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The Soil Plant Analysis Development (SPAD) is a vital index for evaluating crop

nutritional status and serves as an essential parameter characterizing the

reproductive growth status of winter wheat. Non-destructive and accurate

monitorin3g of winter wheat SPAD plays a crucial role in guiding precise

management of crop nutrition. In recent years, the spectral saturation problem

occurring in the later stage of crop growth has become a major factor restricting

the accuracy of SPAD estimation. Therefore, the purpose of this study is to use

features selection strategy to optimize sensitive remote sensing information,

combined with features fusion strategy to integrate multiple characteristic

features, in order to improve the accuracy of estimating wheat SPAD. This

study conducted field experiments of winter wheat with different varieties and

nitrogen treatments, utilized UAV multispectral sensors to obtain canopy images

of winter wheat during the heading, flowering, and late filling stages, extracted

spectral features and texture features from multispectral images, and employed

features selection strategy (Boruta and Recursive Feature Elimination) to

prioritize sensitive remote sensing features. The features fusion strategy and

the Support Vector Machine Regression algorithm are applied to construct the

SPAD estimation model for winter wheat. The results showed that the spectral

features of NIR band combined with other bands can fully capture the spectral

differences of winter wheat SPAD during the reproductive growth stage, and

texture features of the red and NIR band are more sensitive to SPAD. During the

heading, flowering, and late filling stages, the stability and estimation accuracy of

the SPAD model constructed using both features selection strategy and features

fusion strategy are superior to models using only a single feature strategy or no

strategy. The enhancement of model accuracy by this method becomes more

significant, with the greatest improvement observed during the late filling stage,

with R2 increasing by 0.092-0.202, root mean squared error (RMSE) decreasing
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by 0.076-4.916, and ratio of performance to deviation (RPD) increasing by 0.237-

0.960. In conclusion, this method has excellent application potential in

estimating SPAD during the later stages of crop growth, providing theoretical

basis and technical support for precision nutrient management of field crops.
KEYWORDS
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1 Introduction

As a principal food crop worldwide, wheat provides vital

carbohydrate sustenance to millions of people, holding an

essential position in addressing global food security (Asseng et al.,

2011). The Soil Plant Analysis Development (SPAD) indicator,

which represents the relative chlorophyll content in leaves (Netto

et al., 2005), is intimately connected with crop nutritional status,

serving as a significant index of crop growth and development

(Gitelson et al., 2005; Zhang et al., 2019; Liu et al., 2020).

Consequently, the accurate and efficient acquisition of SPAD

information for winter wheat is of paramount importance for

field management decisions and crop nutrition monitoring. The

conventional approaches for obtaining crop chlorophyll content

primarily rely on destructive field sampling and laborious chemical

analysis in the laboratory. These approaches are not only time-

consuming and labor-intensive but also incur significant costs

(Sampson et al., 2003). Existing research has demonstrated a close

correlation between data obtained from the handheld SPAD-502

chlorophyll meter and the chlorophyll content analyzed chemically

in a laboratory setting (Rigon et al., 2016). Although the SPAD

acquisition method offers more convenience than traditional

chlorophyll measurement techniques and allows for non-

destructive sampling (Uddling et al., 2007), its limitations in

measurement points entail certain labor costs, resulting in small

operational scales, low efficiency, and difficulty in meeting the

demands for large-scale acquisition of crop chlorophyll content

information (Wang J et al., 2021; Wu et al., 2023). Therefore, there

is a pressing need for a method that can rapidly, non-destructively,

and accurately obtain crop SPAD information.

High-throughput phenotyping (HTP) technology has made this

work possible, especially the unmanned aerial vehicle (UAV)

phenotyping platform equipped with high-performance image

sensors (Guo et al., 2021). Its advantages of high spatio-temporal

resolution, flexibility, and easy operation have been widely applied

to crop growth monitoring (Liu J et al., 2022; Yin et al., 2022; Fan

et al., 2023). With the development of sensor technology, RGB

sensors (Vélez et al., 2022), multispectral sensors (Impollonia et al.,

2022), hyperspectral sensors (Zhou X et al., 2023), and lidar

(Jimenez-Berni et al., 2018) have provided substantial data

support for crop phenotyping, intelligent breeding, and more
02
(Jin et al., 2015). Although RGB sensors are cost-effective, the

spectral information they can acquire is limited, and the limited

number of spectral bands often struggle to accurately capture the

complete physiological and biochemical information of crops (Feng

et al., 2022). Hyperspectral sensors and lidar offer high data

accuracy, but due to their high cost, they are not suitable for

widespread application in field crop monitoring (Madec et al.,

2017; Fan et al., 2022). Therefore, the use of a lightweight, cost-

effective UAV equipped with a multispectral sensor to capture

remote sensing information of the winter wheat canopy for SPAD

estimation becomes particularly essential.

Currently, spectral features of UAV imagery (vegetation

indices, bands reflectance) have been extensively utilized in the

field of precision agriculture for estimating crop physiological

parameters (Luo et al., 2022), such as Leaf Area Index (LAI)

(Qiao et al., 2022; Zhou et al., 2022), Above-Ground Biomass

(AGB) (Han et al., 2022; Yue et al., 2023), SPAD (Wang J et al.,

2021;Yang et al., 2021), and nitrogen content (Yang et al., 2019; Xu

et al., 2023). However, under high canopy cover in the later stages of

crop growth, vegetation indices can be affected by spectral

saturation effects (Mutanga and Skidmore, 2004; Yue et al., 2019;

Mutanga et al., 2023). Moreover, during the reproductive growth

stage of crops, the emergence of crop spikes further increases the

spectral mixing effect, reducing the sensitivity of vegetation indices

(Jay et al., 2019; Wang W et al., 2021). It is challenging to establish a

reliable SPAD estimation model using only spectral features during

the reproductive growth stage. Texture features, as remote sensing

information reflecting image grayscale attributes, color, and spatial

structure, can not only characterize differences in canopy image

spatial structure arrangement caused by crop growth and

development (Liu et al., 2022a) but also reflect changes in crop

leaf color due to different treatments such as varieties, fertilizers,

and density (Li R. et al., 2022). Texture features have the potential to

be combined with spectral features (Fu et al., 2021), and features

fusion can reduce the impact of spectral saturation effects to

enhance the accuracy of estimation models (Li et al., 2020).

