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thermal infrared region based on
YOLOX-GMM and SORT-Pest
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Runpeng Jiang1, Kaixuan Wu1, Zhe Ma1 and Jun Li1,2,3*
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Equipment Technology, Beijing, China
Introduction: Studying the behavioral responses and movement trajectories of

insects under different stimuli is crucial for developing more effective biological

control measures. Therefore, accurately obtaining the movement trajectories

and behavioral parameters of insects in three-dimensional space is essential.

Methods: This study used the litchi pest Thalassodes immissaria as the research

object. A special binocular vision observation system was designed for nighttime

movement. A thermal infrared camera was used for video recording of T.

immissaria in a lightless environment. Moreover, a multi-object tracking

method based on the YOLOX-GMM and SORT-Pest algorithms was proposed

for tracking T. immissaria in thermal infrared images. By obtaining the central

coordinates of the two T. immissaria in the video, target matching and 3D

trajectory reconstruction in the parallel binocular system were achieved.

Results: Error analysis of the T. immissaria detection and tracking model, as well

as the 3D reconstruction model, showed that the average accuracy of T.

immissaria detection reached 89.6%, tracking accuracy was 96.9%, and the

average error of the reconstructed 3D spatial coordinates was 15 mm.

Discussion: These results indicate that the method can accurately obtain the 3D

trajectory and motion parameters of T. immissaria. Such data can greatly

contribute to researchers' comprehensive understanding of insect behavioral

patterns and habits, providing important support for more targeted

control strategies.
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1 Introduction

Insect behavior research has significant importance in plant

protection, especially with the rapid development of agriculture,

and the importance of insect behavior analysis has become

increasingly prominent (Mo et al., 2006). Researchers mainly

develop scientific and rational pest control measures by observing

the behavioral responses of insects to different stimuli, including

movement trajectories, foraging frequency, and mating. This

approach aims to reduce pesticide use and improve the natural

environment (Ke et al., 2021; Cheng et al., 2021). Among these, the

information on insect movement trajectories is intuitive and rich,

can directly express the insect’s tendencies, and can be combined

with the experimental environment as an important basis for

studying their social behaviors such as mating and foraging. while

Dong et al. (2020) analyzed the color preference behavior of stored-

grain pests based on their movement trajectories.

In the past, insect behavior analysis was typically performed

manually, requiring professionals to observe and record insect

behavior in the observation box; however, this method has

problems such as qualitative and arbitrary judgements and time-

consuming processes (Wu et al., 2009). With the development of

computer vision technology, researchers have gradually applied it to

insect behavior analysis. For example, Gaydecki (1984) first

achieved moth trajectory tracking and behavior analysis under

field conditions by setting up mercury lamps to attract night

moths, using cameras to capture moth motion videos, and finally

obtaining trajectories by manually marking the moths in the video.

Although this method does not require constant observation by

researchers, it still requires frame-by-frame video analysis, which is

a considerable workload.

With the continuous development of computer hardware and

software, image processing technology has made great progress. Guo

et al. (2018) used KCF filters to model and match targets, tracking the

diamondback moth and 3D trajectory reconstruction through two

orthogonal RGB cameras. Although this method can accurately

obtain the 3D trajectory of the diamondback moth, it can only

track a single target and requires manual selection of the tracking

target in the first frame, with low automation. There are also some

studies that use harmonic radar (Riley et al., 1996), radio frequency

identification (Klein et al., 2019), and acoustic sensors (Heise et al.,

2017) to track insects; however, most of these methods require

manual data processing, which has low efficiency and accuracy.

Deep learning methods provide new directions for the

development of computer vision (Christin et al., 2019). Because of

their excellent ability to learn complex image features, an increasing

number of researchers have begun to use deep learning technology to

process collected image data to complete various tasks (Wang et al.,

2019; Lv et al., 2023; Zhang X. Y. et al., 2023). In insect behavior

analysis, Ngo et al. (2021) successfully tracked the trajectory of bees

using deep learning and judged whether they carried pollen. Nasir

et al. (2021) achieved bee recognition and 3D trajectory acquisition by

fusing RGB cameras with depth cameras. Hong et al. (2022) proposed

a multiobject tracking method based on deep learning and

spatiotemporal features for classifying fruit fly behaviors. However,
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these methods usually require additional lighting, and the quality of

target tracking is often affected by lighting. Additionally, many insects

are prone to night activity, and even weak light can affect their

behavior, leading to biased behavioral analysis (Tu et al., 2014).

Based on existing research on insect trajectory tracking,

problems such as small insect targets that are difficult to detect,

fast and irregular insect flight, and insufficient research on the

detection and 3D trajectory reconstruction of insects under no

lighting conditions with low accuracy exist.

