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Accurate detection and counting of flax plant organs are crucial for obtaining

phenotypic data and are the cornerstone of flax variety selection and

management strategies. In this study, a Flax-YOLOv5 model is proposed for

obtaining flax plant phenotypic data. Based on the solid foundation of the original

YOLOv5x feature extraction network, the network structure was extended to

include the BiFormer module, which seamlessly integrates bi-directional

encoders and converters, enabling it to focus on key features in an adaptive

query manner. As a result, this improves the computational performance and

efficiency of the model. In addition, we introduced the SIoU function to compute

the regression loss, which effectively solves the problem of mismatch between

predicted and actual frames. The flax plants grown in Lanzhou were collected to

produce the training, validation, and test sets, and the detection results on the

validation set showed that the average accuracy (mAP@0.5) was 99.29%. In the

test set, the correlation coefficients (R) of the model’s prediction results with the

manually measured number of flax fruits, plant height, main stem length, and

number of main stem divisions were 99.59%, 99.53%, 99.05%, and 92.82%,

respectively. This study provides a stable and reliable method for the detection

and quantification of flax phenotypic characteristics. It opens up a new technical

way of selecting and breeding good varieties.
KEYWORDS
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1 Introduction

Flax (Linum usitatissimum) is one of the most important oil and fiber crops in the world.

Flax is mainly divided into oil flax, fiber flax, and dual-purpose oil and flax varieties according

to their uses (Zhang et al., 2011). Recently, the results of studies emphasizing the anticancer

properties of substances present in flaxseed and oil have attracted great attention (Praczyk

and Wielgusz, 2021) and are widely cultivated worldwide (Kauser et al., 2024). Selection and

breeding of flax varieties are crucial for progress in flax production (Gong et al., 2020).

Obtaining the phenotypic data required for flax breeding is the basis of breeding; only rapid
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and accurate access to flax plant phenotypic data and the breeding of

flax varieties will have a qualitative leap. The traditional acquisition of

flax phenotypic data is through manually counting the number of flax

fruits and the number of main stems divided into stems, measuring

the plant height and main stem length, and manually recording data;

this traditional method of flax production has made a significant

contribution to the progress of flax production, but with the

advancement of science and technology, these methods have

become more and more inefficient and expensive. As a result, these

traditional methods often fail to meet the stringent requirements of

modern breeding practices. To address these challenges, there is an

urgent need to explore innovative techniques that are more efficient,

cost-effective, and compatible with contemporary sub-breeding

acquisition of data.

Currently, computer vision technology is widely used in

agriculture and has made great progress in the accuracy and

efficiency of extracting plant phenotypic data. Currently, there are

two main detection methods for obtaining plant phenotypic data:

traditional target detection methods and target detection methods

based on deep learning (Zhang et al., 2023). Among them, the

traditional target detection process is more complex, requiring

multiple steps to be completed together and time-consuming,

with higher requirements for images, different algorithms for

different detection objects, and greater difficulty in extracting

different information at the same time; deep learning has a

powerful feature extraction capability, which can make up for the

shortcomings of the traditional methods, and therefore, more and

more researchers are using it for agricultural target detection.

In recent years, many scholars have begun to apply deep

learning in the field of agriculture, such as identifying plants,

pests, and diseases, to improve crop yields. Zhu et al. (2024)

proposed a CBF-YOLO network for the detection of common

soybean pests in complex environments. Pei et al. (2022)

proposed a maize field weed detection framework based on crop

row pretreatment and improved YOLOv4 in UAV images. Li et al.

(2023) proposed an apple leaf disease detection method based on

the improved YOLOv5s model. Bai et al. (2024) proposed an

improved YOLO algorithm to detect the flowers and fruits of

strawberry seedlings. Wang et al. (2024) developed a new deep

learning network, YOLO-DCAM, which effectively facilitates

single-wood detection in complex scenarios. Du et al. (2023)

proposed a method for detecting strawberry fruit planted in fields

under different shade levels. Su et al. (2023) proposed an improved

YOLOv5-SE-BiFPN model, which could more effectively detect

brown spot lesion areas in kidney beans. Zhang et al. (2024)

proposed a multi-task learning method named YOLOMS for

mango recognition and rapid location of major picking points.

YOLO series is a single-stage algorithm that ensures high

precision and faster speed, especially in the GPU environment, and

real-time detection can be realized. Due to its excellent performance,

it has achieved great results in the extraction of plant phenotype data

and the application of detection objects. Guo et al. (2022) proposed a

method to obtain phenotypic parameters of soybean plants based on

Re-YOLOv5 and detection region search algorithms, and the results

showed that the average absolute errors of plant height, stem node

count, and soybean branch count were 2.06 cm, 1.37 cm, and 0.03 cm,
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respectively. The results were better, and a specialized black box for

filming was developed, but this is time-consuming in the face of a

large number offilms to obtain phenotypic data and does not apply to

realistic breeding requirements. Chen et al. (2024) proposed an

efficient, fast, and real-time seedling counting method for cabbages,

which replaced the C2f block in the main stem network of YOLOv8n

with a Swin-conv block and added a ParNet block to both the main

stem and neck portions of the network. ParNet attention modules

were added to the neck section to accurately track cabbage seedlings

in the field and count them using an unmanned aerial vehicle (UAV),

achieving 90.3% mAP50–95, but its recognition progress needs to be

further improved. She et al. (2022) introduced the ECA attention

mechanism into the YOLOv5s model to improve the accuracy of trap

vial detection and counting, but the recognition accuracy needs to be

further improved. Gao et al. (2022) proposed the YOLOv4-tiny

network combined with the channel spatial reliability discriminant

correlation filtering (CSR-DCF) algorithm for training, and the

correlation coefficient R2 between apple number prediction and

manual counting was 0.9875. The counting accuracy of the orchard

video is 91.49%, so the accuracy of fruit recognition in the video needs

to be further improved.

