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The epiphytic bacteria in aquatic ecosystems, inhabiting a unique ecological

niche with significant ecological function, have long been the subject of

attention. Habitat characteristics and plant species are believed to be

important in controlling the assembly of epiphytic bacteria. However, the

underlying principle governing the assembly of the epiphytic bacterial

community on macrophytes is far from clear. In this study, we systematically

compared the diversity and community composition of epiphytic bacteria both in

different habitats and on different species of macrophytes where they were

attached. Results suggested that neither the plant species nor the habitat had a

significant effect on the diversity and community of epiphytic bacteria

independently, indicating that the epiphytic bacterial community composition

was correlated to both geographical distance and individual species of

macrophytes. Furthermore, almost all of the abundant taxa were shared

between different lake regions or macrophyte species, and the most abundant

bacteria belonged to Proteobacteria and Firmicutes. Our results demonstrated

that the competitive lottery model may explain the pattern of epiphytic bacterial

colonization of submerged macrophyte surfaces. This research could provide a

new perspective for exploring plant–microbe interaction in aquatic systems and

new evidence for the lottery model as the mechanism best explaining the

assembly of epiphytic bacteria.
KEYWORDS
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1 Introduction

Submerged macrophytes, providing a linkage between sediment

and overlying water, play an important role in the biological

productivity and stability of the structure and function of aquatic

ecosystems (Horppila and Nurminen, 2003). They are also used as

indicators of the ecological quality of lakes because they have a clear

response to eutrophication (Søndergaard et al., 2010). Furthermore,

submerged macrophytes with a large surface area enhanced the

density of surface-associated organisms, such as algae, invertebrates,

and bacteria (Jeppesen, 1998). In aquatic systems, a large number of

bacteria, which were described as epiphytic bacteria in previous

studies (Andrews and Harris, 2000; Pollard, 2010), inhabit surfaces

of submerged macrophytes. According to previous studies,

epiphytic bacteria exhibited a higher diversity and a distinct

community composition compared to the surrounding

bacterioplankton (He et al., 2014; Levi et al., 2017) and play

important ecological roles in aquatic ecosystems (Ma et al., 2021).

Moreover, epiphytic bacteria may also have complex interactions

with their host plants. These interactions are manifested as

competitive, mutualistic, and commensalistic (Wijewardene

et al., 2022). Despite these findings, epiphytic biofilms are

understudied compared to other periphytic biofilms in freshwater

ecosystems (Wijewardene et al., 2022). Ignoring the understanding

of the role macrophytes play as a substrate for epiphytic

bacteria may underestimate the importance of macrophytes in

freshwater ecosystems.

For decades, the relationship between epibiotic bacterial

community and environmental factors (including host plants,

spatial and geographical heterogeneity) and hypotheses regarding

bacterial community assembly has been studied extensively (Knief

et al., 2010; He et al., 2012; Liao et al., 2016; Levi et al., 2017).

However, due to differences in research emphasis and technical

matters, there were some inconsistencies and even contradictory

conclusions in different scientific reports. Therefore, the

relationship between bacterial composition and host plants/

habitats, and the mechanisms of community assembly are still

poorly understood. There are two theories explaining the

mechanism of bacterial community assembly. One is the

traditional niche-based theory, which emphasizes abiotic and

biotic factors, such as environmental physicochemical properties,

habitat heterogeneity, and species interactions (Ramette and Tiedje,

2007; Dumbrell et al., 2010; Gilbert et al., 2012). The other is the

neutral theory that only considers random processes, such as birth,

death, colonization, immigration, and speciation or dispersal

limitations (Vanwonterghem et al., 2014). Recent investigations

have suggested that both neutral and niche processes play a critical

role in the assembly of entire bacterial communities (Liao et al.,

2016). In the case of epiphytic bacteria, some studies demonstrated

that the composition of the epiphytic bacterial community may be

influenced by the host plant and habitat heterogeneity (Hempel

et al., 2008), while other studies suggested that plant-specific effects

could shape the composition of epiphytic bacteria on aquatic plants

(He et al., 2012; Yu et al., 2022). These references provided valuable

information about the complex interaction between epiphytic

bacteria and their host plants. However, few studies have
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systematically investigated the influence of habitat heterogeneity

and plant–host specificity on the community composition of

epiphytic bacteria. Given that situation, we questioned whether

different host plants or their respective habitat determined the

epiphytic bacterial community composition.

