expressed genes in or near the

GWAS interval. A C2H2-like zinc finger (Phvul.002G184700)

presented sequence variation predicted to create a missense

mutation associated with the tolerance phenotype among 12 snap

bean cultivars. C2H2 are one of the largest families of eukaryotic TF,

thought to play important roles in abiotic and biotic stress

resistance (Kiełbowicz-Matuk, 2012; Han et al., 2020). The

upstream sequences of the set of genes composing one of the

upregulated modules are enriched in a TF binding motif with

high similarity to the canonical binding site for an Arabidopsis

C2H2 family TF. This strengthens the hypothesis that the putative

C2H2 family transcription factor located in the GWAS interval is

controlling the expression of the genes in the tolerance associate

module. Follow up studies will be needed to elucidate the role of

Phvul.002G184700 in the regulation of genes associated with

tolerance to flumioxazin.

In summary, our results suggest that tolerance to flumioxazin in

snap bean is mediated by upregulation of oxidoreductase activities

and downregulation of apoptotic pathway, likely controlled by a

master element located in chromosome 2. The existence of a single

element able to regulate the expression of a large number of genes

involved in stress tolerance is of high interest for basic science and

applied breeding. Stress-resistant traits are often complex with the

involvement of multiple genes. The existence of cultivars with high

breeding value for the tolerance trait in several market classes,

combined with the relative easiness of introgressing a single region

through marker assisted selection or manipulation through gene

editing, can facilitate the creation of flumioxazin tolerant cultivars.

Conceivably, excessive reliance on flumioxazin or related herbicides

for weed control could select for phenotypes of weed species that are

enriched in tolerance mechanisms identified in this research.
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Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012).
An efficient multi-locus mixed-model approach for genome-wide association studies in
structured populations. Nat. Genet. 44, 825–830. doi: 10.1038/ng.2314

Sehgal, D., Oliveira, C., Mathioni, S., Widdison, S., Plumb, W., Campos, B., et al.
(2024). Genomic characterization and dissection of the onset of resistance to acetyl
CoA carboxylase-inhibiting herbicides in a large collection of Digitaria insularis from
Brazil. Front. Genet. 15. doi: 10.3389/fgene.2024.1340852
Frontiers in Plant Science 20
Shaik, R., and Ramakrishna, W. (2013). Genes and co-expression modules common
to drought and bacterial stress responses in Arabidopsis and Rice. PloS One 8, e77261.
doi: 10.1371/journal.pone.0077261

Slaten, M. L., Chan, Y. O., Shrestha, V., Lipka, A. E., and Angelovici, R. (2020).
HAPPI GWAS: Holistic analysis with pre- and post-integration GWAS. Bioinformatics
36, 4655–4657. doi: 10.1093/bioinformatics/btaa589

Soler-Garzón, A., Goldoff, D., Thornton, A., Swisher Grimm, K. D., Hart, J. P., Song,
Q., et al. (2023). A robust SNP-haplotype assay for BCT gene region conferring
resistance to beet curly top virus in common bean (Phaseolus vulgaris L.). Front. Plant
Sci. 14. doi: 10.3389/fpls.2023.1215950

Soltani, N., Bowley, S., and Sikkema, P. H. (2005). Responses of dry beans to
Flumioxazin. Weed Technol. 19, 351–358. doi: 10.1614/WT-04-146R1

Soltani, N., Shropshire, C., Cowan, T., and Sikkema, P. (2003). Tolerance of
cranberry beans (Phaseolus vulgaris) to soil applications of S-metolachlor and
imazethapyr. Can. J. Plant Sci. 83, 645–648. doi: 10.4141/P03-006

Soltani, N., Shropshire, C., Cowan, T., and Sikkema, P. (2004). Tolerance of black
beans (Phaseolus vulgaris) to soil applications of S-metolachlor and imazethapyr.Weed
Technol. 18, 111–118. doi: 10.1614/WT-03-044R

Soltani, N., Shropshire, C., and Sikkema, P. H. (2006). Responses of various market
classes of dry beans (Phaseolus vulgarisL.) to Linuron. Weed Technol. 20, 118–122.
doi: 10.1614/WT-04-070R1.1
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