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Introduction: Blackheart is one of the most common physiological diseases in

potatoes during storage. In the initial stage, black spots only occur in tissues near

the potato core and cannot be detected from an outward appearance. If not

identified and removed in time, the disease will seriously undermine the quality

and sale of theentire batch of potatoes. There is an urgent need to develop a

method for early detection of blackheart in potatoes.

Methods: This paper used visible-near infrared (Vis/NIR) spectroscopy to

conduct online discriminant analysis on potatoes with varying degrees of

blackheart and healthy potatoes to achieve real-time detection. An efficient

and lightweight detection model was developed for detecting different degrees

of blackheart in potatoes by introducing the depthwise convolution, pointwise

convolution, and efficient channel attention modules into the ResNet model.

Two discriminative models, the support vector machine (SVM) and the ResNet

model were compared with the modified ResNet model.

Results and discussion: The prediction accuracy for blackheart and healthy

potatoes test sets reached 0.971 using the original spectrum combined with a

modified ResNet model. Moreover, the modified ResNet model significantly

reduced the number of parameters to 1434052, achieving a substantial 62.71%

reduction in model complexity. Meanwhile, its performance was evidenced by a

4.18% improvement in accuracy. The Grad-CAM++ visualizations provided a

qualitative assessment of the model’s focus across different severity grades of

blackheart condition, highlighting the importance of different wavelengths in the

analysis. In these visualizations, the most significant features were predominantly

found in the 650–750 nm range, with a notable peak near 700 nm. This peak was

speculated to be associated with the vibrational activities of the C-H bond,
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specifically the fourth overtone of the C-H functional group, within the

molecular structure of the potato components. This research demonstrated

that the modified ResNet model combined with Vis/NIR could assist in the

detection of different degrees of black in potatoes.
KEYWORDS

visible-near infrared spectroscopy, modified ResNet, Grad-CAM++, online analysis,
blackheart in potatoes
1 Introduction

Potatoes, vital vegetables in the human diet and for food

security, are widely produced and consumed worldwide (Sanchez

et al., 2020). Potatoes are always purchased as fresh tubers or

processed food products such as potato flour, dehydrated potato

flakes, frozen potatoes, French fries, and chips (Sampaio et al.,

2021). During growth, harvesting, and post-harvest storage, a

variety of factors such as insect bites, bacterial or fungal

infections, cutting by harvesting knives, collision and extrusion,

and changes in the post-harvest storage conditions can cause

different potato defects, reducing the quality of the potatoes

(Hajjar et al., 2021). Blackheart is one of the most common

physiological potato diseases that can occur during storage and

transport. In the beginning stages, discoloration occurs only in the

tissues around the center of the potato, which is not visible from the

outside. If not detected and promptly removed, this disease can

severely affect the quality and sale of the entire potato batch.

Therefore, detecting potato defects can not only help meet the

different needs of end-consumers and maximize resource utilization

but also allow potato producers and sellers to analyze the types of

defects and adopt targeted strategies to improve production

management (Kothawade et al., 2021). Therefore, finding a

method of early blackheart disease detection in potatoes is crucial.

Experts typically perform defect detection. However, these

procedures are often time-consuming, labor-intensive, and limited

by consistency and accuracy in judgment by different personnel.

Hence, efficient and effective automated methods are needed to

detect blackheart potato defects (Zhou et al., 2015).

Vis/NIR spectroscopy has been extensively used for the rapid

detection and nondestructive control of quality characteristics of

various agro-food products (He et al., 2022). Zhou Zhu et al.

examined the potential of using Vis/NIR transmission

spectroscopy in the 513–850 nm range, along with chemometric

techniques such as partial least squares-linear discriminant analysis

(PLS-LDA), to classify potatoes affected by blackheart in a static

state. Height-corrected transmittance demonstrated the best

performance, with the calibration and validation set achieving a

97.11% success rate (Zhou et al., 2015). The transmission spectra of

470 potatoes, including 234 healthy potatoes and 236 blackheart

potatoes, were collected by Han et al. using the left-to-right
02
transmission method. Based on the potato Vis/NIR transmittance