While deep learning has applications in acquiring plant phenotypic

data, it has received limited attention for the accurate detection of

organs in flax plants. In real-world detection scenarios, complex flax

fruit overlap and branching pose significant challenges to fruit

occlusion. This often leads to incomplete detection, as existing

models ignore occluded flax fruits. In addition, less characterization

of flax plant main stem length and main stem branching increases the

complexity of identification. In addition, the shapes of flax fruits, plant

heights, industrial lengths, and main stem meristems varied, increasing

the difficulty of designing a fusion model for identification. To solve

these problems and improve the accuracy of phenotypic information,

this study proposes a pioneering method to recognize phenotypic

organs offlax plants, and this technological breakthrough is expected to

improve the efficiency of breeding and open up a new way for precision

agriculture. The main contributions are summarized as follows.
(1) Establishing a new flax plant dataset.

(2) Deepening the original YOLOv5x network layer and

adding the BiFormer attention mechanism to its network

layer significantly improve the extraction of flax features

and reduce the risk of overfitting (Yang et al., 2023). In

addition, the SIoU loss function replaces the original CIoU

loss function, which effectively solves the problem of

mismatch between the prediction and the actual

bounding box and improves the accuracy of the model

(Qian et al., 2024).

(3) After the model is fully trained, it is loaded onto the test set

for identification and compared with the manual test data

to obtain a good correlation. The model has been embedded

into PC software and put into use.
The rest of the paper is organized as follows. Section 2 discusses

the methods involved in the flax plant dataset, the improved Flax-

ylolv5, the experimental setup, and the evaluation criteria. The

conclusions are explained and discussed in Section 3. The design of
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the improved Flax-YOLOv5 application software is presented in

Section 4. Section 5 summarizes the conclusions of the paper.
2 Materials and methods

2.1 Phenotypic dataset of flax plants

The experimental study used manually collected samples of

mature and intact plants of flax from the Lanzhou Flax Planting

Base of Gansu Provincial Academy of Agricultural Sciences. A total

of 630 flax plants were collected to ensure phenotypic diversity.

These samples were carefully selected to include a range of plant

types, such as single main-stem split-stem flax plants, multiple main

stem split-stem flax plants, flax plants with different numbers of

fruits, and plants with complex branching patterns.

Images were captured using an MV-HS2000GM/C2 industrial

camera. To eliminate potential interference from natural light,

which can lead to exposure problems and complex backgrounds,

the shoot was conducted indoors. A LED light source was used to

provide supplemental lighting during the shoot, while a black light-

absorbing cloth was used as a backdrop to simplify the test

background and minimize interference. Additionally, the

branches of the flax plants were hand-arranged to prevent

excessive fruit overlap. To ensure accurate measurement of plant

height and main stem length, the flax plant was placed horizontally

below the camera lens. The camera height was set to 140 cm, and

the image resolution was set to 5,472 pixels × 3,000 pixels to capture

high-quality images for subsequent analysis.
2.2 Labeling of phenotypic feature datasets

The image features obtained were carefully measured and

annotated for specific phenotypic traits, including the number of

flax fruits, plant height, length of the main stem, and number of

divisions within the main stem. Length measurements were made in

centimeters with accuracy maintained to one decimal place.
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Considering the irregularity of traits such as number of flax fruits,

plant height, length of the main stem, and branching of the main

stem, we aimed to minimize measurement errors. Therefore, all

phenotypic traits of flax plants were labeled to represent the

average of three separate measurements. The labeling process

utilized a dedicated labeling tool to generate the dataset in text

format. The number of fruits on the flax plant, recorded as

complete fruits, was labeled as “flax”. Plant height, which

represents the vertical extension of the plant from root to tip, was

labeled as “height”. The length of the main stem, i.e., the distance

from the root to the first main branch, is labeled as “length”. In

addition, the number of divisions, representing the number of

branches emanating from the prominent main stem, was labeled

“n” (n = 1, 2,…), and the maximum number of main stem divisions

observed in a single plant was six.
2.3 Data expansion

A traditional data enhancement method was used to enrich the

diversity offlax plant image samples, thus enhancing the generalization

ability and robustness of the model. The enhancement process was

carried out in five different ways: downward brightness adjustment,

mirror operation, rotating the image, a combination of mirroring and

brightness reduction, and a combination of mirroring and noise

addition. Figure 1 shows an illustrative example of this data

enhancement process, which demonstrates the effectiveness of these

techniques in generating a diverse and representative sample of images

to be used for model training.
2.4 Original YOLOv5x

As shown in Figure 2, the original network structure of

YOLOv5x is divided into an input network, a backbone network,

a neck network, and a head network. The input integrates mosaic

data enhancement, adaptive anchoring, and adaptive image scaling

of 1.33 depth and 1.25 width. The backbone is a convolutional
A B

D

E F

C

FIGURE 1

Example of data enhancement: (A) original, (B) rotated, (C) mirrored, (D) reduced brightness, (E) mirrored and reduced brightness, and (F) mirrored
and added noise. The image has been cropped for ease of viewing.
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neural network that accumulates fine-grained images and generates

feature maps. It contains CBS, C3, and Spatial Pyramid Pooling

(SPPF) for feature extraction as shown in Figure 3. The YOLOv5x

neck part uses a PANet structure for multi-scale feature fusion. The

neck network combines the feature maps collected by the backbone

network and then passes the integrated feature maps to the head

network, which generates predictions from the anchor box for

target detection (Rahman et al., 2022). The head network outputs

a vector containing the class probability of the target, the target

score, and the location of the bounding box around the target.
2.5 Improved Flax-YOLOv5

To accurately identify the phenotypic organs of flax plants, a

Flax-YOLOv5 network structure model with high detection

accuracy and detection speed was proposed. First, in the Flax-

YOLOv5 network shown in Figure 3, the adaptive image scaling of

Flax-YOLOv5 is 1.0 times depth and 1.0 times width. This adjusts

the depth and width of the network to meet the needs of different

scenes and improve detection accuracy.