In the study, we collected four species of submerged

macrophytes (Ceratophyllum demersum, Vallisneria natans,

Myriophyllum verticillatum, and Potamogeton crispus) from three

regions of Taihu Lake with different trophic status. This work aimed

to 1) ascertain whether macrophyte species or their habitats

determine epiphytic bacterial community composition, 2)

investigate the mechanisms of assembly for epiphytic bacteria,

and 3) give directions to further research.
2 Materials and methods

2.1 Study sites and sample collection

Taihu Lake, the third largest shallow freshwater lake (2,338 km2,

average depth 1.9 m) in China, is located in the Yangtze River Delta

(Qin et al., 2007). There are strong environmental gradients and

habitat patterns in Taihu Lake (Dong et al., 2017). In this study,

samples were collected from three regions of Taihu Lake: Wuli Lake

(W), Southern Taihu (ST), and Eastern Taihu Lake (ET) (Figure 1).

Wuli Lake, an arm of Meiliang Bay in the north of Taihu Lake, is a

hyper-eutrophic bay located in Wuxi City. The Southern Taihu

Lake features less embayment, little macrophyte coverage, and

relatively good water quality and is classified as mesotrophic

water. Eastern Taihu Lake, a shallow macrophyte-dominated bay

and the area where the dilution water flows out of the lake (Hu et al.,
FIGURE 1

Map of Lake Taihu showing the sampling locations in Southern
Taihu Lake, Eastern Taihu Lake, and Wuli Lake.
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2010), is generally considered the least nutrient-impacted region of

Taihu Lake.

Four macrophytes were collected by hand or hook on July 24–

26, 2016. For each plant species, three to five individual plants at a

similar growth stage were collected randomly in three selected

regions of Taihu Lake and Wuli Lake (Table 1). Plants were

stored individually in sterile plastic bags on ice and transported to

the laboratory. Water parameters such as pH, temperature,

chlorophyll-a, and conductivity were measured using a multi-

parameter water quality analyzer (YSI 6600v2) prior to sample

collection (Supplementary Table S1).
2.2 Detachment of epiphytic biofilm

Epiphytic bacteria attached to submerged macrophytes were

collected following the method previously described in published

literature (Hempel et al., 2009; He et al., 2012). Briefly, 2 g of each

macrophyte with similar growth vigor was selected and rinsed with

sterile deionized water three times to remove large particles

adhering to the plant surface. Then, the macrophytes were

transferred to a sterile 50-mL polyethylene tube containing 40 mL

of sodium pyrophosphate (0.1 mol/L Na4P2O7·10H2O, NaPPi). The

epiphytic bacteria were detached by ultra-sonication for 3 min,

followed by 30 min of shaking (225 r/min) and subsequent 3 min of

ultra-sonication. The suspensions were filtered onto a 0.22-mm
polycarbonate membrane (Millipore, Billerica, MA, USA) to

collect the detached epiphytic bacteria and stored at −20°C for

DNA extraction.
2.3 DNA extraction and PCR amplification

DNA was extracted using the Fast DNA® SPIN Kit for Soil (MP

Biomedicals, Irvine, CA, USA) according to the manufacturer’s

protocol. The extracted DNA samples were stored at −20°C for

further molecular analyses.
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PCR was performed to amplify the variable regions of the

bacterial 16S rRNA gene (V3–V4) with the primers 341 F (5′-
CCTAYGGGRBGCASCAG-3′) and 806R (5′-GGACTACNN