spectroscopy grading line and PLS-DA method, a potato blackheart

disease discrimination model was established, which had a

significant effect on detecting blackheart disease. The area under

the receiver operating characteristic curve (AUC) of the model, total

discrimination accuracy, RMSECV, and RMSEP values were 0.994,

97.16%, 0.28, and 0.26, respectively, thus demonstrating that the

transmission method could accurately and rapidly identify

blackheart potatoes. The average spectral difference between

blackheart and healthy potatoes reached a maximum at 705 nm

(Ya-fen et al., 2021). Based on the principle of Vis/NIR diffuse

transmission spectroscopy, Ding Jigang et al. carried out the

simultaneous online nondestructive testing of blackheart disease

and starch content by utilizing a non-destructive online inspection

system using a self-designed laboratory system. The original spectra

of 121 healthy potatoes and 116 blackheart potatoes in the 600–

1000 nm band were averaged, and the results showed that the

absorbance values of the blackheart potato samples in the 600–900

nm band were significantly higher than the healthy potato samples.

The PLS-DA model blackheart potatoes achieved 97.89% accuracy

with 97.74% and 98.33% correct calibration and validation sets. The

model was implanted into an online detection system and externally

validated using 50 samples not involved in modeling. The

discrimination rate of potato blackheart disease was confirmed as

96% (Ji-gang et al., 2020). However, due to specially designed

constraints and model parameters, the detection performance of

models established by traditional algorithms, such as PLS-DA, may

be limited (Rong et al., 2020).

Convolutional neural networks (CNNs) have been widely

adopted in various fields, such as image recognition, natural

language, and video processing. Vis/NIR spectroscopy combined

with CNN models has been used to detect internal blackheart

disease defects, achieving 98.2% accuracy (Wei et al., 2023). By

blending NIR technology with 1D-CNN, a custom-built online

spectral measurement system was used in this study to obtain the

transmission spectra of 114 oranges in the range of 644–900 nm.

The model was established by combining the diameter correction

method (DCM) combined with 1D-CNN and demonstrated

excellent performance. The recall values of the optimal model for

unfrozen oranges and early freeze-damaged oranges were 88.54%

and 95.15%, respectively, in the prediction set, with an overall
frontiersin.org

https://doi.org/10.3389/fpls.2024.1403713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2024.1403713
accuracy of 91.96%. The proposed DCM and 1D-CNN methods

could effectively eliminate the effect of size on the transmission

spectra and allow the model to successfully identify freezing damage

(Tian et al., 2022). As suggested by multiple studies, when the

number of samples for analysis met specific requirements, a CNN

combined with Vis/NIR could be applied for qualitative and

quantitative analysis and obtain better analytical accuracy because

the spectral response would have better wavelength accuracy and

less external noise interference. However, research has been limited

to improving discrimination accuracy, and the recognition

mechanism of the CNN model has not been analyzed. To realize

online real-time detection and understand the browning

mechanism of Yali pears, Hao et al. conducted an online

discriminant analysis on healthy Yali pears. Pears with different

degrees of browning according to Vis/NIR spectroscopy showed

that the prediction accuracy of the original spectrum combined with

a 1D-CNN deep learning model reached 100% for the test sets of

browned pears and healthy pears. A Gramian angular field (GAF)

was also successfully used to transform the spectral data into graphs

to further express and analyze the spectral features extracted by the

1D-CNN method (Hao et al., 2023). However, to the best of our

knowledge, few studies have been performed on the performance of

CNN model parsing with the qualitative analysis of blackheart

potatoes while using CNNs.

To meet the requirements of online detection and understand

the mechanism of blackheart in potatoes, the online detection

feasibility of blackheart potatoes in top-to-bottom transmission

mode was verified in this study. The specific objectives were as

follows. (1) The complexity of the ResNet model was reduced by

studying the modifications, in terms of the number of parameters,

while aiming to improve predictive performance. (2) SVM, ResNet,

and modified ResNet models were built and evaluated for their

ability to discriminate between healthy and blackheart-affected

potatoes. (3) Grad-CAM++ was employed to visually interpret

the spectral features identified by the modified ResNet model. (4)