Second, the Flax-YOLOv5 backbone network is improved based

on the inheritance of the YOLOv5x backbone network. In the

improvement of Flax-YOLOv5, the BiFormer module is added after
Frontiers in Plant Science 04
the CBS module at layer 10 in the original YOLOv5x necking

network. The CBS module, Upsample, Concat, and C3 modules are

added at the end of the 18th layer, and the CBS, Concat, and C3

layers are added at the end of the 28th layer to improve the model’s

ability to extract target features.

Finally, the improved Flax-YOLOv5 head network in Figure 3

generates feature maps with sizes of 160 × 160, 80 × 80, 40 × 40, and

20 × 20 with different scale target detection; the improved network

model is named Flax-YOLOv5, and its structure is shown in Figure 3.

Flax-YOLOv5 is divided into three parts. The backbone is used

for feature extraction of input Flax plant images, the Neck is used

for feature fusion of acquired feature mappings, and the Head is

used for regression prediction. BiFormer is introduced into the

feature fusion network Neck to improve the feature extraction

capability of the model. Second, the SIoU function is introduced

into the output Head to calculate the regression loss and improve

the convergence ability of the model. Among them, the CBS module

is a basic convolutional neural network module, used to extract and

transmit image features; it is composed of Conv (CONvolution

layer), BN (Batch Normalization layer), and SiLU (activation

function) in three parts. The Conv layer is responsible for the

convolution operation of the input feature graph to extract higher-

level features. The BN layer is used to normalize the data, which

helps accelerate training and improve the performance of the
FIGURE 2

YOLOv5x model structure.
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model. SiLU (Sigmoid-weighted Linear Unit) is an activation

function to increase the non-linearity of the model. The C3_x

module is composed of a series of multiple residual network

structures. The inner Bottleneck module can be programmed to

divide C3_x into two different structures, which are applied in the

Backbone network and Neck network. The outer layer of the C3_x

module connects to the CBS module to form a large residual edge.

These residual components enhance the feature extraction

capability of convolutional networks, and the stacking of residual

blocks solves the difficult balance between network depth and

gradient. C3_3 indicates that the C3 module has three Bottleneck

modules. The SPPF module is an improved version of the Spatial

Pyramid Pooling (SPP) module. SPP module is mainly used for

image recognition and target detection, which can extract and

encode image features at different scales, re-scale input images of

any size to a fixed size, and generate fixed-length feature vectors.

The SPPF module changes the parallel structure of SPP to a serial

structure, which significantly reduces the amount of computation

and makes the speed faster. This improvement not only maintains

the function of SPP but also significantly improves the speed.

2.5.1 BiFormer attention mechanism
In the original image, the flax fruit is a small target with fewer

features in terms of main stem length and number of main stem

branches. For better extraction of effective features, the BiFormermodule

is introduced. BiFormer focuses on a small number of relevant markers

in a query-adaptivemanner without distracting other irrelevantmarkers,

thus providing good performance and high computational efficiency.

BiFormer is used in the first stage using overlapping block embedding,

and in the second stage through the fourth stage, it uses a block merging

module to reduce the input spatial resolution while increasing the

number of channels and then uses consecutive BiFormer blocks for
Frontiers in Plant Science 05
feature transformation. Note that the relative position information is

implicitly encoded at the beginning of each block using 3 × 3 deep

convolution. Subsequently, the (Bi-level routing attention, BRA) module

and the 2-layer Multi-Layer Perceptron (MLP) module with an

expansion rate of e are sequentially applied for cross-positional

relation modeling and position-by-position embedding, with the

BiFormer attention mechanism shown in Figure 4 (Kong et al., 2023).
2.5.2 SIoU
YOLOv5x uses the CIoU loss function, which is a traditional

loss function for target detection that relies on the aggregation of

bounding box regression metrics and does not take into account the

desired orientation mismatch between the real and predicted

frames, resulting in slower convergence and lower efficiency. To

solve this problem, the loss function SIoU is introduced in the

improved model, which considers not only the overlap region,

distance, and orientation but also the angle between the predicted

frame and the true frame. The SIoU formula is defined by Equations

1–5, where IoU is the regular regression loss, D is the distance loss,

W is the shape loss, B denotes the prediction frame, Bgt denotes the

ground truth box, wgt and hgt denote the width and height of the

ground truth box, respectively, and w and ℎ denote the width and

height of the prediction box. b and bgt denote the centroid of the

predicted truth box and the true truth box, respectively, and bgtcx and

bgtcy denote the horizontal and vertical coordinates of the center of

the ground truth box, respectively. bcx and bcy are the corresponding

coordinates of the predicted box. q is an adjustable parameter used

to control how much to focus on the shape cost, which is set to 4 in

this study (Zhang et al., 2024).