However, with the increase of features, while improving model

accuracy, there may be information redundancy (Zheng et al.,

2020), increasing data complexity. Therefore, to eliminate this

redundancy, selecting appropriate features is extremely necessary

for optimizing model structure and accuracy.
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Features selection plays a pivotal role in machine learning, as it

directly determines the input features of the prediction model,

influencing its performance and effectiveness. RFE method is

widely used in features selection nowadays (Zhu et al., 2020; Shao

et al., 2022; Yang et al., 2022). This method is based on multiple

rounds of training using a specific algorithm model. It constructs

new feature subsets by removing particular variables and conducts

the next round of training based on the new feature set (Chen et al.,

2021; Rasel et al., 2021). This process is repeated until the model

performs optimally. In recent years, the Boruta features selection

method has quickly gained popularity due to its low operational

cost and speed (Shu et al., 2021; Tatsumi et al., 2021; Shu et al.,

2023). The goal of Boruta is to filter out all feature sets related to the

target parameter. It allows a more comprehensive understanding of

the factors influencing the target parameter, thereby effectively

performing features selection (Kursa and Rudnicki, 2010).

Considering the impact of spectral saturation in the later stages

of crop growth, features selection and features fusion have the

potential to enhance the performance of prediction models.

Identifying the remote sensing features that influence the SPAD

of winter wheat in the later stages of growth and jointly constructing

a high-accuracy SPAD model will be a key focus of future research.

Therefore, this study utilizes a UAV equipped with a multispectral

sensor to capture high-resolution images of the winter wheat

canopy, and employs image processing technology to extract the

spectral and texture features of the wheat, and utilizes two features

selection methods (Boruta and RFE) to explore the potential of

spectral and texture features in predicting SPAD during the later

stages of winter wheat growth. We also develop a winter wheat

SPAD monitoring model that combines features selection and

features fusion strategy. The objectives of this study are: (1) to
Frontiers in Plant Science 03
identify the spectral and texture features sensitive to SPAD during

the reproductive growth stage of winter wheat; (2) to evaluate the

performance of the winter wheat SPAD prediction model under

features selection strategy; and (3) to explore the potential of

combining features selection and features fusion strategy to

estimate SPAD in the later stages of winter wheat growth.
2 Materials and methods

2.1 Field experimental design

The winter wheat experiment took place in Chuzhou City,

located in Anhui Province, China (32°48′52″N,117°46′7″E) from

2020 to 2021 (Figure 1A). This region, positioned in the mid-lower

reaches of the Yangtze River, experiences a subtropical monsoon

climate. It is characterized by a moist weather pattern, distinct four

seasons, an average annual temperature of 15.4°C, and an annual

rainfall between 1000-1100mm. The region records an average of 144

rainy days per year and approximately 210 frost-free days annually.

The field experiment consisted of 36 plots, each measuring

16m² (2×8 m). It involved three winter wheat varieties with stable

high-yield potential (V1: Huaimai 44, V2: Yannong 999, and V3:

Ningmai 13) and four levels of nitrogen fertilizer application (N0-

N3: 0, 100, 200, 300 kg/ha), with each treatment replicated three

times (Figure 1C). The fertilization scheme involved the application

of phosphorus (P=90kg/ha) and potassium (K=135 kg/ha) as base

fertilizers before sowing, with a 6:4 ratio of nitrogen fertilizer

applied pre-sowing and at the jointing stage. The sowing date was

November 7, 2020, with the winter wheat manually strip-sown at a

row spacing of 30 cm. The harvest took place on June 3, 2021, and
A B

C

FIGURE 1

Study area (A). The experiment field was in Chuzhou, Anhui province, China. (B), the unmanned aerial vehicle (UAV) for acquiring low-altitude
remote sensing data and plates that correct 5%, 10%, 20% and 40% reflectivity of calibrate differences and (C) field experimental design.
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other field management measures were based on local high-yield

cultivation practices. Throughout the entire growth stage of the

winter wheat, there were no occurrences of diseases, pests, or weed

hazards, and the field environment was good, with no instances of

drought or waterlogging.
2.2 UAV-based data collection and
pre-processing

The experiment utilized a Phantom 4 Multispectral (P4M) RTK

(DJI Technology Co., Shenzhen, China) UAV to collect multispectral

(MS) data during the wheat heading stage on April 18, 2021, the

flowering stage on April 29, 2021, and the late filling stage onMay 24,

2021. The UAV is equipped with five monochrome sensors, each

with 2.08 million pixels: Blue, Green, Red, Red edge, and NIR, with

center wavelengths of 450 ± 16nm, 560 ± 16nm, 650 ± 16nm, 730 ±

16nm, and 840 ± 26nm, and bandwidths of 20nm, 20nm, 10nm,

10nm, 40nm, respectively. It is also equipped with a real-time

kinematic (RTK) system, which allows for vertical positioning

accuracy of ±1.5 cm and horizontal positioning accuracy of ±1cm,

enabling the P4M to obtain high-precision spectral and texture

information (Oktay and Coban, 2017). Flights were conducted

between 11:00 and 13:00 on clear, windless days with stable solar

radiation intensity. Four radiometric calibration panels with known

reflectance were deployed on the ground for radiometric calibration

during subsequent data processing (Figure 1B). The DJI GS PRO

software (https://www.dji.com/cn/ground-station-pro/) was used to

pre-plan the flight route, relying on the UAV’s autopilot system to

execute the predefined flight plan (Şahin et al., 2022). Each flight

lasted 20 minutes, with a flight altitude of 30 m, a flight speed of 2m/s,

forward and side overlap of 90% and 85% respectively, and an image

resolution of 1600×1300 pixels.