The t-SNE technology was used to visualize the classification

capabilities of different layers in a CNN.
2 Materials and methods

2.1 Potato samples

The potatoes(Xisen No.6) used in this experiment were

purchased from a farmer’s supermarket in Beijing, and potato

samples with surface damage and defects were removed. The

equator diameter of the samples was measured by vernier

calipers, where the height range was 48.1–59.8 mm, the average

value was 53.9 mm, and the standard deviation was 3.62. To reduce

the transmission spectrum affected by environmental factors, all

potatoes were stored at ambient temperature for 24 h. Because no

difference in appearance was observed between normal and

blackheart potatoes, purchasing diseased samples directly in the

market would require considerable effort. Therefore, potatoes with

blackheart were artificially prepared in this experiment by

inoculating the samples in an incubator and refrigerator. The
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main steps were as follows. The potatoes were cleaned and dried,

packed in plastic bags after surface disinfection, and placed into an

incubator at 38.5°C for 48 h, and then immediately placed into a

refrigerator at 4°C for 48 h to prepare 1–4 grades of internally

discolored potatoes (Ji-gang et al., 2020; Ya-fen et al., 2021).
2.2 Vis/NIR spectroscopy acquisition

Before spectral collection, the potatoes were equilibrated at

room temperature for 4 h, and three spectra were collected from

each potato. Spectral measurements of whole potato tubers were

performed by a custom-build online transmittance spectral system,

as shown in Figure 1. The system consisted of a Vis/NIR

spectrometer (USB2000+, OceanOptics, USA), a 100 W tungsten

halogen light source, and a convex lens that was installed at the

front of the light source to focus the light on the surface of the

potatoes. Potatoes were placed on the v-belt and moved forward at a

speed of 0.5 m/s. Once the potatoes reached the light source, the

light passed through the potato tissue and was collected by a

detector located on the bottom, then transmitted by the fiber

optics to the spectrometer. The spectrometer was then triggered

to automatically save the spectra on the computer. The

transmittance system captured light in the range of 350–1000 nm

at an integration time of 100 ms. Each tuber was repeatedly scanned

three times by the system, and all three measurements were used to

determine the raw Vis/NIR spectra of the samples.
2.3 Evaluation of blackheart degree
in potatoes

After spectra collection, the potatoes were cut along the long

axis to record the degree of disease and whether discoloration

occurred. Specifically, each potato was first cut in half along the

longest axis, and then three experts with years of experience in

potato detection determined whether the insides of the potatoes

were black. The evaluated criteria are as follows (Figure 2). If the

black center area was 0, the grade was 1; if the black center area was

less than 10%, the grade was 1; if the black center area was 10–25%,

the grade was 2; if the black center area was 25–50%, the grade was

3; if the black center area was greater than 50%, the grade was 4.

After removing the undesirable data, 265 and 378 samples were

divided into healthy and blackheart sets, with 150 samples for grade

2, 78 samples for grade 3, and 150 samples for grade 4.
2.4 Data augmentation of the spectra

Data augmentation (DA) techniques can artificially increase the

dataset size and diversity to alleviate issues, thus enhancing model

performance and generalization (Shorten and Khoshgoftaar, 2019).

DA encompasses all employed methods to expand the number of

samples in a dataset (Maharana et al., 2022). Using DA can increase

the complexity of the training process, resulting in a more robust

and accurate model compared with a model without DA (Wong
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et al., [[NoYear]]; Hernández-Garcıá and König, 2018). Moreover,

DA techniques can help reduce costs and the complexities of optical

spectroscopy data collection (Li et al., 2020), allowing them to find

applications that include these tools for synthetic data generation

(Gracia Moisés et al., 2023).