LossSIoU = 1 − IoU +
D +W
2

(1)
FIGURE 3

Flax-YOLOv5 model structure.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1404772
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1404772
Iou = B∩Bgt

B∪Bgt , b = υ
(1−IOU)+υ ,

υ = 4
p2 tan−1 wgt

hgt − tan−1 w
h

� �2 (2)

D =ot=x,y(1 − e−grt), rx =
bgtcx − bcx

cw
,

rx =
bgtcy−bcy

ch
, g = 2 − L

(3)

L = 1 − 2   *   sin
2(arcsin (x) −

p
4
, x =

ch
s

= sina (4)

W =ot=w ,h(1 − e−wt )q ,ww =
w − wgtj j

max(w ,wgt)
,wh =

h − hgtj j
max(h, hgt)

(5)
3 Improved model identification
results and analysis

3.1 Experimental process

The specific steps of the experiment are shown in Figure 5.

As shown in Figure 5, data collection was carried out first. Of the

630 images collected, 100 were selected as the test set, and the

remaining 530 images, that is, 3,180 images obtained through five

data enhancement methods, were randomly divided into the training

set and the verification set according to the ratio of 8:2, among which
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2,544 were the training set. The verification set was 636 pieces.

Second, the YOLO series model was trained on the training set.

Finally, the model weight obtained from the above model on the

training set was loaded onto the correspondingmodel and then tested

on the test set. The optimal model was obtained by comparing the

obtained results, and the optimal model was embedded in the

developed software for the convenience of flax breeders.
3.2 Experimental environment

All models completed training on a server configured with CPU:

Intel® Xeon® W-2123 CPU @ 3.60GHz and GPU: RTX 1080Ti with

8-GB video memory. The model training environments were PyTorch

1.10.0, python 3.8, and Cuda 10.2. The training parameters were 300

epochs (Ajayi et al., 2023); batch size was 4; the learning rate was set to

0.01, 0.937 momentum, 0.0005 weight decay, 0.2 IoU, 0.015 hue, 0.7

saturation, 0.4 lightness, 1.0 mosaic, 0.5 scale, and 0.1 translate; image

input resolution was 640 pixels × 640 pixels; other original default

parameters were used. The shooting instrument is shown in Figure 6.
3.3 Evaluation metrics

In this study, in addition to using the target detection algorithm

to evaluate the precision and recall metrics, as well as the metrics for

F1, we evaluated the Mean Average Precision (mAP) performance of
FIGURE 4

BiFormer attention mechanism architecture.
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the model at an Intersection over Union (IoU) threshold of 0.5. In

addition, to assess the accuracy of the phenotypic parameters

extracted from flax plants using the Flax-YOLOv5 model, four

evaluation metrics were used: mean absolute error (MAE),

maximum absolute error (HAE), root mean square error (RMSE),

and correlation coefficient (R). The above evaluation metrics can be

defined by Equations 6–15. tP is true positive (correctly detected), FN

is false negative (not detected), FP is false positive (incorrectly

detected), F1 is the trade-off between precision and recall, mAP is

the average of all the AP values of the different categories, MAE is the

average of all the absolute errors, and HAE is the maximum absolute

error. RMSE is very sensitive to the magnitude error of a set of

measurements and gives a good indication of the precision of the

measurements. r is the degree of correlation between the manually

measured flax plant phenotypic data and the model-predicted data, N

is the number of experimental images, Ti is the manually measured
Frontiers in Plant Science 07
ith plant phenotypic data, and mi is the model-predicted ith plant

phenotypic data. These metrics were chosen to comprehensively

evaluate the phenotypic data extraction ability of the directed

search algorithm (Abyaneh et al., 2011).

Precision =
TP

TP + FP
� 100% (6)

Recall =
TP

TP + FN
� 100% (7)

F =
(a2 + 1)2Recall � Precision

Recall + Pr ecision
(8)

F1 =
2   *Recall � Precision
Recall + Precision

(9)

AP =
Z 1

0
Precision(Recall)dR (10)

mAP = o
N
i=1APi
N

(11)

MAE =
1
No

N

1
mi − Tij j (12)

HAE = Max( mi − Tij j) (13)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

1
(mi − Ti)

2

s
(14)

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −o

N
i=1(mi − Ti)

2

oN
i=1(mi −m)2

s
(15)
FIGURE 6

Shooting instrument. (1) Flax plant carrier table, (2) industrial camera
wide-angle lens, (3) exposure time adjustment, (4) focal length
adjustment, (5) computer data cable connection, (6) height
adjustment, and (7) removable metal tube.
FIGURE 5

Experimental flowchart.
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3.4 Calculate the number of flax fruits,
plant height, length of main stem, and
number of main stem divisions

(1) Number of flax fruits

The number of flax fruits is determined by the number of

“Flax” labels.

(2) Plant height and main stem length

In the same environment, Formulas 16 and 17 define the flax

plant height and main stem length: Htrue is the manually measured

value of plant height and main stem length of the flax plant, Hpi is the

plant height and main stem length of the pixel of the identification

frame, Hrate is the ratio of the actual length of the one-dollar coin to

the length of the pixel, Hrate2 is the actual length of the one-dollar

coin, and Hpi2 is the pixel length of the one-dollar coin.

Htrue = Hpi   *  Hrate (16)

Hrate =
Htrue2

Hpi2
(17)

The actual diameter of the one-dollar coin was measured using

0.02-mm Vernier calipers, and the pixel diameter of the one-dollar

coin was calculated using digital image technology.