The UAV MS images collected at each growth stage were

imported into the PIX4Dmapper software (version 4.4.12, Pix4D

SA, Prilly, Switzerland) for image stitching. The initial step involved

aligning the images using the feature point matching algorithm.

Subsequently, a dense point cloud and texture mesh were generated

by utilizing both the UAV image data and location information. To

improve data quality, this study carried out radiometric correction

on the MS images using the empirical line method (ELM) and the

image information of ground radiometric calibration panels with

known reflectance (Di Gennaro et al., 2022). A shapefile was

generated using ArcGIS 10.2 (Environmental Systems Research

Institute, Inc, RedLands, CA, USA), and plot areas were

delineated based on the orthoimage of the experimental area.
2.3 SPAD data collection

Field measurements at each stage were conducted prior to the

UAV flights on the same day, with chlorophyll values based on

SPAD determined for winter wheat across the 36 plots. Winter

wheat SPAD was measured using a SPAD-502 chlorophyll meter

(Konica Minolta Optics Inc., Osaka, Japan) (Jiang et al., 2022). For

each plot, three average-growth wheat plants were selected, and
Frontiers in Plant Science 04
SPAD readings were taken at the 1/6, 3/6, and 5/6 length of the flag

leaves. The average of the 9 SPAD values in the sample plot was

used as the actual SPAD measurement in the sample plot. A total of

324 times were collected in each growth stage, and the measured

SPAD data of 36 sample plots were calculated.
2.4 Extraction of features from
UAV imagery

2.4.1 Spectral features extraction
This study used band reflectance and vegetation indices as

spectral features (SF). Vegetation indices are obtained by

calculations or combinations of characteristic bands, providing

robust vegetation information factors and enhancing, to a certain

extent, the expressive ability of remote sensing data (Bai et al.,

2022). The reflectance of the five original bands from the wheat

canopy during the heading, flowering, and late filling stages was

obtained from the MS images for vegetation index calculation. This

study selected a total of 30 widely-used spectral features for

monitoring crop growth and evaluating parameters These features

include five original bands (I), seven with only the visible bands (II),

five with the RE band but without NIR band (III), eight with the

NIR band but without RE band (IV), and five with both the NIR and

RE bands (V) (Table 1).

2.4.2 Texture features extraction
As a common means of characterizing image information,

texture reflects important information such as surface structure

and spatial arrangement in the image without relying on brightness.

It generally uses high-energy narrow peaks in the spectrum to detect

the periodicity of the image (Bharati et al., 2004; Pu and Cheng,

2015). This study uses the Gray Level Co-occurrence Matrices

(GLCM) method to extract the texture information of B, G, R, RE

and NIR bands in winter wheat canopy MS images. GLCM requires

user-defined parameters such as window size and orientation. The

parameters for extracting GLCM textures in this study are as

follows: a window size of 3 pixels by 3 pixels, an extraction

direction set at 45°, and grayscale quantization levels defaulted to

64. The texture information includes Mean (Me), Variance (Va),

Homogeneity (Ho), Contrast (Cn), Dissimilarity (Di), Entropy

(En), Second moment (Se) and Correlation (Cr), a total of eight

indicators (Table 2). In order to obtain more texture information

for feature selection, the maximum value (MAX), minimum value

(MIN), mean value (MEAN) and standard deviation (SD) of the

GLCM index in each sample area were calculated, resulting in a

total of 5(bands) × 8(GLCM indices) × 4(statistical metrics) = 160

texture metrics.
2.5 Features selection strategy and features
fusion strategy

UAV multispectral remote sensing data was analyzed in order

to identify the most effective approach to maximize improvements

in SPAD estimates during later stages of growth (Figure 2). The
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features selection strategy is used to select SF and TF that are

sensitive to SPAD. SPAD prediction model is further constructed to

check the difference between implementing and not implementing

the features selection strategy, different types of feature subsets are

fused in the features fusion strategy to construct SPAD estimation

model together.

2.5.1 Features selection
In this study, two features selection methods were selected as

features selection strategy: Recursive feature elimination (RFE) and

Boruta. The RFE algorithm is a greedy search algorithm that

incrementally selects the optimal features based on the model’s

performance. Initially, RFE requires the selection of a specific
TABLE 1 Types and formulas of spectral features extracted from MS
images based on UAV.

Component Variable Formulation References

The original bands

Blue B –

Green G –

Red R –

Red edge RE –

Near-
infrared

NIR –

With only the
Visible bands

CI (R-B)/R
(Kumar

et al., 2015)

NGBDI (G-B)/(G+B)
(Hunt

et al., 2005)

RBI R/B
(Peña Barragán
et al., 2007)

NPCI (R-B)/(R+B)
(Peñuelas
et al., 1994)

WI (G-B)/(R-G)
(Woebbecke
et al., 1995)

ExB 1.4*B-G
(Mao

et al., 2003)

GBI G/B
(Sellaro

et al., 2010)

With the Red edge
band but without

NIR band

PSRI (R-G)/RE
(Ren

et al., 2017)

LIC3 B/RE
(Lichtenthaler
et al., 1996)

DCabCxc R/G*3*RE
(Poblete

et al., 2020)

GM1 RE/G
(Gitelson and

Merzlyak, 1996)

NDREI (RE-G)/(RE+G)
(Hassan

et al., 2018)

With the NIR band but
without Red edge band

DVI NIR-R
(Richardson

and
Everitt, 1992)

mSR (NIR-B)/(RE-B) (Datt, 1999)

CVI NIR*R/(G*G)
(Datt

et al., 2003)

SIPI (NIR-B)/(NIR-R)
(Hunt

et al., 2011)

GCVI NIR/G-1
(Gitelson

et al., 2003)

ARI3 NIR*(1/G-1/R)
(Gitelson

et al., 2001)

BDVI NIR-B
(de Castro
et al., 2012)

NDVI
(NIR-R)/
(NIR+R)

(Bannari
et al., 1995)

With the NIR band and
Red edge band

NDRE
(NIR-RE)/
(NIR+RE)

(Le Maire
et al., 2008)

(Continued)
TABLE 1 Continued

Component Variable Formulation References

LCI
(NIR-RE)/
(NIR+R)

(Hunt
et al., 2011)

MTCI (NIR-RE)/(RE-R) (Jurgens, 1997)

DATT
(NIR-RE)/
(NIR-R)

(Datt, 1999)

mNDblue (B-RE)/(NIR+B) (Jay et al., 2017)
TABLE 2 Formulas of texture features extracted from MS images based
on GLCM.