In this study, to fully train the SVM, ResNet, and modified

ResNet models and improve network generalization performance

and robustness, the experimental samples were reasonably expanded

before model calibration by employing randomly adding Gaussian

noise to enhance the diversity of sample data (Ma et al., 2021),

increasing the total number of spectra from 643 to 3858.
Frontiers in Plant Science 04
2.5 Construction method of
discriminant model

2.5.1 SVM model
SVM serves as a discriminant classifier that can find the

hyperplane with the greatest considerable minimum distance to

the training data set, using quadratic programming optimization

and a radial basis kernel (Fuentes et al., 2018). Regularization

parameter gamma (g), the radial basis function (RBF), kernel

function parameter sig2 (s2), and the penalty factor (C) are

considered critical factors that can determine stability and
FIGURE 2

Example images of potatoes with different blackheart grades.
A

B C

FIGURE 1

Vis/NIR transmission spectroscopy system: (A) three-dimensional figure; (B) cutaway view; (C) light source module and spectral acquisition module
(1. Vis/NIR spectrometer; 2. probe; 3. sample; 4. tray; 5. light source; 6. computer).
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performance. In this study, C was 1.0, and gamma served as the

scale (Cen et al., 2016).

2.5.2 ResNet model
Deep residual networks (ResNets) (Figure 3) were first

introduced by He et al. (2016a) and are considered one of the

most significant deeplearning architectural innovations in recent

years. ResNets utilize residual unit (RU) blocks (Figure 4) stacked

into modularized architectures.

An RU can be expressed by Equations 1, 2

yl =  R(xl ,  Wl) + h(xl),   (1)

xl + l  = A(yl),   (2)

where yl and xl+1 serve as the output and input of the l-th unit,

respectively, andWl is a set of weights and biases of the l-th RU, which

contains K layers. During training, the network aimed to learn each

RU’s residual function R(xl, Wl), with function h(xl) serving as the
Frontiers in Plant Science 05
identity mapping type chosen for skip connection, and A was a non-

linear activation function, as described in reference (He et al., 2016b).

2.5.3 Depth-wise convolution and
pointwise convolution

Depth-wise separable convolution, based on depth-wise separable

convolution, can divide a standard 3 × 3 convolution into 3 × 3

depth-wise convolution and 1 × 1 pointwise convolution. Although

standard convolution can perform channel-wise and spatial-wise

computation in one step, depth-wise separable convolution can

split the computation into two steps, namely, depth-wise

convolution can be applied to a single convolutional filter per each

input channel, and depth-wise convolution output can be linearly

combined using pointwise convolution. A comparison of standard

convolution and depth-separable convolutions is shown in Figure 5.

Depth-wise convolution and pointwise conjugation play different

roles in generating new features, with the former used to capture

spatial correlations, and the latter used to capture channel-wise

correlations (Guo et al., 2019).

2.5.4 Efficient channel attention for deep CNNs
For deep CNNs, the efficient channel attention (ECA) module,

which avoided dimensionality reduction and efficiently captured cross-

channel interaction, was proposed. As shown in Figure 6, ECA

captured local cross-channel interaction after channel-wise global

average pooling and without dimensionality reduction by considering

each channel and each channel’s k neighbors. This methodology has

been shown to guarantee both efficiency and effectiveness. ECA could

be efficiently implemented by size k in fast 1D convolution, where the

kernel size, denoted by k, represented the extent of local cross-channel

interactivity coverage, i.e., how many neighbors were included in the

attention prediction of a channel. To avoid the manual tuning of k via

cross-validation, a method to adaptively determine k was developed,

where the interaction coverage (i.e., kernel size, k) was proportional to

the dimension of the channel (Wang et al., 2020).

2.5.5 Modified ResNet model
In this work, we proposed a modified ResNet model based on

one-dimensional Vis/NIR spectral data to more accurately determine

whether the potatoes were subjected to blackheart disease.
FIGURE 4

A residual unit.
FIGURE 3

Example of a residual network with 18 parameter layers, with dotted shortcuts increasing the dimensions.
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The structure of the modified ResNet model (Figure 7) was similar

to that of the ResNet-18 model. Unlike the ResNet-18 model, several

standard convolutions in the ResNet-18 were replaced with depth-wise

separable convolutions, specifically in layers with more than 128

channels, to significantly reduce the computational complexity and

the number of parameters. In themodified ResNet-18, ECA layers were

applied after batch normalization in each basic block, but only in layers

with more than 128 channels, focusing the model’s attention where it

was most beneficial while keeping the computational load manageable.

The decision to use depth-wise separable convolutions and ECA layers

only in layers with more than 128 channels demonstrated a strategic

approach to balance computational efficiency withmodel performance.