GGGTATCTAAT-3′) with sample-identifying barcodes. The PCR

mixture with a total volume of 50 mL that included 5 mL of 10×

Buffer KOD, 1.5 mM MgSO4, 0.2 mM dNTPs, 0.3 mM each of the

forward and reverse primers, 1.0 U of KOD DNA Polymerase, 100–

300 ng of DNA template, and double-distilled water (ddH2O). The

reaction was performed as follows: initial incubation step at 94°C

for 2 min; followed by 30 cycles of denaturation at 98°C for 10 sec,

annealing at 65°C for 30 sec, and extension at 68°C for 30 sec; and

final extension at 68°C for 5 min. PCR products were further

purified with Agencourt AMPure XP Beads (Beckman Coulter,

Brea, CA, USA), and the concentrations were quantified using the

ABI StepOnePlus Real-Time PCR System (Life Technologies,

Carlsbad, CA, USA). The purified PCR products were combined

at equimolar ratios and submitted to Gene Denovo Biotechnology

Company (Guangzhou, China) for sequencing on the Illumina

HiSeq 2500 PE250 platform.
2.4 Sequence analysis

The raw data were filtered and assembled. Raw data obtained

after sequencing included dirty reads containing adapters or low-

quality bases. Reads with N bases accounting for more than 10% or

low quality (containing less than 80% of bases with Q-value > 20)

were filtered from the raw data. The filtered reads were then

assembled into tags according to the overlap between paired-end

reads. The redundant tags were removed from raw tags to obtain

unique tags using Mothur (v.1.34.0). The obtained unique tags were

then used to calculate the abundance. Operational taxonomic units

(OTUs) (97% identity) were clustered using unique tags by Mothur

(v.1.34.0) (Schloss et al., 2009). Sequences were taxonomically

classified using a 0.5 confidence threshold against the RDP

Database (DeSantis et al . , 2006). Sequence data have

been deposited in the National Center for Biotechnology

Information (NCBI) Sequence Read Archive (SRA) database

under BioProject PRJNA513113 (sample accession numbers

SAMN10696321–SAMN10696330).
2.5 Definition of abundant, rare, and
conditionally rare taxa

Microbial communities are normally composed of a few

abundant and many rare species, and these two subcommunities

may have fundamentally different characteristics and ecological

roles (Logares et al., 2014). In this study, we defined and classified

all OTUs into six categories in accordance with previous studies

(Dai et al., 2016; Xue et al., 2018). Briefly, the OTUs with an

abundance ≥ 1% in all samples were defined as abundant taxa

(ATs); the OTUs with an abundance<0.01% in all samples were

defined as rare taxa (RTs); the OTUs with an abundance between

0.01 and 1% in all samples were defined as moderate taxa (MTs); the

OTUs with an abundance below 1% in all samples and<0.01% in
TABLE 1 Plant species and sampling locations.

Site
description

Plant species Sample code

Eastern Taihu Lake

Myriophyllum verticillatum ET-M

Vallisneria natans ET-V

Potamogeton crispus ET-P

Southern Taihu Lake

Myriophyllum verticillatum ST-M

Vallisneria natans ST-V

Potamogeton crispus ST-P

Ceratophyllum demersum ST-C

Wuli Lake

Myriophyllum verticillatum W-M

Vallisneria natans W-V

Ceratophyllum demersum W-C
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some samples were defined as conditionally rare taxa (CRTs); the

OTUs with abundance ≥0.01% in all samples and ≥1% in some

samples but never rare (<0.01%) were defined as conditionally

abundant taxa (CATs); OTUs with abundance varying from rare

(<0.01%) to abundant (≥1%) were defined as conditionally rare and

abundant taxa (CRATs). In this study, we combined ATs, CATs,

CRATs, and MTs as ATs to perform further analyses.
2.6 Analysis of community diversity

To investigate the diversity of epiphytic bacteria, the a-diversity
(including Chao1, ACE, Simpson, and Shannon indices) was

calculated for each sample (Kemp and Aller, 2004). To assess

sample adequacy, rarefaction curves (3% distance cutoff) were

also constructed. Rarefaction curves and a-diversity were

performed using Mothur (v.1.34.0). One-way analysis of variance

(ANOVA) was performed using SPSS 20.0 (IBM Corp., Armonk,

NY, USA) to test the habitat and host plant effects on epiphytic

bacterial community composition. The Venn diagram was used to

depict the similarities and differences between communities. The

Venn diagram was constructed based on the epiphytic bacteria of

different submerged macrophytes and different habitats.