Texture
features

Name Formula Description

Me Mean Me = o
N−1

i=0
o
N−1

j=0

i ∗ p(i, j)
The mean value
in the texture

Va Variance Va =o
i
o
j

(i� u)2p(i, j)
the size of the
texture change

Ho Homogeneity Ho =o
i
o
j

1

1 + (i� j)2
p(i, j)

The
homogeneity of
grey level in
the texture

Cn Contrast Cn = o
Ng−1

n=0

n2
o
Ng

i=1
o
Ng

j=1

p(i, j)

∣ i� j ∣ = n

8>><>>:
9>>=>>; The clarity in

the texture

Di Dissimilarity Di = o
Ng−1

n=1

n
o
Ng

i=1
o
Ng

j=1

p(i, j)

∣ i� j ∣ = n

8>><>>:
9>>=>>;

Same as
contrast,

The similarity of
the pixels in
the texture

En Entropy En = −o
i
o
j

p(i, j) log (p(i, j))
The diversity of
the pixels in
the texture

Se
Second
moment

Se =o
i
o
j

p(i, j)f g2
The uniformity
of greyscale in
the texture

Cr Correlation Cr = oioj(i, j)p(i, j) − mimj

sisj

The consistency
in the texture
The parameters ui, uj, si, and sj represent the average and standard deviation of the row and
column sums of the GLCM.
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machine learning model to serve as the estimator, such as linear

regression, support vector machines, and random forests (RF). The

RFE algorithm first uses all features to train the model, calculates

the importance of each feature and sorts it, and uses each feature

subset to train the model, compares the model results obtained from

each subset, and then recalculates the model based on specific

features. Train the model and repeat this process until the optimal

feature combination is selected to maximize model performance

(Kuhn, 2008). Ultimately, RFE yields a subset of features that the

algorithm deems the most representative and significant. By

employing this recursive approach, RFE systematically eliminates

irrelevant or redundant features while retaining the most pertinent

ones, thereby enhancing the model’s generalizability and efficacy.

The essence of the RFE algorithm lies in iteratively training the

model and selecting features to identify an optimal subset, thereby

optimizing the model’s performance and interpretability.

The Boruta algorithm is a wrapper based on the RF algorithm

(Kursa and Rudnicki, 2010). Therefore, Boruta has the advantages

of the random forest algorithm, has low running time cost, and can
Frontiers in Plant Science 06
run results without relying on parameter adjustment. It is an

ensemble method where multiple independent decision trees vote

for classification, classify all trees based on a given attribute and

calculate the importance of all trees, i.e. the Z score, which reflects

the fluctuations in accuracy between trees in the forest. When

Boruta is running, it will create “shadow” attributes obtained by

reshuffling the original attributes, and randomly disrupt the order of

feature parameters. When calculating feature importance, the

feature parameters are divided into three categories, namely Z

score and significant features with a Z score higher than the

“Shadow” attribute are called “Confirmed” (important), features

with a Z score close to the “Shadow” attribute are called “Tentative”

(potentially important), and features with a Z score significantly

lower than the “Shadow” attribute are called “Rejected” (not

important). In previous studies (Bai et al., 2022; Li Z et al., 2022),

“Confirmed+Tentative” was used as the final result of feature

selection, and no actual research was conducted to explore which

feature parameter set performs better in building a model.

Therefore, this study divides the Boruta algorithm screening
FIGURE 2

Flowchart of features selection strategy and features fusion strategy applied in this experimental study.
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results into two categories: “Confirmed” and “Confirmed

+Tentative”, analyzes the impact of the two feature parameter sets

on model construction and compares their accuracy.

In this study, the features screened by the RFE method are

prefixed with R-. The feature parameter sets screened by the Boruta

method are “Confirmed” and “Confirmed+Tentative”, represented

by C- and CT- respectively. For example, the spectral features

screened by the RFE algorithm are prefixed with R-SF means.

2.5.2 Features fusion
Features fusion is a method of building a model by fusing

different types of remote sensing features together (Liu et al., 2022b;

Liu et al., 2023). In this study, the features fusion strategy is mainly

divided into two parts: 1. First, fuse SF and TF, implement the

features selection method to optimize, then build SPAD estimation

models, and compare it with the model built by the fused features

that did not participate in feature selection. 2. Based on the features

selection strategy, the SPAD estimation model is constructed by

fusing the selected feature subsets of different categories, to identify

a SPAD estimation model that delivers optimal performance during

the later stages of wheat growth.
2.6 Model development and
accuracy evaluation

Based on R language version 4.1.3 (R Foundation, Vienna,

Austria), the support vector machine regression (SVR) algorithm

was used to predict winter wheat SPAD. The idea of SVR originated

from the support vector machine. It transforms the input low-

dimensional sample set into a high-dimensional space and finds a

hyperplane that can be closest to all feature sample sets to

implement regression, minimize structural risks, and improve

sample discreteness (Smola and Schölkopf, 2004). In this study,

the SPAD data set of winter wheat in each growth stage was divided

into a calibration set and a validation set. The dataset was randomly

sampled, 2/3 was used for model training (Calibration), and 1/3 was

used to evaluate the performances (Validation) (Table 3). Three

statistical indicators are used to test the machine learning model:

the coefficient of determination (R2), root mean square error

(RMSE), and the ratio of performance to deviation (RPD)