This adaptive adjustment ensured that these enhancements were

applied in deeper layers where the complexity and number of

channels increased and where the optimizations had the most

significant impact. An Adam optimizer was selected for the ResNet

and modified ResNet model, which automatically adjusted the learning

rate during the training process, thereby enhancing convergence speed

and reducing the need for manual adjustment. The initial learning rate

for the Adam optimizer was set at 0.01, and a weight decay (L2
Frontiers in Plant Science 06
regularization) coefficient of 1×10−4 was introduced to mitigate the

possibility of model overfitting. The model’s training lasted for 100

epochs and the batch size was 256, during which the model underwent

one forward pass and one backward pass through the entire training

dataset in each epoch to update the model parameters.
2.6 Explanation of models

The Grad-CAM++ visualization method has been widely

applied, with a basic premise that the feature map corresponding

to a particular classification can be expressed as a gradient, and the

global average of the gradient can be utilized to calculate the weight

(Zhang et al., 2022). In addition, ReLU and the weight gradient were

added to the feature map. Only one back propagation was required

to calculate the gradient, which was originally applied to 2D but

improved and applied to 1D signals by Zhang et al (He et al., 2023).
2.7 Evaluation of the models

The dataset was divided into three sets for different purposes, where

80% of the data was allocated to train the model, 10% was used to

validate the model, and the remaining 10% was used to test the model’s

performance. The overall accurate identification rate (accuracy) was

adopted to evaluate the online discriminative model of blackheart

potatoes, with accuracy referring to the correct identification rates and

classifiers for all samples. Specifically, the greater the values of these

indexes, the higher the accurate classification rates.

The experiment was implemented in PyTorch 2.1.0 and Python

3.9, and Origin 2024 (Origin Lab Corporation, Northampton, MA,

USA) was used to construct the graphs. A Windows 10 64-bit

operating system carried out all software operations, as the software

platform, with an Intel(R) Core i7–6700HQ CPU 3.40GHz (8 GB

of RAM).
3 Results

3.1 Vis/NIR spectral analysis of potatoes

During transmission, the discoloration of the potato flesh increased

light absorption within the tissue, and the loss of water in the tissue
FIGURE 5

Standard convolution and depth-wise separable convolution.
FIGURE 6

Diagram of efficient channel attention (ECA) module. Given the
aggregated features obtained by global average pooling (GAP), ECA
generated channel weights by performing a fast 1D convolution of
size k, where k was adaptively determined via the mapping of
channel dimension C.
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could lead to increased light scattering within the tissue (Sun et al.,

2016), resulting in higher light absorption and lower transmittance. As

shown in Figure 8, the transmission intensity values of the mean

spectra of different grades of blackheart potatoes in the range of 500–

850 nm were significantly lower than healthy potatoes. However, the

mean spectral curves of grade 1 and grade 2 blackheart potatoes were

approximately coincident in the range of 500–650 nm, and these

potatoes were located in upper grades 3 and 4. Between 650 and 850

nm, the spectral transmission intensity decreased as the degree of black

center increased. The average spectral differences between the black-

centered potatoes and healthy potatoes reached local maxima near 650,

703, and 798 nm, with a maximum near 703 nm, indicating that the

difference between the spectral values of black-centered potatoes and

healthy potatoes was the greatest near 703 nm. In addition, the peak at
Frontiers in Plant Science 07
around 650 nm was possibly the wavelength associated

with chlorophyll, where the peak at about 700 nm potentially

resulted from the stretching and contraction of the fourth overtone

of the C–H functional group. Meanwhile, the peak at around 800 nm

was possibly related to the stretching and contraction of the third

overtone of the N–H functional group (Zou et al., 2010).