With the reduction in the cost of thermal infrared cameras, they

have gradually become effective tools in computer vision because

they can image objects regardless of lighting conditions (Liang and

Li, 2023; Liu et al., 2024; Lang et al., 2023). However, thermal

infrared images have low image resolution and lack color texture,

making feature extraction more difficult and resulting in high false

positives and missed detections (Zhang R. et al., 2023). Therefore,

few people have applied thermal infrared cameras to the study of

insect behavior trajectories.

T. immissaria is a major pest in litchi and longan orchards. It

hides among the leaves during the day and becomes active only at

night. It is characterized by rapid reproduction and ovulation, feeds

on the tips of fruit trees, posing a considerable threat to the stable

production of litchi and longan (Chen et al., 2010, 2017). Traditional

control measures involving pesticide spraying raise concerns about

food safety, and due to increasingly strict restrictions on insecticide

use, such pest control methods will gradually be phased out (Dias

et al., 2018). In recent years, researchers have developed a series of

safe and effective pest control measures by analyzing the avoidance

effects of different stimuli on insect behavior, such as black lights

based on phototaxis and trapping devices based on sex pheromones

(Lasa et al., 2013). Therefore, it is necessary to research methods for

capturing the behavioral trajectories of T. immissaria, establishing a

foundational data platform for subsequent stimulus experiments. By

investigating the correlation between its movement patterns and

various types and concentrations of stimuli, we aim to identify

optimal pest repellents and concentrations, or enhance the

effectiveness of pest trapping devices. This research will ultimately

lead to more effective pest management strategies.

To address the above problems, this paper takes T. immissaria as

the research object, combines thermal infrared technology with deep

learning, proposes an thermal infrared multi-target 3D trajectory

tracking method. A comprehensive evaluation and comparison of

this method have been conducted to address practical problems. This

method will help fill the research gap in analyzing nocturnal insect

behavior in agriculture and provide observable and quantifiable

scientific evidence for precise agricultural pest control.
2 Materials and methods

2.1 Overview of the T. immissaria 3D
trajectory acquisition method

Figure 1 shows the overall idea of the T. immissaria 3D

trajectory acquisition method. First, a video capture device and
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visual system were designed based on the thermal infrared imaging

characteristics. A thermal infrared camera was used to capture

images of background modeling in the observation box, and the

images were preprocessed to form the Pest_IR dataset. Second, a

three-step model for T. immissaria 3D trajectory acquisition was

constructed. In the first step, all T. immissaria targets in the infrared

images were detected. In the second step, the detected targets were

associated with obtaining the two-dimensional trajectories of each

T. immissaria strain. In the third step, the 2D trajectories of the T.

immissaria were matched in stereo to obtain their 3D trajectories.
2.2 Experimental platform and
image acquisition

To represent the 3D coordinates of moths in nighttime

environments and minimize the influence of human factors, two

parallel thermal infrared cameras were used as the image capture

system for the moths in this study. The X640D thermal infrared

camera produced by Yoseen Company, with a resolution of

640×480 pixels, a frame rate of 30 fps, an FOV of 42×51, and a

focal length of 11 mm, were used. These cameras can image objects

larger than 0.2 m when the environmental temperature difference

exceeds 0.1°C. Considering that T. immissaria are holometabolous

insects and do not have their own heat characteristics, a constant-

temperature heating plate was introduced at the bottom of the

observation box. The temperature difference between the

geometrids and the heating plate was used as the imaging basis.

The heating plate is powered by a 5 V power supply and can

maintain a constant temperature of 26°C on the surface, while the

indoor temperature is kept constant at 24°C, which is within the

optimal range for the growth of T. immissaria and does not alter its

living environment (Xu et al., 2023). The experiment used a Lenovo

laptop connected to the image acquisition system via a switch

platform to control the synchronous collection and video data

storage. A schematic diagram of the experimental platform and

video acquisition is shown in Figure 2. The captured thermal

infrared images and original images of T. immissaria are shown

in Figure 3.