(Bruning et al., 2019). Their calculation formulas are presented as

Equations 1–3.
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R2 = 1 −o
(byi − �y)2

o(yi − �y)2
    (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(byi − yi)
2

n
 

s
   (2)

RPD =
SD

RMSE
     (3)

In the formula, ŷi and yi are the observed values and measured

values of SPAD, �y is the average of SPAD observed values, n is the

sample size, and SD is the standard deviation of reference values.
3 Results

3.1 Analysis of SPAD variation

Figure 3 illustrates the dynamic changes in SPAD for wheat

under different nitrogen treatments, varieties, and growth stages. As

observed in the Figure 3, SPAD exhibits noticeable differences

across various nitrogen gradient treatments, generally trending

upward with increasing nitrogen application, peaking at the N3

level. The performance of SPAD varies across growth stages,

initially showing a slight increase followed by a sharp decrease.

Notably, the SPAD values are highest during the Flowering stage

and lowest in the Late filling stage. Furthermore, no significant

differences in SPAD were found among different wheat varieties,

with the trends being relatively consistent across various periods

and nitrogen treatments.
3.2 The optical features with SF and TF

In this study, 30 spectral features and 160 texture features were

extracted from UAV multispectral images. Not all features are

helpful for wheat SPAD estimation, and redundant features may

affect model accuracy. Optimizing remote sensing features sensitive

to SPAD using features selection strategy (Figure 4). As can be seen

from Figures 5A–C, during the heading stage, three identical feature

sets were selected, encompassing all five types of spectral features. In

the flowering stage, spectral feature types IV and V performed the

most effectively, with C-SF and CT-SF selecting all features from
TABLE 3 Descriptive statistics on SPAD for the calibration and validation sets.

Stage Dataset Number Min Mean Max SD

Heading
Calibration 24 31.59 42.76 55.20 7.76

Validation 12 30.17 44.82 55.31 7.23

Flowering
Calibration 24 34.38 44.62 52.74 6.42

Validation 12 30.30 45.87 56.12 7.63

Late filling
Calibration 24 5.70 20.71 39.47 12.39

Validation 12 6.59 22.50 44.29 12.36
Min, Mean, Max, and SD represent the minimum value, mean value, maximum value, and standard deviation of each dataset.
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types IV and V, while R-SF predominantly chose type IV as the

optimal variable set. In the late filling stage, types IV and V

continued to excel, and the three feature sets showed a high

degree of consistency in favoring spectral feature types IV and V.

The commonality between spectral feature types IV and V is their

composition, which includes participation from the near-

infrared band.

The results of texture features band type selection for the three

stages are shown in Figures 5D–F. During the heading stage, the R,
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RE, and NIR bands showed better texture performance, far

exceeding the B and G bands. During the flowering stage, the

trend of texture feature band types selected by the three methods

was consistent, with the Red and NIR bands showing better

performance. During the late filling stage, the texture feature

band performances were consistent across the three selection

methods, with no significant differences among the five texture

feature band types. The texture performance of the R and NIR

bands was relatively stable, and the number of retained features
FIGURE 4

The optimal number of variables selected by Boruta and RFE features selection methods for different feature sets during different growth stages.
FIGURE 3

SPAD Dynamic Change Line Chart, where the nodes represent the average values of the SPAD.
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after selection was significantly higher than that of other bands,

except during the late filling stage where there was no significant

difference among the five bands.
3.3 Construction and validation of the
SPAD prediction model were carried out
using different strategy

3.3.1 Estimation of SPAD during the late growth
stage of winter wheat using features
selection strategy

In this study, SPAD estimation models were developed for the

heading stage, flowering stage, and late filling stage based on

spectral features and texture features extracted from UAV

multispectral images. For each stage, the original feature set was

included in the model construction process. A total of 24 (4*2*3)

SPAD regression prediction models were built using four feature

sets, two types of features (spectral features and texture features),

and three growth stages (Figure 6).

From the perspective of model accuracy before and after feature

selection, the accuracy of the models constructed using the selected

dataset is generally higher compared to that of the initial dataset,

but there are also some exceptions. For example, during the

flowering stage, the SF dataset (Validation: R2 = 0.805,

RMSE=3.211, RPD=1.998) has higher accuracy than the R-SF, C-

SF, and CT-SF datasets for constructing SPAD estimation models.

The accuracy among the three datasets composed after features

selection varies, and their performance differs in different growth

stages and feature types. For example, during the heading stage, the
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R-TF dataset has lower accuracy (Validation: R2 = 0.800,

RMSE=3.732, RPD=2.080) compared to the C-TF and CT-TF

datasets, while during the flowering stage, the R-TF dataset has

higher accuracy (Validation: R2 = 0.799, RMSE=2.941, RPD=2.181)

than the C-TF and CT-TF datasets. The accuracy of the C- and CT-

datasets selected by the Boruta algorithm is not consistently higher

or lower.

3.3.2 Estimation of SPAD during the late growth
stage of winter wheat using features
fusion strategy

SPAD estimation models were established for three growth

stages based on spectral and texture features extracted from UAV

multispectral images using a features fusion strategy, followed by

feature selection. The original feature set was included in model

construction at each stage, and a total of 12 (4*3) SPAD regression

prediction models were constructed using four feature sets, one

feature type (spectral and texture feature fusion), and three

growth stages.