PCA can effectively reduce the spectral dimension while retaining

representative information. In this study, the spatial distribution of

potato spectra with different degrees of blackheart was analyzed by

applying PCA, and the cumulative contributions of the first three

principal components were 51.09%, 82.13%, and 87.40%, respectively

(Figure 8). Although there was some overlap between the spectra of the

samples collected from different blackheart degrees, the spatial

distribution of the main components demonstrated little similarity,
A B

FIGURE 8

Vis/NIR spectra of potatoes with different degrees of blackheart (A) and spatial distributions of the first three principal components of potato samples
with different degrees of blackheart (B).
FIGURE 7

Diagram of the modified ResNet model.
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indicating significant differences between the sample spectra collected

by four different blackheart degrees.
3.2 Four-class classification by
full wavelengths

The SVM, ResNet, and modified ResNet discriminant methods

were separately used to build online models to identify healthy and

blackheart potatoes. These models were then used to qualitatively

discriminate between healthy and blackheart potatoes, which were not

included in the models. Each experiment was repeated 10 times to

avoid the influence of chance. The discrimination results of the

calibration sets, validation sets, and test sets in the 10 SVM, ResNet,

and modified ResNet discriminant methods for potatoes are shown in

Figure 9. The modified ResNet had better discrimination performance

than ResNet and SVM, as demonstrated by the improved validation

and test accuracy in almost all runs.

Specifically, the modified ResNet Model emerged as the most

effective, increasing accuracy in the range of 0.989–1 in the

calibration sets shown in Figure 9, indicating a robust balance

between high efficiency and consistent outcomes. Its performance

peaked at perfection (1.0) in at least one instance, underscoring its

potential for optimal results. By contrast, the SVM model, despite

its lowest accuracy performance (range of 0.939–0.943), showcased

the highest consistency across all runs. The standard ResNet model,

while outperforming SVM in accuracy, suffered from the highest

variability in the results. This inconsistency pointed to its sensitivity

to training set variations, which could entail a risk of significant

underperformance in specific scenarios, as highlighted by its lowest

performance mark (0.910–0.996). In conclusion, the modified

ResNet model stood out as the superior choice for tasks,

requiring both high accuracy and consistency in calibration sets.

In the validation sets, the SVM model emerged with a

commendable average accuracy in the range of 0.940–0.966,
Frontiers in Plant Science 08
characterized by its low variability (standard deviation of

0.00815), indicating a strong and consistent performance across

different validation sets. However, the ResNet model showed a more

comprehensive range of performance, with a range of 0.847–0.995,

but a significantly higher standard deviation of 0.0424, indicating

the potential for high performance but with the risk of significant

inconsistency. This variability highlighted the importance of careful

tuning and validation to ensure optimal performance across

different datasets. The modified ResNet model exhibited the

highest accuracy range of 0.907–0.995, though with a notable

standard deviation of 0.0263. This suggested that while it

generally outperformed the other models in terms of effectiveness,

its results showed some degree of variability.

Analysis of the performance metrics for the SVM, ResNet, and

modified ResNet models over 10 runs on the test sets provided

insightful observations regarding their ability to generalize to new,

unseen data. As shown in Figure 9, the SVM model showed an

accuracy range of 0.909–0.951, suggesting that while the model was

generally reliable, there was a slight variation in its effectiveness

across test sets, with a standard deviation of 0.0121, indicating

relatively consistent results across runs. The performance of the

ResNet model showed an average performance, highlighted by a

performance range of 0.811–0.992, but with a higher standard

deviation of 0.0537, which was the largest of the three models.

This significant variability suggested that the ResNet model could

achieve exceptional highs, but also notable lows, indicating its

sensitivity to the specifics of the test data. The modified ResNet

model had an excellent performance range of 0.917–0.992,

demonstrating its superior ability to handle test sets with better

consistency than ResNet, albeit with some variability(0.0245).

Table 1 shows the average results of 10 parallel runs of the SVM,

ResNet, and modified ResNet models for potato quality assessment

across calibration, validation, and test sets. These data allowed for a

detailed comparison of the effectiveness of each model and its ability

to generalize. The SVMmodel improved slightly from the calibration

set (0.942) to the validation set (0.951) before experiencing a slight

drop in the test set (0.936). This indicated that the SVM model not

only was robust but also slightly improved or maintained its

predictive ability across different stages, demonstrating good

generalization to unseen data. The ResNet model showed higher

performance for the calibration set (0.980), but then declined slightly

in performance for the validation (0.938) and test (0.932) sets. This

pattern suggested that while ResNet performed exceptionally well on

the calibration set, its ability to generalize to unseen data declined

slightly. The modified ResNet model was identified as outperforming

the other models for all three datasets. Its performance exhibited only
TABLE 1 The average results of 10 parallel runs of the SVM, ResNet, and
modified ResNet discriminant models for potato quality.