First, the Bray–Curtis similarity matrix was calculated to

determine the similarity of the epiphytic bacterial community

composition between the samples at the OTU level. The cluster

analysis based on the Bray–Curtis coefficient was used to investigate

the phylogenetic composition differences of microbial communities

among 10 samples. Then, the Bray–Curtis similarity matrix was

calculated based on samples within the same habitat or the same

host plant. The non-metric multidimensional scaling (NMDS)

analysis was employed for detecting possible differences in

epiphytic bacterial community composition among different

habitats and host plants. Analysis of similarities (ANOSIM) was

performed to evaluate the significant difference (p< 0.01) between

groups. Complete separation is indicated by R = 1, whereas R = 0

indicates no separation (Chen et al., 2017). The NMDS analysis and

ANOSIM were performed using the PRIMER v.6.0 package. For

this analysis, the data sets ATs, CRTs, and RTs were used.
2.7 Niche breadth

Studies have shown that the microbial communities of habitat

specialists are more vulnerable to disturbance than those of habitat

generalists (Logares et al., 2013; Liu et al., 2017). In this study, to

measure habitat specialization, the niche breadth was calculated

according to the following formula (Levins, 1968):

Bj =
1

o
N

i=1
P2
ij

where Bj is the niche breadth and Pij is the percentage of the

individuals of species j present in habitat i. The OTUs with mean

relative abundances ≦2 × 10−5 were excluded from the analysis, as

these taxa may appear to be specialized even if they are not. In this
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study, there are three types of lake regions with each type

representing a habitat.

Species with higher and lower values of niche breadth can be

considered generalists and specialists, respectively (Pandit et al.,

2009). Compared with habitat specialists, habitat generalists

exhibited a more even distribution along a broader range of

habitats. Therefore, we classified OTUs as habitat generalists and

specialists according to outlier detection.
2.8 Predicted functional profiles

Given the need to predict the Kyoto Encyclopedia of Genes and

Genomes (KEGG) Orthology (KO) functional profiles of microbial

communities, Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States (PICRUSt) was developed

(Kemp and Aller, 2004). KEGG pathway variability between

different habitats or host plants was compared using NMDS or

ANOSIM, respectively.
3 Result

3.1 Taxonomic composition of epiphytic
bacterial communities

A total of 515,407 high-quality sequence reads were obtained

from all 10 samples and were clustered into 30,435 OTUs based on a

97% similarity level. The sequences that could be annotated to the

family level in all 10 samples ranged from 58.51% to 92.00%;

therefore, “family” was chosen as the best classification level for

the 10 samples (Supplementary Figure S1).

Significant differences in bacterial abundance among the 10

samples were found in accordance with the bacterial distribution at

different taxonomic levels (Figure 2). At the phylum level,

Proteobacteria were the most dominant group in all 10 samples,

which occupied 40.12% (epiphytic bacteria of C. demersum in

Southern Taihu Lake) to 82.35% (epiphytic bacteria of V. natans in

Eastern Taihu Lake). The major phyla were Firmicutes (1.56% to

49.05% in each sample), Bacteroidetes (2.42% to 12.84%),

Actinobacteria (0.23% to 5.62%), Planctomycetes (0.25% to 4.09%),

and Cyanobacteria (0.16% to 23.45%) (Figure 2A). Although the

abundances of phyla were significantly different between samples, the

composition was similar. Furthermore, Alphaproteobacteria,

Betaproteobacteria, and Gammaproteobacteria were the dominant

classes of Proteobacteria occupying more than 97.9% of

Proteobacteria (Figure 2B). At the family level, Bacillaceae and

Aeromonadaceae belonging to Firmicutes and Proteobacteria,

respectively, were dominant in epiphytic bacteria (Figure 2D).
3.2 Epiphytic bacterial diversity

The coverage of the 10 samples ranged from 88.60% to 98.45%,

suggesting that there still may be some microbes remaining

undetermined (Supplementary Table S2). Rarefaction curves of
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the 10 samples did not approach saturation at the 0.03 cutoff level,

indicating that the amount of sequencing data was not enough to

cover all of the sampled species and that a greater bacterial diversity

existed in the samples (Supplementary Figure S2).