(3) Number of main stem divisions

The label “n” (n= 1, 2, …) indicates that the main stem of the

flax plant is n sub-stems, from which the number of sub-stems of

the main stem is calculated.
3.5 Model identification results

The phenotypic organs of 100 flax plant images from the test set

were recognized using the improved Flax-YOLOv5 model. The

results of flax plant phenotypic organ recognition are shown in

Figure 7. In addition, Figure 8A demonstrates the case of some flax

fruits occluding each other, while Figure 8B demonstrates the case

of branches occluding flax fruits, from which it can be seen that the

model proposed in this paper has better recognition results.
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The phenotypic data of 100 flax plants obtained from manual

measurements were thoroughly compared with the phenotypic

prediction data generated by the algorithm proposed in this

study. To assess the reliability and stability of the algorithm in

this paper, a correlation analysis was performed, and the results are

shown in Figure 9.

From Figure 9A, it can be seen that most of the flax plants had

between five and 40 fruits with a strong correlation and a mean

absolute error of 1.37 fruits, although the maximum absolute error

was seven fruits, but this was for very few plants with complex

branching. As can be seen in Figure 9B, the height of most plants

ranged from 50 cm to 75 cm, with a mean absolute error of 0.80 cm.

As can be seen in Figure 9C, the craft length of the majority of plants

was essentially in the range of 30 cm to 50 cm, with a mean absolute

error of 2.24 cm. It is worth noting in Figure 9D that the intensity of

the bubble color in the graphs reflects the number of main stem

divisions of the repeat frequency, the vast majority of the main stem

split number predicted accurately, with an average absolute error of

0.12. In summary, the number of fruits, plant height, main stem

length, and the number of main stem split R of flax plants was

99.59%, 99.53%, 99.05%, and 92.82%, respectively, and the results

were better and in line with the actual production needs.
3.6 Validation set test results and analysis

To evaluate the performance of the Flax-YOLOv5 model, we

performed tests on a validation set. We chose the YOLOv3-tiny

(Redmon and Farhadi, 2018), YOLOv5x (Jocher et al., 2022), YOLOv7-

tiny (Wang et al., 2023), YOLOv7x, YOLOv8n (Lou et al., 2023), and

YOLOv9c (Wang et al., 2024) models for comparison. Changes in

training curves of different models mAP@0.5 are shown in Figure 10. It

can be seen from the figure that mAP@0.5 of the YOLOv3, YOLOv5x,

YOLOv7-tiny, YOLOv8n, and YOLOv9c models is significantly lower

than that of the improved model Flax-YOLOv5. Although mAP@0.5 of

the YOLOv7x model is close to that of the Flax-YOLOv5 model, it does

not exceed it, and mAP@0.5 of the Flax-YOLOv5 model tends to 1 in a

more stable trend with stronger convergence.
FIGURE 7

Results of phenotypic organ recognition in flax plants. The image has been cropped for ease of viewing.
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The experimental results comparing the recognition accuracy of

the improved model Flax-YOLOv5 model with other models are

shown in Table 1. As can be seen from Table 2, F1 and mAP@0.5

values of YOLOv3, YOLOv5x, and YOLOv7-tiny models are lower

than 90%, which indicates that the performance is not ideal and

does not meet the requirements of actual applications. Compared

with the YOLOv7x model, the Flax-YOLOv5 model has an increase

of 0.56 percentage points on F1 and 0.22 percentage points on

mAP@0.5. However, the Flax-YOLOv5 model is 36.22 MB less than

the YOLOv7x model. Although the YOLOv8n and YOLOv9c

models are smaller than the improved model, the F1 evaluation
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shows that the improved model has more advantages. Overall, the

improved Flax-YOLOv5 model exhibits superior performance

compared to the YOLOv3, YOLOv5x, YOLOv7-tiny, YOLOv7x,

YOLOv8n, and YOLOv9c models, providing a balance between

accuracy and model size.
3.7 Test set test results and analysis

In this study, four phenotypic data points for each flax plant sample

corresponding to the images in the dataset were successfully obtained
A B

FIGURE 8

Recognition results of partially obscured fruits. The label “flax” in the picture stands for flax fruit; Numbers are confidence rates. (A) demonstrates the
case of some flax fruits occluding each other, while (B) demonstrates the case of branches occluding flax fruits.
A B

DC

FIGURE 9

Correlation analysis between manual and algorithmic measurements: (A) number of flax fruits, (B) plant height, (C) length of main stem, and (D) number
of main stem divisions.
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FIGURE 10

mAP@0.5 change curves of different models.
TABLE 1 Results predicted by different models in the test set.

Model Number of flax
fruits/pieces

Plant height/cm Main stem length/cm Number of main stem
divisions/pieces

MAE HAE RMSE R MAE HAE RMSE R MAE HAE RMSE R MAE HAE RMSE R

YOLOv3-
tiny

21.16 67.00 25.18 7.69 / / / / / / / / / / / /

YOLOv5x 18.76 61.00 23.00 26.76 2.01 5.84 2.51 97.91 8.27 54.40 14.65 37.41 1.58 4.00 1.92 12.85

YOLOv7-
tiny

9.37 39.00 12.87 89.03
1.40 5.57 1.78

99.04
5.60 51.60 12.21

45.40 1.28 4.00 1.74 19.24

YOLOv7x 5.97 24.00 8.60 94.55 1.28 6.22 1.60 98.94 4.40 42.90 9.99 63.78 0.32 4.00 0.73 70.47

YOLOv8n 19.14 62.00 23.01 53.94 2.01 23.60 4.06 92.76 6.59 51.60 13.65 38.71 0.55 4.00 1.07 48.56

YOLOv9c 19.43 60.00 23.01 72.41 1.21 4.86 1.55 99.15 3.74 44.3 9.25 66.00 0.34 3.00 0.72 74.55

Flax-
YOLOv5

1.37 7.00 2.13 99.59
0.80 2.47 1.05

99.53
0.91 2.24 1.12

99.05 0.12 1.00 0.35 92.82
F
rontiers in P
lant Science
 10
 frontier
MAE, mean absolute error; HAE, maximum absolute error; RMSE, root mean square error; R, correlation coefficient.
TABLE 2 Comparison of recognition results of different models.