Models Calibration
sets

Validation
sets

Test sets

SVM 0.942 0.951 0.936

ResNet 0.980 0.938 0.932

Modified ResNet 0.996 0.976 0.971
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FIGURE 9

Discrimination accuracy of the calibration sets, validation sets, and
test sets in 10 SVM, ResNet, and modified ResNet models: (a) SVM;
(b) ResNet; (c) modified ResNet.
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minor declines from the calibration (0.996) to the validation (0.976)

and test sets (0.971), not just maintaining high-performance

consistency, but also demonstrating exceptional learning and

generalization capabilities. This model’s slight performance decline

across different datasets was minimal, underscoring its robustness

and effectiveness in handling both seen and unseen data, thus making

it the superior model among the three.

The ResNet and modified ResNet models were compared, as

shown in Table 2, focusing on the number of parameters, parameter

reduction, and accuracy improvement. The ResNet model, with

3,845,956 parameters, served as the baseline for this comparison.

The parameters of the modified ResNet model were significantly

reduced to 1,434,052, achieving a substantial 62.71% reduction in

model complexity. The reduction of parameters increased the

efficiency of the modified ResNet model in terms of computational

resources, thus improving its performance, as demonstrated by the

4.18% increase in accuracy. This analysis demonstrated the

effectiveness of the modifications made to the ResNet model. By

simplifying the architecture, the modified ResNet model became

more efficient in terms of resources and also improved its

predictive performance. Optimizing deep learning models could

significantly improve their efficiency and effectiveness, making

them crucial for applications requiring high accuracy without

significant parameter computational burden.
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3.3 Visual analysis

To further express and analyze the spectral features extracted by

the modified ResNet method, Grad-CAM++ was used to visualize

the spectral data weight values. The Grad-CAM++ encoding

process of the potato spectral data is shown in Figure 10. The

blue-to-red color represented the importance of the wavelength,

where the closer the color to red, the higher the degree of activation,

and the higher the feature importance. Conversely, the closer the

color to blue, the lower the degree of activation, and the lower the

feature importance. As shown in the figure, the red region was

mainly concentrated between 650 and 750 nm, which reached a

local maximum near 700 nm.

The t-distributed stochastic neighbor embedding (t-SNE)

technique has been especially useful for visualizing high-

dimensional datasets, as it can translate the high-dimensional

data into a lower-dimensional space and visualize the clustering

and separation of the data points. In this study, the t-SNE

technology was applied to feature visualization and further reveal

the feature representations, with different colors representing

different grades. Figure 11 shows a collection of t-SNE

visualizations representing the spatial distributions of different

layers in a convolutional neural network, ranging from conv1 to

subsequent layers (layer1, layer2, layer3, layer4, average pooling). In

conv1, the features exhibited minimal separation, where the spectral

points of the three types of samples overlapped each with other, as

this layer typically captured fundamental patterns and textures.

From layer 1, and advancing to deeper layers, an evident increase in

separation was observed, signifying that the network started to

establish more defined groupings of features, possibly representing

more intricate patterns. Further stratification was observed with the
FIGURE 10

Visualization of four blackheart states under Grad-CAM++ (from top to bottom: grade 1, grade 2, grade 3, grade 4).
TABLE 2 Comparative analysis of the ResNet and modified ResNet models.

Model Number
of parameters

Parameter
reduction

Accuracy
improvement

ResNet 3845956 / /

Modified ResNet 1434052 62.71% 4.18%
frontiersin.org

https://doi.org/10.3389/fpls.2024.1403713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2024.1403713
emergence of distinct clusters, and layer 2 likely discerned more

complex features instrumental in differentiating various classes or

data types. The clusters became more dispersed, potentially

reflecting a refinement in feature discrimination in layer 3. Layer

4 was well-defined, though more scattered and contained clusters,

suggesting an advanced level of abstraction and feature

discernment. In this stage, the network likely pinpointed the most

critical features for the task that it was trained to accomplish. The t-

SNE plot for the average pooling layer often showed a clear feature

distinction between the different categories, possibly because this

layer helped to reduce the spatial dimensions and summarize the

essential features detected by previous layers. Each visualization

captured the intricate structure of the data and reflected the

network’s ability to learn discriminative features at various levels

of abstraction, thus confirming that deep learning models have a

powerful capability to comprehend and process complex datasets

(van der Maaten and Hinton, 2008).