The diversity and community richness of epiphytic bacteria

were reflected by the Chao1, ACE, Shannon–Wiener, and Simpson

indices. The average community richness indices (number of OTUs,

ACE, and Chao 1) in Wuli Lake were higher than in Eastern Taihu

Lake and Southern Taihu Lake (Figure 3). The Shannon–Wiener

index ranged from 4.27 to 6.00 (average 4.92) for Eastern Taihu

Lake, 2.85 to 6.42 (average 4.36) for Southern Taihu Lake, and 3.37

to 6.22 (average 5.21) for Wuli Lake (Figure 3). The average

Simpson index in Southern Taihu Lake (0.14) was higher than

that in Wuli Lake (0.10) and Eastern Taihu Lake samples (0.08)

(Figure 3). However, no statistically significant difference (p > 0.05)

was observed in diversity indices, suggesting similar species richness

and equitability between different lake regions. The one-way

ANOVA indicated that neither habitat nor host plant had a

significant effect on the alpha-diversity indices (including OTU

number, Chao 1, ACE, Shannon–Wiener diversity index, and

Simpson diversity index) (Supplementary Table S3).

For the bacterial taxa, the distribution characteristics of the

three categories identified were as follows: i) 50 (0.16%) OTUs with

290,715 (56.40%) sequences were recognized as ATs, ii) 2,932
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(9.63%) OTUs with 175,681 (34.09%) sequences were defined as

CRTs, and iii) as many as 27,453 (90.20%) OTUs with 49,011

(9.51%) sequences were classified as RTs (Supplementary Table S4).
3.3 Variations of epiphytic bacterial
community composition

To estimate the patterns of bacterial compositional dissimilarity

between samples, the cluster analysis based on the Bray–Curtis

coefficient was employed (Supplementary Figure S3). Interestingly,

among component communities, epiphytic bacterial communities

did not group according to host plant or habitat.

In terms of relative abundance, our results revealed that all three

subcommunities (abundance, conditionally rare, and rare taxa) did

not cluster strongly by host plant or habitat, especially the rare

subcommunity (Figure 4A), which was confirmed by the ANOSIM

comparison between epiphytic bacterial subcommunities (Table 2).

In abundant taxa, Wuli Lake showed a striking separation compared

to the other two lake regions, especially Southern Taihu, which

suggested that the abundant bacterial subcommunities were

vulnerable to environmental variations (Figure 4A).

Venn analyses were employed to evaluate the similarity of

diversity and community composition between the epiphytic
B

C D

A

FIGURE 2

Distribution of epiphytic bacteria in different samples at different taxonomic levels. (A) Phylum level, (B) class level, (C) order level, and (D) family
level. “Others” refers to the taxa with maximum abundance<2% in any sample. Sequences that could not be classified into any known group were
assigned as “Unclassified”.
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bacterial communities according to lake regions or macrophyte

species (Figures 4B, C). In the case of the three lake regions, almost

all abundant taxa (48 OTUs out of 50 OTUs) were shared among

habitats, and most of the unique OTUs belonged to either

conditionally rare taxa or rare taxa (Figure 4B). A similar pattern

was displayed for the epiphytic bacterial community composition

according to macrophyte species (Figure 4C).

Microhabitat niche breadth ranged from 1.00 to 2.98

(Figure 5A). The niche breadth of epiphytic bacteria displayed

variability at different host plants (Figure 5A). Mean niche

breadth values of epiphytic bacteria were the highest in the host

plant M. verticillatum (B = 1.45) and V. natans (B = 1.44),

followed by C. demersum (B = 1.25) and P. crispus (B = 1.18).