Model Precision (%) Recall (%) F1 (%) mAP@0.5 (%) Model size (MB)

YOLOv3-tiny 81.90 75.92 78.80 79.73 17.15

YOLOv5x 88.01 62.68 73.22 87.60 169.22

YOLOv7-tiny 92.61 66.31 77.28 71.26 12.03

YOLOv7x 92.82 98.15 95.41 99.07 138.88

YOLOv8n 94.58 91.31 92.92 95.75 6.14

YOLOv9c 95.51 90.77 93.08 95.35 50.44

Flax-YOLOv5 93.25 98.86 95.97 99.29 102.66
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FIGURE 11

Original image.
A B

D

E F

G

C

FIGURE 12

Comparison of recognition of different models: (A) YOLOv3-tiny, (B) YOLOv5x, (C) YOLOv7-tiny, (D) YOLOv7x, (E) YOLOv8n, (F) YOLOv9c,
and (G) Flax-YOLOv5. The image has been cropped for ease of viewing.
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through rigorous testing of the test set. These phenotypic measurements

were then comparedwithmanualmeasurements for validation. The results

predicted by the different models in the test set are given in Table 1.

The YOLOv3-tiny model showed limited discrimination,

recognizing only the fruits of the flax plant with a correlation

coefficient of only 7.69%, indicating a large margin of error.

Similarly, the identification results of the YOLOv5x model showed

correlation coefficients of less than 50% for the number of flax fruits,

main stem length, and number of main stem meristems, reflecting

considerable inaccuracy.

The YOLOv7-tiny, YOLOv8n, and YOLOv9c models also

performed poorly in the identification of flax fruit number, main

stem length, and main stem branching number. The correlation

coefficient of the YOLOv7x model in identifying the main stem

length and the main stem branching number was less than 50%, and

the identification accuracy was poor, with correlation coefficients of

identifying the main stem length and the main stem branching

number being 63.78% and 70.04%, which were unsatisfactory.

The improved Flax-YOLOv5 model, in contrast, showed better

prediction results, with correlation coefficients of 99.59%, 99.53%,

99.05%, and 92.82% for flax fruit, plant height, main stem length,

and number of main stem branches, respectively. These results were

significantly better than those of the YOLOv3-tiny, YOLOv5x,

YOLOv7-tiny, YOLOv7x, YOLOv8n, and YOLOv9c models.

To verify the effectiveness of the model improvement, we selected

a flax plant with multiple flax fruits and branches from the test set

and tested it using the above model and the Flax-YOLOv5 model; the

original image is shown in Figure 11, and the comparative results of

the recognition by different models are shown in Figure 12.

As can be seen in Figure 12, the YOLOv3-tiny model has limited

recognition ability and can only accurately recognize two flax fruits.

Similarly, the YOLOv7-tiny, YOLOv7x, YOLOv8n, and YOLOv9c

models were defective in recognizing the main stem length of flax

plants, accompanied by a considerable number of missing fruit

detection. The improved Flax-YOLOv5 model, in contrast, has

better recognition ability and can accurately recognize flax fruits,

plant height, main stem length, and number of main stem divisions.
3.8 Ablation experiments and analysis

To verify the effectiveness of the improved model Flax-

YOLOv5, it is necessary to compare and analyze the models

through ablation experiments, and the results of the ablation

experiments are shown in Table 3.

As can be seen in Table 3, the correlation coefficients of flax

fruits with plant height, main stem length, and number of main

stem divisions in Model 2 are higher than the values of Model 1.

This observation emphasizes the advantages of the BiFormer

network in extracting the target features, which improves the

performance of the network in the plant detection task. Model 3

plant height correlation coefficients were significantly higher than

those of Model 2 by 34.09 percentage points, which indicates that

the integration of SIoU significantly enhanced the model fitting

ability, which led to an overall improvement in the accuracy of the

model recognition framework.
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4 Application

To facilitate researchers in selecting flax varieties, it is simple to

obtain key phenotypic indicators such as the number of fruits, plant

height, main stem length, and the number of main stem divisions of

flax plants. Using the improved Flax-YOLOv5 model, the statistical

software for flax plant phenotypic data was elaborately designed and

developed. This software system is based on PyQt5 technology,

which ensures its robustness and scalability. Deployment was

effectively accomplished using the PyInstaller toolkit.