As shown in Figure 7, under this feature strategy, the SPAD

estimation model for winter wheat canopy at the heading stage (R-

SFTF) constructed using the RFE features selection method

combined with the SFTF dataset achieved the highest level of

accuracy. The performance indicators of the model were as follows:

Validation: R2 = 0.861, RMSE=3.604, RPD=2.154. The SPAD

estimation model for winter wheat at the flowering stage (C-SFTF)

constructed using the Boruta features selection method combined

with the SFTF dataset had the best accuracy, with specific

performance indicators of Validation: R2 = 0.740, RMSE=3.256,

RPD=1.971. The SPAD estimation model for winter wheat at the
A B

D E F

C

FIGURE 5

The radar chart of features selection for the three growth stages. (A–C) spectral features and (D–F) texture features.
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late filling stage (R-SFTF) constructed using the RFE features

selection method combined with the SFTF dataset had the best

performance, with Validation: R2 = 0.761, RMSE=6.250, RPD=1.983.

On the other hand, the features fusion strategy was executed to

establish SPAD estimation models for the heading stage, flowering

stage, and late filling stage. For each stage, 27 SPAD prediction

models (9*3) were constructed using 9 (3*3) feature sets, 1 feature

type (features fusion set), and 3 growth stages. Additionally, 30

regression models were created by adding the unfiltered SFTF

feature set as a comparison at each stage (Figure 8).
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As shown in Figure 8, under this strategy, during the heading stage,

the R-SF, C-SF, and CT-SF feature sets were the same. Therefore, there

were three optimal estimation models that fused the R-TF data with

these feature sets: R-SF–R-TF, C-SF–R-TF, and CT-SF–R-TF. The

performance indicators of these models are as follows: Validation: R2 =

0.857, RMSE=3.134, RPD=2.477. During the flowering stage, the best

accuracy for canopy SPAD estimation in winter wheat was achieved by

the fusion model (R-SF–R-TF) constructed using the RFE features

selection method combined with the SF and TF datasets. The specific

performance indicators are as follows: Validation: R2 = 0.807,
FIGURE 7

SVR models for SPAD estimation based on different fusion datasets at three growth stages.
FIGURE 6

The SVR models for estimating SPAD based on different datasets in three growth stages.
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RMSE=2.850, RPD=2.251. For the late filling stage, the best

performance was observed in the fusion model (C-SF–CT-TF)

constructed by combining the SF and TF datasets using the Boruta

features selection method. The performance indicators for this model

are as follows: Validation: R2 = 0.809, RMSE=5.878, RPD=2.108.
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To further analyze the accuracy of the SPAD estimation models,

From the Figure 9, it can be observed that the optimal monitoring

models for the later growth stages of winter wheat were all SPAD

estimation models constructed using a dual-strategy. At each stage,

the data points are clustered closely around the 1:1 line,
A

B

FIGURE 8

The SVR regression models constructed using the fusion dataset of selected spectral and texture features. C-, CT- and R- represent the feature set
selected by the Boruta algorithm “Confirmed”, Boruta algorithm “Confirmed+Tentative” and RFE algorithm. SF represents the spectral features, TF
represents the texture features. A represents the first five fusion treatments, which include SFTF, C-SF–C-TF, C-SF–CT-TF, C-SF–R-TF, and CT-SF–
C-TF. B encompasses the latter five fusion treatments, consisting of CT-SF–CT-TF, CT-SF–R-TF, R-SF–C-TF, R-SF–CT-TF, and R-SF–R-TF.
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demonstrating strong agreement between the model’s predicted

values and the field-measured values, with minimal errors. These

results indicate the models’ capability to accurately estimate the

SPAD in winter wheat.
4 Discussion

4.1 The main spectral and texture features
that affect the SPAD during the later
growth stages of winter wheat

Wheat exhibits significant SPAD variation during the heading,

flowering, and late filling stages, with a close relationship between

SPAD and nitrogen treatment. Specifically, wheat SPAD exhibits a

gradual upward trend with increased field nitrogen gradient

treatments. This is because nitrogen is one of the essential

nutrients for plant growth and development (Wang W et al.,

2021) and a crucial component of chloroplasts in leaves. SPAD,

as a measure of relative chlorophyll content in leaves, is inevitably

closely related to nitrogen. During the heading and flowering stages,

wheat plants absorb nitrogen from the soil through their roots. This

nitrogen is then translocated to various parts of the plant, including

the leaves (El-Hendawy et al., 2017). In contrast to the heading and

flowering stages, SPAD in wheat drops sharply during the late filling

stage. This may be due to nitrogen translocation within the plant at

this time. During the filling stage, nitrogen from the leaves gradually

moves into the grains, a process accompanied by a decline in

photosynthetic capacity and senescence of the leaves (Bowman

et al., 2015). Leaves begin to turn yellow, and the chlorophyll

content decreases sharply, leading to lower SPAD values.

Spectral features have been verified to be closely associated with

crop agronomic traits and are considered important indicators for

estimating crop phenotypic information (Duan et al., 2019). It is

well known that the sensitivity of spectral data to vegetation

decreases during the later growth stages of crops (Zhu et al.,

2023). This can be attributed to the canopy closure phenomenon

and the complex spectral mixing and canopy structure effects that

affect the sensitivity of spectral data to vegetation (Li R et al., 2022).

Additionally, the canopy information generated by the spike

emergence further exacerbates this effect (Wang et al., 2022).
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In this study, it was found that the NIR spectral bands combined

with other spectral bands during the later growth stages of crops

were the most frequently selected spectral features after optimal

treatment (Figures 5, 10). This finding is consistent with the

conclusion reached by Yin et al. (2023), that the sensitive spectral

features for estimating SPAD in winter wheat are combinations of

near-infrared and other bands using three features selection

methods. This may be related to the sensitivity of the NIR bands

to the growth status of crops. As the growth stage progresses,

nitrogen in winter wheat leaves gradually transfers to the spike

organs, the leaves wilt, and the appearance of wheat plants changes,

leading to a sharp change in reflectance in the near-infrared bands.

Zheng et al. (2018) found that the near-infrared spectral

information was most important when estimating leaf nitrogen

content (LNC) using mean squared error (MSE) to evaluate variable

importance. LNC is strongly correlated with SPAD, and the results

of this study are similar to their conclusion, indicating the great

potential of near-infrared spectral data for estimating SPAD during

the later growth stages of winter wheat.