For all of the host plants, it could be observed that there were

more OTUs identified as habitat specialists than habitat

generalists (Figure 5B).
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3.4 Functional annotation
and categorization

In order to compare functional differences among different

samples, biological functions were predicted and annotated with

KEGG pathways. In total, all the OTUs to 139 KEGG pathways

were assigned. The most highly represented category was

“metabolism pathways”, occupying 66% to 69%, suggesting that

the epibiotic bacteria have strong metabolic activity (Supplementary

Table S6 and Figure 6A). The “Environmental Information

Processing” pathways were also well presented, accounting for

17% to 20% (Supplementary Table S6 and Figure 6A). The

predicted functional distribution was not grouped based on either

the lake regions or the type of macrophytes (Figure 6B), indicating

that neither the habitats nor the host plants could significantly

influence bacterial functional groups, which is confirmed by the
FIGURE 3

Comparison of alpha-diversity of the epiphytic bacterial communities among three different lake regions. The operational taxonomic units (OTUs)
were defined at 97% sequence similarity threshold. The ends of the box represent the 25th and 75th percentiles, the whiskers represent minimum
and maximum range, and the center lines represent the median.
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ANOSIM comparisons between differentially abundant KEGG

pathways (Supplementary Table S5).
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4 Discussion

Many reports have described the diversity and community

composition of epiphytic bacteria on submerged macrophytes.

Most studies focused on comparing the composition of the

epiphytic bacterial community from either different macrophytes

(Ma et al., 2008; He et al., 2012; Gordon-Bradley et al., 2014) or

different habitats (Hempel et al., 2008; Levi et al., 2017). However,

the current understanding of epiphytic biofilm–macrophyte-

specific relationships is far from sufficient. In this study, we

aimed to systematically investigate whether different macrophytes

or their habitats determine epiphytic bacteria assembly, which will

provide clues for understanding the epiphytic biofilm–macrophyte

interactions and their roles in freshwater ecosystems.
4.1 Effects of different habitats on epiphytic
bacterial community

Previous studies have demonstrated that variations in habitats

strongly influenced the composition of bacterial communities
B CA

FIGURE 4

Comparison of beta-diversity of the epiphytic bacterial community among different habitats or host plants. (A) Non-metric multidimensional scaling
(NMDS) ordination of epiphytic bacterial communities based on the Bray–Curtis dissimilarity. (B) Venn diagram showing the shared bacterial
operational taxonomic units (OTUs) between three habitats (48 abundant OTUs, 1,289 conditionally rare OTUs, and 856 rare OTUs). (C) Venn
diagram showing the shared bacterial OTUs between four different types of submerged macrophytes (47 abundant OTUs, 828 conditionally rare
OTUs, and 197 rare OTUs).
TABLE 2 Results of the ANOSIM and the pairwise analyses comparing
epiphytic bacterial communities among different host plants
and habitats.

Groups Abundant taxa Conditionally
rare taxa

Rare taxa

C vs. V 0 0.167 −0.167

C vs. M 0.25 0 0.167

C vs. P 0.5 0 0.25

V vs. M 0.593 0.333 0.111

V vs. P 0 −0.083 −0.25

M vs. P −0.083 −0.333 −0.417

ST vs. W 0.407* 0.259 0.13

ST vs. ET −0.019 0.093 0.093

W vs. ET 0.296 0.296 0
The operational taxonomic units (OTUs) were defined at 97% sequence similarity threshold.
Values show the R-value, and asterisks denote significant differences at the p< 0.05 level.
ANOSIM, analysis of similarities.
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(Hempel et al., 2008; Levi et al., 2017). Physical habitat

characteristics can affect the composition and abundance of

epiphytic bacteria by creating microhabitats (Levi et al., 2017). In

contrast, our results showed that the composition of the epiphytic

bacterial community was not significantly different between

different habitats, and the ANOSIM found no significant intra-

lake heterogeneity in microbial community structure at different

relative abundances (abundant, conditionally rare, and rare taxa)

except for the Wuli Lake region and Southern Taihu lake region in

abundance taxa (Table 2). Cai et al. (2013) obtained similar results

when investigating the epiphytic bacterial community structure of

Potamogeton malaianus Miq. at two lake regions in Taihu Lake. In

our study, all the taxa with different relative abundances did not

display a separation pattern between groups, whereas the taxa

exhibited different responses to the habitats (Figure 4A).