In summary, these visualizations provided insight into how a

CNN processed and transformed input data into increasingly clear

categorization. From conv1 to average pooling, increasing separation

and distinct clustering with progression to deeper layers indicated the

network’s ability to distinguish between increasingly abstract features.

This demonstrated the network’s ability to extract and refine features

necessary for performing complex pattern recognition tasks.
4 Discussion

The Vis/NIR spectral analysis revealed critical spectral features that

are key in distinguishing healthy potatoes from those affected by

blackheart disease. The model’s high attention to wavelengths
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between 650–750 nm, particularly around 700 nm, underscores the

importance of these spectral regions in identifying the biochemical

changes associated with the disease (Ya-fen et al., 2021). These findings

align with prior research indicating the significance of the C-H bond’s

fourth overtone in disease identification (Zou et al., 2010). The Grad-

CAM++ visualizations further validated these findings by highlighting

these specific wavelength regions as critical for accurate disease

detection. The features identified by the modified ResNet model

combined with Grad-CAM++ were similar to those found by Zhou

et al. (2015)(678, 698, 711, 817, 741, and 839 nm) andHan et al (Ya-fen

et al., 2021)(658, 665, 668, 675, 688, 695, 705, 712, 732, 740, 800, 810,

810, 816, and 839 nm), where 66.67% and 66.67% of the researched

blackheart feature bands included by the modified ResNet model

combined Grad-CAM++ selected feature areas, respectively.

In the study, the modified ResNet model consistently

outperformed the SVM and traditional ResNet models in terms of

both accuracy and reliability across different datasets. This superior

performance can be attributed to the architectural enhancements in

the modified ResNet, including depth-wise and pointwise

convolutions and efficient channel attention modules. These

modifications not only reduced the model’s computational load

by significantly cutting down the number of parameters (62.71%

reduction) but also improved its ability to capture and process

spectral data more effectively. The improvements in model

architecture led to a notable increase in accuracy (up to 4.18%),

which is crucial for applications that require high precision such as

the online detection of blackheart in potatoes. In addition, a

discrimination accuracy of 0.971, slightly higher than previous

related studies of 96.68% (Zhou et al., 2015) and 96.73% (Ya-fen

et al., 2021), was achieved on the test set without requiring

feature extraction.
FIGURE 11

Feature visualization of different layers (from top to bottom and from left to right: conv1, layer1, layer2, layer3, layer4, average pooling).
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The early detection of blackheart disease facilitated by the

modified ResNet model could significantly mitigate agricultural

economic losses by reducing crop waste and improving storage

and quality control measures. This technological advancement

aligns with sustainable agriculture practices by promoting the

efficient use of resources and minimizing the impact of diseases

on food security. Despite the promising results, the study faces

challenges such as generalizing the findings to other potato varieties

or similar diseases in different crops.
5 Conclusion

This research has demonstrated that the modified ResNet model,

integrated with Vis/NIR spectroscopy, is highly effective in the early

diagnosis and real-time detection of potato blackheart disease. By

incorporating depth-wise and pointwise convolutions coupled with

efficient channel attention modules, the modified ResNet model

demonstrated exceptional accuracy and achieved this while

significantly reducing the complexity of its parameters. The model

effectively distinguishes between healthy and blackheart-affected

potatoes by focusing on critical spectral features, particularly in the

650–750 nm range, with a notable peak at 700 nm. This model’s non-

invasive, accurate, timely detection capabilities highlight its potential

to transform potato quality assessment and disease management,

contributing to sustainable agricultural practices. Future work should

expand the model’s application to other potato varieties and diseases,

broadening its utility in the agricultural sector.
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