The software has a variety of features that greatly assist in

phenotypic data analysis. Specifically, users can upload photos and

videos and turn on the camera for real-time recognition. By

entering data, the software automatically recognizes each organ of

the flax plant and provides comprehensive statistics on its

phenotypic data. This comprehensive approach ensures accurate

and efficient data collection, which is essential for accurate flax

variety selection and subsequent breeding programs.
5 Conclusion

The acquisition of flax plant phenotype data is the cornerstone

of flax breeding. The traditional method is manual technical testing,

which is not only time-consuming but also expensive. Therefore, we

propose a Flax-YOLOV5 model specifically designed to obtain Flax

phenotypic data. The experimental results show that in the

verification set, mAP@0.5 is 99.29%. In the test set, the

correlation analysis between the predicted value of the model and

the key phenotypic traits (fruit number, plant height, main stem

length, and main stem number) generated 99.59%, 99.53%, 99.05%,

and 92.82%, respectively, and their MAEs were 1.37 pieces, 0.80 cm,

0.91 cm, and 0.12 pieces, respectively, all of which were within the

acceptable range. These results show that our method can

accurately capture the phenotypic data of flax plants, which

provides convenience for the selection of flax varieties. On this

basis, a PC-based flax phenotype data collection platform was

designed and developed. The platform can efficiently collect key

phenotypic traits such as fruit number, plant height, main stem

length, and main stem number. This practical application highlights

the practicability and effectiveness of our proposed method in

supporting flax plant breeding, improves the efficiency of flax

plant phenotype data acquisition, and greatly reduces the cost of

data acquisition, which provides a solid foundation for flax breeding

to become digital. In future research, for plants with complex

branches and a large number of fruits, the recognition rate should

be further improved, the recognition effect of the number of main

stems should be more accurate, and the model parameters should be

reduced. At present, the statistics of the secondary branches of the
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primary branches of flax plants are difficult, and we will further

study and solve the problems.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

KS: Conceptualization, Data curation, Investigation,

Methodology, Software, Validation, Visualization, Writing –

original draft. CL: Formal Analysis, Funding acquisition,

Investigation, Methodology, Project administration, Resources,

Supervision, Writing – review & editing. JH: Methodology,

Resources, Supervision, Writing – review & editing. JZ: Data

curation, Resources, Supervision, Validation, Writing – review &

editing. YQ: Data curation, Resources, Supervision, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was funded by the National Natural Science Foundation of China

(No. 32360437), the Innovation Fund for Higher Education of

Gansu Province (No. 2021A-056), and the Industrial Support

Program for Higher Education Institutions of Gansu Province

(No. 2021CYZC-57).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References

Abyaneh, H. Z., Nia, A. M., Varkeshi, M. B., Marofi, S., and Kisi, O. (2011). Performance

evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration. J. Irrig.
Drain Eng. 137, 280–286. doi: 10.1061/(ASCE)IR.1943-4774.0000298
Ajayi, O. G., Ashi, J., and Guda, B. (2023). Performance evaluation of YOLO v5
model for automatic crop and weed classification on UAV images. Smart Agric.
Technol. 5, 100231. doi: 10.1016/j.atech.2023.100231
frontiersin.org

https://doi.org/10.1061/(ASCE)IR.1943-4774.0000298
https://doi.org/10.1016/j.atech.2023.100231
https://doi.org/10.3389/fpls.2024.1404772
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1404772
Bai, Y., Yu, J., Yang, S., and Ning, J. (2024). An improved YOLO algorithm for
detecting flowers and fruits on strawberry seedlings. Biosyst. Engineering 237, 1–12.
doi: 10.1016/j.biosystemseng.2023.11.008

Chen, X., Liu, T., Han, K., Jin, X., Wang, J., Kong, X., et al. (2024). SP-yolo-based
deep learning method for monitoring cabbage seedling emergence. Eur. J. Agron. 157,
127191. doi: 10.1016/j.eja.2024.127191

Du, X., Cheng, H., Ma, Z., Lu, W., Wang, M., Meng, Z., et al. (2023). DSW-YOLO: A
detection method for ground-planted strawberry fruits under different occlusion levels.
Comput. Electron. Agric. 214, 108304. doi: 10.1016/j.compag.2023.108304

Gao, F., Fang, W., Sun, X., Wu, Z., Zhao, G., Li, G., et al. (2022). A novel apple fruit
detection and counting methodology based on deep learning and trunk tracking in the
modern orchard. Comput. Electron. Agric. 197, 107000. doi: 10.1016/j.compag.2022.107000

Gong, W., Kang, X., Ma, M., Duan, H., and Jiang, G. (2020). Research progress on QTL
mapping of flax. Plant Fiber Sci. China 42, 187–192. doi: 10.3969/j.issn.1671-3532.2020.04.008

Guo, X., Li, J., Zheng, L., Zhang, M., and Wang, M. (2022). Acquiring soybean
phenotypic parameters using Re-YOLOv5 and area search algorithm. Trans. Chin. Soc.
Agric. Engineering 38, 186–194. doi: 10.11975/j.issn.1002-6819.2022.15.020

Jocher, G., Stoken, A., and Borovec, J. (2022). ultralytics/yolov5. Available at: https://
github.com/ultralytics/yolov5.

Kauser, S., Hussain, A., Ashraf, S., Fatima, G., Ambreen, Javaria, S., et al. (2024). Flaxseed
(Linum usitatissimum); phytochemistry, pharmacological characteristics, and functional
food applications. Food Chem. Advances 4, 100573. doi: 10.1016/j.focha.2023.100573

Kong, D., Wang, J., Zhang, Q., Li, J., and Rong, J. (2023). Research on fruit spatial
coordinate positioning by combining improved YOLOv8s and adaptive multi-
resolution model. Agronomy 13 (8), 2122. doi: 10.3390/agronomy13082122

Li, H., Shi, L., Fang, S., and Yin, F. (2023). Real-time detection of apple leaf diseases in
natural scenes based on YOLOv5. Agriculture 13, 878. doi: 10.3390/agriculture13040878

Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., et al. (2023). DC-YOLOv8: small-size object
detection algorithmbased on camera sensor.Electronics 12, 2323. doi: 10.3390/electronics12102323

Pei, H., Sun, Y., Huang, H., Zhang, W., Sheng, J., and Zhang, Z. (2022). Weed
detection in maize fields by UAV images based on crop row preprocessing and
improved YOLOv4. Agriculture 12, 975. doi: 10.3390/agriculture12070975

Praczyk, M., and Wielgusz, K. (2021). Agronomic assessment of fibrous flax and
linseed advanced breeding lines as potential new varieties. Agronomy 11, 1917.
doi: 10.3390/agronomy11101917