Typically, the abundant taxa occupy a broad niche and are

capable of competitively utilizing a series of limited resources,

thus providing driving mechanisms for specific ecological

processes (Qin et al., 2022; Zhu et al., 2023). Moreover, the

abundant taxa could be more sensitive in response to

environmental filtering during colonization (Zhu et al., 2023). In

this study, Wuli Lake had a higher degree of eutrophication than the

other two lake regions, and the physicochemical properties of lake

water differ significantly; therefore, the abundant taxa of Wuli Lake

showed a striking separation compared to the other two lake

regions. Xian et al. (2018) reported that epiphytic bacteria

exhibited a higher diversity in a lower-nutrient environment,

which was due to the plant status at different nutrient states. In

our experiment, the epibiotic bacteria of macrophytes, which were

collected from the least nutrient-impacted region (Eastern Taihu

Lake), did not always exhibit higher diversity (Supplementary Table

S2 and Figure 3). In brief, the habitats did not have a decisive

influence on epiphytic bacterial community composition.

Furthermore, more habitat specialists than generalists were

found in the epiphytic bacterial community (Figure 5B). Habitat

specialists are predicted to be more vulnerable to disturbance than

habitat generalists and exhibit specific environmental fitness
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(Swihart et al., 2003; Michael et al., 2015). Due to the weak

ecological tolerance capacity, the specialists were easily affected by

environmental disturbance. A recent study showed that habitat

specialists showed stronger distance-decay patterns and weaker

environmental adaptation than habitat generalists and exhibited

higher network complexity and modularity when suffering from

environmental stress (Sun et al., 2024). Therefore, when habitats

change, the resulting microbial community of epiphytic bacteria is

likely to be filled by a series of habitat specialists, which would

change the community composition and function.

The reasons for the highly similar epiphytic bacterial

community composition between different habitats may be due to

the following: i) the epiphytic bacteria not only can absorb nutrients

from water but also can use the organic compounds and nutrients

secreted by the macrophytes, which may reduce the effects of

different habitats on epiphytic bacteria (Cai et al., 2013). ii) The

epiphytic bacterial communities may have relatively strong

resistance to environmental pressure, thus weakening the

environmental fluctuation of the surrounding water (Dong et al.,

2014). iii) The epiphytic bacterial communities are also related to

the growth state and morphology of the host plant (Crump and

Koch, 2008; Lachnit et al., 2011; He et al., 2012).
4.2 Effects of plant species on epiphytic
bacterial community

Several studies indicated that the different physical or

biochemical characteristics of leaves could result in host-specific

communities on different plant species (Lachnit et al., 2011; He

et al., 2014). In our study, we saw a more complex picture. The

ANOSIM suggested that there were no significant differences in

community structure at three relative abundances (abundant,

conditionally rare, and rare taxa) between different host plants

(Table 2). However, epiphytic bacterial communities on C.

demersum from two lake regions (Southern Taihu Lake and Wuli

Lake) showed a similar community composition and appeared to be
BA

FIGURE 5

Habitat specialization of different operational taxonomic units (OTUs) based on niche breadth. (A) Distribution of niche breadth values of epiphytic
bacteria that attached to different host plants. (B) The OTU number of generalists and specialists belonged to different host plants.
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host-specific (Figure 2 and Supplementary Figure S3). Furthermore,

the bacterial diversity and bacterial community structure of the four

submerged macrophytes were not typical and stable as expected

(Supplementary Table S2). For instance, the Shannon diversity

index showed that V. natans had the greatest diversity in Wuli

Lake and the lowest diversity in Southern Taihu Lake.