In this study, the texture features of the red and near-infrared

bands maintained a high sensitivity to SPAD information during

the reproductive growth stage of wheat (Figures 5, 11). This is

consistent with the conclusion reached by Bai et al. (2022), that the

texture features of the red band can better predict soybean yield

compared to the blue and green bands, and with the conclusion

reached by Lu et al. (2021), that extracted texture features from the

near-infrared band obtained by multispectral sensors are more

effective in predicting potassium content in rice plants than other

bands. This may be because the texture features of the red and near-

infrared bands can better describe the spatial distribution changes

of the crop canopy, providing valuable information for estimating

crop phenotypes. It also demonstrates the feasibility of using UAV

equipped with RGB sensors (including the red band) or

multispectral sensors (including the red and near-infrared bands)

to monitor crop phenotypic information using texture features.

Furthermore, previous studies that used texture features to

construct crop phenotyping models mostly considered the

relationship between the mean (MEAN) of texture feature indices

and crop phenotypes (Fu et al., 2021; Liu et al., 2022a; Luo et al.,

2022; Zhou et al., 2022), while rarely exploring other statistical

indices. In this study, further analysis of statistical indices of texture
FIGURE 9

Scatter plots of the optimal SPAD estimation models.
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features (Figures 11, 12) extracted four different statistical indices

based on GLCM features for each sample area: MEAN, SD, MAX,

and MIN. The commonly used MEAN feature consistently

maintained a leading position among the four statistical indices
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(Figure 12), but its importance gradually decreased as the growth

stage progressed (Figure 11). The changing trend of importance for

other indices was opposite to MEAN. From the heading stage to the

late filling stage, their importance gradually increased and reached a
FIGURE 11

The importance of texture features selected by different features selection methods. The Boruta and RFE algorithms display the top 8 texture
features in terms of importance. The * symbol indicates that the texture features belongs to the red and NIR bands.
FIGURE 10

The importance of spectral features selected by different features selection methods. The Boruta algorithm displays the top 8 spectral features in
terms of importance, while the RFE algorithm retains fewer features and only shows the top 4. The * symbol indicates that the spectral features
involves the NIR band.
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peak in the late filling stage, with SD showing the best trend. This

indicates that other statistical indices also have the potential to

estimate SPAD in wheat, especially SD. This is consistent with the

conclusion reached by Bai et al. (2022), that using texture features

incorporating SD information achieved good accuracy and

precision in predicting early soybean yield. The results of this

study indicate that the SD information of texture features also has

the potential to estimate crop SPAD.
4.2 The impact of features selection
strategy on SPAD estimation

Features selection methods play a significant role in machine

learning and can directly impact the predictive model (Kursa and

Rudnicki, 2010). When estimating crop phenotypes using remote

sensing features, selecting appropriate remote sensing features

through features selection strategy can improve model performance

and eliminate interference (Lin et al., 2021; Xu et al., 2023). In this

study, two features selection methods, Boruta and RFE, were used to

select optimal spectral and texture features and build models.

Additionally, a comparison of model accuracy before and after

features selection was conducted to further analyze the mechanism

of features selection methods and select suitable methods for crop

phenotype studies. From Figure 13, it can be observed that the accuracy

of the SPAD estimationmodel constructed using the subset of variables

after features selection is generally better than that of the original

variable set. However, there are also some exceptions, as the Boruta

method shows a slight decrease in model accuracy (Figure 13, Late

filling, TF and C-TF). This may be related to the principle of the Boruta

method. Boruta cannot identify and explore features with low

individual value but high combined value, leading to the removal of

low-value features and reducing or eliminating the high value

generated by feature combinations, thus resulting in decreased model

accuracy. Furthermore, Boruta focuses on selecting all features related

to SPAD (Kursa and Rudnicki, 2010), overlooking the relationship

between features, which may lead to multicollinearity among features

and subsequently reduce model performance.

Therefore, features selection techniques should not only

consider the relationship between features and SPAD but also
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take into account the relationship between features. RFE does this

well by continuously combining subsets of variables to build models

in order to find the optimal variable set with the minimum RMSE.

For example, Wang J et al. (2021) used two features selection

methods, RF and r, to construct RF and SVR models for

estimating winter wheat SPAD, and compared them with the RFE

features selection method. They found that the RFE features

selection method combined with RF and SVR models had higher

predictive accuracy. Lin et al. (2021) compared three features

selection methods, Boruta, Sequential Forward Selection (SFS),

and Permutation Importance-Recursive Feature Elimination (PI-

RFE), and found that the PI-RFE method had the best

dimensionality reduction effect on multidimensional feature sets,

greatly improving the accuracy of FVC inversion. In this study,

whether it was at the heading stage or flowering stage, the RFE
FIGURE 13

The comparison of R2 values for the validation accuracy of winter
wheat SPAD estimation models constructed using features selection
methods to select suitable remote sensing features at three
growth stages.
FIGURE 12

The statistical indices of the retained texture features at the three growth stages of wheat.
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features selection method combined with the SVR algorithm

provided the best SPAD prediction model accuracy. In the late

filling stage, the RFE-SVR combination still showed high SPAD

estimation ability (Figures 7, 8). Overall, compared with the Boruta

method, the RFE combined with the SVR algorithm can achieve

higher model accuracy and stronger model performance. RFE takes

into account the interrelationships between features and between

features and SPAD, thereby improving the performance of

prediction model.
4.3 The impact of features fusion strategy
on SPAD estimation

Features fusion strategy involve merging different types of

features into a more optimal feature set, combining features with

different features to construct models, and have the potential to

mitigate the impact of spectral saturation effects, enhance model

performance and increase the interpretability of prediction models

(Zhou et al., 2022; Sun et al., 2023). This explains why the optimal

SPAD estimation models in the late growth stage of winter wheat

are constructed using features fusion strategy. This study

comprehensively reports the essence of the impact of features

fusion strategy on model performance through two features

fusion approaches. When only implementing features fusion

strategy (Table 4), it was found that not all feature fusions lead to

improved accuracy. Blindly combining features together to build

models may have a counterproductive effect, causing data

redundancy and reducing model performance (Son et al., 2015; Li

et al., 2020). This conclusion is in line with the discoveries of Zhou L

et al. (2023), who observed a decrease in model accuracy when

agronomic practice information (API) was fused with spectral and

texture features to construct a rice yield estimation model. The

essence of the impact of features fusion strategy on model accuracy
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lies in the contribution of multi-characteristic features to the model