Qian, L., Zheng, Y., Cao, J., Ma, Y., Zhang, Y., and Liu, X. (2024). Lightweight ship
target detection algorithm based on improved YOLOv5s. Real-Time Image Proc. 21, 3.
doi: 10.1007/s11554-023-01381-w
Frontiers in Plant Science 14
Rahman, R., Bin Azad, Z., and Bakhtiar Hasan, M. (2022). “Densely-populated
trafficdetection using YOLOv5 and non-maximum suppression ensembling,” in
Proceedingsof the International Conference on Big Data, IoT, and Machine Learning.
Lecture Noteson Data Engineering and Communications Technologies (Singapore:
Springer) 95. doi: 10.1007/978-981-16-6636-0_43

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
1804, 2767. doi: 10.48550/arXiv.1804.02767

She, J., Zhan, W., Hong, S., Min, C., Dong, T., Huang, H., et al. (2022). A method for
automatic real-time detection and counting of fruit fly pests in orchards by trap bottles
via convolutional neural network with attention mechanism added. Ecol. Inf. 70,
101690. doi: 10.1016/j.ecoinf.2022.101690

Su, P., Li, H., Wang, X., Wang, Q., Hao, B., Feng, M., et al. (2023). Improvement of
the YOLOv5 model in the optimization of the brown spot disease recognition
algorithm of kidney bean. Plants 12, 3765. doi: 10.3390/plants12213765

Wang, C., Bochkovskiy, A., and Liao, H. M. (2023). “YOLOv7: trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (CVPR). (Vancouver,
BC, Canada), 7464–7475. doi: 10.48550/arXiv.2207.02696

Wang, C., Yeh, I., and Liao, H. M. (2024). YOLOv9: learning what you want to learn
using programmable gradient information. arXiv 2402.13616 [cs.CV]. doi: 10.48550/
arXiv.2402.13616

Wang, J., Zhang, H., Liu, Y., Zhang, H., and Zheng, D. (2024). Tree-level Chinese fir
detection using UAV RGB imagery and YOLO-DCAM. Remote Sensing 16, 335.
doi: 10.3390/rs16020335

Yang, Z., Feng, H., Ruan, Y., and Weng, X. (2023). Tea tree pest detection
algorithm based on improved yolov7-tiny. Agriculture 13, 1031. doi: 10.3390/
agriculture13051031

Zhang, B., Xia, Y., Wang, R., Wang, Y., Yin, C., Fu, M., et al. (2024). Recognition of
mango and location of picking a point on stem based on a multi-task CNN model
named YOLOMS. Precis. Agric 25, 1454–1476. doi: 10.1007/s11119-024-10119-y

Zhang, M., Zhao, D., Sheng, C., Liu, Z., and Cai, W. (2023). Long-strip target
detection and tracking with autonomous surface vehicle. JMSE 11, 106. doi: 10.3390/
jmse11010106

Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., and Özkan, N. (2011). Characteristics of
flaxseed oil from two different flax plants. Int. J. Food Properties 14, 1286–1296.
doi: 10.1080/10942911003650296

Zhu, L., Li, X., Sun, H., and Han, Y. (2024). Research on CBF-YOLO detection model
for common soybean pests in complex environments. Comput. Electron. Agriculture
216, 108515. doi: 10.1016/j.compag.2023.108515
frontiersin.org

https://doi.org/10.1016/j.biosystemseng.2023.11.008
https://doi.org/10.1016/j.eja.2024.127191
https://doi.org/10.1016/j.compag.2023.108304
https://doi.org/10.1016/j.compag.2022.107000
https://doi.org/10.3969/j.issn.1671-3532.2020.04.008
https://doi.org/10.11975/j.issn.1002-6819.2022.15.020
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.1016/j.focha.2023.100573
https://doi.org/10.3390/agronomy13082122
https://doi.org/10.3390/agriculture13040878
https://doi.org/10.3390/electronics12102323
https://doi.org/10.3390/agriculture12070975
https://doi.org/10.3390/agronomy11101917
https://doi.org/10.1007/s11554-023-01381-w
https://doi.org/10.1007/978-981-16-6636-0_43
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1016/j.ecoinf.2022.101690
https://doi.org/10.3390/plants12213765
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.48550/arXiv.2402.13616
https://doi.org/10.48550/arXiv.2402.13616
https://doi.org/10.3390/rs16020335
https://doi.org/10.3390/agriculture13051031
https://doi.org/10.3390/agriculture13051031
https://doi.org/10.1007/s11119-024-10119-y
https://doi.org/10.3390/jmse11010106
https://doi.org/10.3390/jmse11010106
https://doi.org/10.1080/10942911003650296
https://doi.org/10.1016/j.compag.2023.108515
https://doi.org/10.3389/fpls.2024.1404772
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Phenotypic detection of flax plants based on improved Flax-YOLOv5
	1 Introduction
	2 Materials and methods
	2.1 Phenotypic dataset of flax plants
	2.2 Labeling of phenotypic feature datasets
	2.3 Data expansion
	2.4 Original YOLOv5x
	2.5 Improved Flax-YOLOv5
	2.5.1 BiFormer attention mechanism
	2.5.2 SIoU


	3 Improved model identification results and analysis
	3.1 Experimental process
	3.2 Experimental environment
	3.3 Evaluation metrics
	3.4 Calculate the number of flax fruits, plant height, length of main stem, and number of main stem divisions
	3.5 Model identification results
	3.6 Validation set test results and analysis
	3.7 Test set test results and analysis
	3.8 Ablation experiments and analysis

	4 Application
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