The epiphytic bacteriaM. verticillatum and V. natans displayed

a wider niche range than the epiphytic bacteria C. demersum and P.

crispus, suggesting that the epiphytic bacteria M. verticillatum and

V. natans were able to occupy a greater range of habitat types

(Figure 5A). Hence, species with broader niche breadth had a higher

probability of dispersal, thereby resulting in widespread or

ubiquitous distribution.

These results indicated that there were sophisticated

relationships between epibiotic bacteria and their host plants. To

be specific, the epiphytic bacteria on C. demersum appear to be host-

specific, while epiphytic bacteria on the other three submerged
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macrophytes were not significantly related to the host plant

(Figure 2 and Supplementary Figure S3). The reason may be that

the epiphytic bacteria occupy a special ecological niche where they

can acquire nutrients from both water body and plant tissues.

Hence, the variations in epiphytic bacterial communities may be

related to macrophyte species, habitat conditions, or a combination

of these factors depending on which factor is overwhelming.
4.3 Variation in functional potential of
epibiotic bacteria

The predicted functional communities were not separated, as

expected, based on habitats or macrophyte species when examining

the functions of the epiphytic bacteria (Figure 6B). These pathways

have been adapted to respond to a wide variety of stimuli.

Theoretically, the physicochemical properties of the water body
B

A

FIGURE 6

(A) Heatmap of differentially abundant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among different samples. KEGG pathways with
obvious increasing or decreasing trends are displayed in red or blue colors, respectively. (B) Non-metric multidimensional scaling (NMDS) analysis
based on the calculated Bray–Curtis dissimilarities between the functional gene family abundances of samples.
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seem to be an essential factor in the functional variation. However,

when contrasting the predicted functional variability of epiphytic

bacteria, a stable functional distribution was found across different

lake regions and macrophyte species (Figure 6A, Supplementary

Tables S5; S6). This is congruent with previous research on a marine

system, where functional categories were found to be evenly

distributed across different zones, while taxonomic compositions

varied markedly between subjects (Sunagawa et al., 2015).

In this study, the community composition of all the samples

exhibited high variability (Figure 3), while the functional categories

displayed a stable distribution (Figure 6). This suggested that

although microbial communities within the same ecosystem may

not be identical, their functions may exhibit a high degree of

similarity, which is known as “functional redundancy” (Louca

et al., 2018; Zhu et al., 2024). These findings were consistent with

the redundancy hypothesis, which assumes that there are more than

one species sharing common biogeochemical attributes within an

ecosystem, thereby conferring ecosystem functions a degree of

resilience to disturbance (Naeem, 1998). Moreover, we also

observed striking differences among the samples even in the same

habitat (Figures 2 and 4A), which could not be explained by the

neutral model. Therefore, we suggested that the “lottery hypothesis”

may be an appropriate model to be able to explain the assembly of

epiphytic bacteria. This hypothesis asserts that species with similar

ecologies will occupy a niche within an ecosystem based on

stochastic recruitment (Brum and Esteves, 2001). Neutral models

of community assembly also work on the assumption of ecological

equivalence. The difference is that the neutral model assumes the

ecological equivalence broadly, while the lottery model makes this

assumption for defined groups of species sharing a particular niche

(Brum and Esteves, 2001). More specifically, in the lottery model,

there is functional redundancy in an ecosystem, and those bacteria

that happen to encounter and occupy the surface of macrophytes

first are those that will subsequently colonize it.
5 Conclusion

Results indicated that the composition of epiphytic bacterial

communities was related to macrophyte species, habitat conditions,

or a combination of these factors depending on which factor is

overwhelming. There are restrictions and limitations with previous

studies that emphasized host specificity or environmental

heterogeneity in epiphytic bacterial community composition. The

assembly strategies of epiphytic bacteria are much more complex

than we expected. We believe that there are three main reasons for

these inconsistencies: limitations of technology, finite set of

samples, and the diversity and complexity of the environment.

Our work provided a new perspective for exploring plant–microbe

interaction in aquatic systems. This research also provided new
Frontiers in Plant Science 10
evidence for the lottery model as the mechanism that best explains

the assembly of epiphytic bacteria.
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