and the interactions between features. This also explains why there

are differences in predictive model results when different variables

are fused (Figure 8). Similar to the findings of Liu J et al. (2022), who

estimated rice nitrogen use efficiency (NUE) using different

numbers of spectral features and concluded that increasing the

number of variables does not necessarily improve model accuracy,

this study also discovered that there is no essential correlation

between model accuracy and the quantity of features (Table 4;

Figures 4, 6–8, 12, 13). Adding variables does not necessarily make

the model more robust, and features selection strategy are powerful

means to address these issues.

After combining features fusion strategy with features selection

strategy, the stability, accuracy, and robustness of the SPAD estimation

models for winter wheat are at the forefront (Figure 9). As the growth

stage progresses, the improvement in model accuracy gradually

increases. The highest increase in model accuracy is observed in the

late filling stage, where compared to models using only initial spectral

or texture features, R2
Val increased by 0.092 to 0.202, RMSEVal

decreased by 0.076 to 4.916, and RPDVal increased by 0.237 to 0.960.

Sun et al. (2023) developed maize LAI estimation model using SVM,

RF, BPNN, and PLSR algorithms by selecting five spectral features and

three texture indices through correlation analysis. The results showed

that the SVM algorithmwithmulti-variable fusion achieved the highest

accuracy. Compared to SVM models using only spectral or texture

features as input variables, R2Val increased by 0.023 to 0.192, RMSEVal
decreased by 0.015 to 0.036, and RPDVal increased by 0.074 to 0.746.

Ma et al. (2022) used four features selection methods, including

correlation coefficient, MIC, RF, and RFE, to select three spectral

features and three texture features to construct a cotton yield estimation

model. The results showed that the RFE_ELM model based on the

fusion of spectral and texture features achieved the highest accuracy,

with an increase in R2Val of 0.073 to 0.187 compared to the non-fusion

model. The findings of this study surpass those of prior research,

indicating that the combination of features fusion strategy and features

selection strategy is an effective method to mitigate the impact of

spectral saturation effects and improve the accuracy of crop phenotype

estimation, fully tapping into the potential of multi-characteristic

features in estimating crop phenotypes.
4.4 Limitations and future
research perspectives

This study conducted field experiments on winter wheat using

three locally stable and high-yielding varieties (Huaimai 44,

Yannong 999, and Ningmai 13) and four nitrogen fertilizer

application levels (N0-N3: 0, 100, 200, 300 kg/ha). In the future,

we will systematically supplement the dataset and conduct field

experiments on more varieties and nitrogen fertilizer treatments. At

the same time, because of the swift advancement in sensor

technology, there are still limitations in building SPAD prediction

models relying solely on single sensor data. In the future, we plan to

incorporate RGB and hyperspectral data into the SPAD prediction

model. The machine learning algorithms employed in this study are
TABLE 4 Constructing SPAD estimation model using the dataset of SF,
TF and SFTF.

Stage
Dataset
(original)

Number
Validation

R2 RMSE RPD

Heading

SF 30 0.859 3.135 2.476

TF 160 0.644 6.119 1.269

SFTF 190 0.642 6.062 1.281

Flowering

SF 30 0.805 3.211 1.998

TF 160 0.665 5.463 1.175

SFTF 190 0.730 5.271 1.217

Late filling

SF 30 0.717 6.624 1.871

TF 160 0.607 10.794 1.148

SFTF 190 0.607 10.599 1.169
SF represents initial spectral features, TF represents initial texture features, and SFTF
represents the fused feature set obtained by combining the initial spectral features and
initial texture features.
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relatively single, and in the future, we will introduce multiple

algorithms for comparison and select the most suitable algorithm

for SPAD estimation. Furthermore, the use of multi-source remote

sensing information and background effect removal can also

improve the accuracy of crop phenotype estimation based on

UAV. In the future, we will combine them to further improve the

accuracy of SPAD estimation for winter wheat. Although the

combination of features fusion strategy and features selection

strategy performs well in SPAD estimation during the later

growth stage of wheat, the results of this study only come from

small-scale experiments. In the future, we will conduct large-scale

integrated winter wheat SPAD remote sensing monitoring research

using satellite and UAV platforms.
5 Conclusion

This study demonstrates that spectral and texture features have

good potential for monitoring the SPAD status of winter wheat in

the reproductive stage. Spectral features in the near-infrared band

can fully capture the spectral differences of wheat SPAD in the

reproductive growth stage, while texture features in the red and

near-infrared bands are more sensitive to wheat SPAD. Among the

SPAD estimation models under different strategy, the SVR model

combining features selection and features fusion strategy had the

highest accuracy, and compared with the SVR model that only used

initial spectral or texture features as input, the stability of the model

was improved. As the growth stage progresses, the enhancement of

model accuracy by this method becomes more significant, with the

greatest improvement observed during the late filling stage. R2
Val

increased from 0.092 to 0.202, RMSEVal decreased from 0.076 to

4.916, and RPDVal increased from 0.237 to 0.960. This study shows

that UAV remote sensing technology combined with features

selection and fusion strategy has good prospects for monitoring

winter wheat SPAD in the reproductive growth stage, and can

accomplish precise monitoring of winter wheat growth under

different varieties and nitrogen treatments, providing scientific

guidance and theoretical support for fine management of field

crops nutrition.
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