For better display of image results, this study conducted

multiple data collection experiments using a total of 42 T.

immissaria provided by the Plant Protection Institute of

Guangdong Academy of Agricultural Sciences. The eggs of T.
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immissaria were sourced from lychee orchards, and the larvae

were fed on tender shoots of lychee trees, cultured in a constant

temperature chamber at 26 ± 1 °C with relative humidity

maintained between 65% and 85%. The adult T. immissaria used

in data collection were approximately 28 days old, unmated, and in

good health. Each experiment maintained 4-5 T. immissaria in a

30×30×30 cm rearing box, fed with a 10% honey solution. The

collection time was set from midnight to 6 am, ensuring no bright

light throughout the entire period to ensure the diversity of T.

immissaria movement in the dataset. Finally, a total of 34 segments

totaling 14 hours of T. immissaria infrared videos were collected in

the laboratory environment from September 16, 2023, to October

17, 2023 to construct the dataset.
2.3 Dataset preparation

In this study, a dataset was prepared for the deep learning-based

object detection model. First, video segments of strong T.

immissaria activity were manually selected from the images

captured by the thermal infrared camera.

For T. immissaria in motion, motion blur often occurs due to

fast movement, requiring contrast enhancement for blurred targets.

The GMM algorithm, as a commonly used motion target detection

algorithm in image processing, can segment areas where pixels

change by modelling the background (Hu and Zheng, 2016; Liu

et al., 2020). After denoising and morphological opening operations

on these areas, regions within a specified size range S are selected as

motion targets. By overlaying the target on the red channel, the

contrast of the target in the thermal infrared image is enhanced,

resulting in a clear image of the T. immissaria. The image

processing workflow is shown in Figure 4. By mixing the

enhanced images and the original images at a 1:1 ratio, a total of

884 thermal infrared images were obtained. Using the LabelImg

image labelling tool, each boundary box of T. immissaria in each

image was manually labelled to create the Pest_IR dataset for the

object detection model, which was then divided into training,

validation, and testing sets at an 8:1:1 ratio.

Additionally, to validate the effectiveness of the tracking model,

a multitarget tracking dataset was prepared in this study. First,

approximately 10 segments of approximately 10 seconds of T.

immissaria thermal infrared videos were extracted, and the

positions of T. immissaria in each frame were manually
FIGURE 1

3D trajectory acquisition method for T. immissaria.
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annotated using dark-label video annotation software. These

annotations were then converted into the MOT16 standard

multitarget tracking dataset MOT_Pest, which includes

information such as video frame number, target ID, and target

area position.
3 Construction of a multiobject 3D
trajectory tracking model for
T. immissaria

In this section, based on the video image data of T. immissaria

collected by a thermal infrared binocular vision system, a

multiobject 3D trajectory tracking scheme for T. immissaria is

proposed. First, according to the motion characteristics of T.

immissaria, the YOLOX-GMM object detection algorithm is used

to obtain the coordinate information of each T. immissaria in the

video frames accurately. Then, based on the actual environment

inside the observation box, the SORT-Pest algorithm is used to

track multiple target outputs by the detection model, and the

tracking results for each T. immissaria sample are obtained.
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Finally, based on the 2D tracking results of T. immissaria and the

pose relationships and intrinsic parameters between the infrared

cameras, the semiglobal block matching (SGBM) algorithm is used

to reconstruct the 3D trajectory of T. immissaria.
3.1 YOLOX-GMM object
detection algorithm

When T. immissaria is stationary or moving slowly,

appearance-based object detection algorithms can learn the

features of T. immissaria well due to the simple image

background. Compared with the commonly used YOLO series of

object detection algorithms (Redmon and Farhadi, 2017, 2018;

Bochkovskiy et al., 2020), the YOLOX algorithm adopts

decoupled heads, an anchor-free design, dynamic matching of

positive samples, etc., greatly improving the accuracy and speed

of the object detection algorithm, which is highly suitable for

detecting small targets in thermal infrared images. Therefore, this

paper chooses the YOLOX algorithm as the appearance feature

detection model for T. immissaria.
FIGURE 3

Original image (Left) and thermal infrared image of T. Immissaria (Right).
FIGURE 2

T. immissaria infrared video acquisition system.
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However, when T. immissaria moves at a faster speed, due to

the limitation of the video frame rate, the image of T. immissaria

will exhibit motion blur, which affects the detection accuracy of the

appearance feature model. To solve this problem, the GMM
Frontiers in Plant Science 05
algorithm is chosen as the motion feature detection model to

detect moving targets. Figure 5 shows the detection results of the

YOLOX algorithm and the GMM algorithm for T. immissaria with

different motion states in the same frame.
FIGURE 5

Detection results of T. immissaria in different states (A shows the detection results of static targets by the YOLOX algorithm, B shows the detection
results of moving targets by the GMM algorithm).
FIGURE 4

Motion Target Image Enhancement Process. (A) Original image. (B) Images processed after background modeling. (C) Images processed after
median filtering. (D) Images processed after opening operation. (E) Images processed after area filtering. (F) Images processed after
image enhancement.
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The YOLOX-GMM object detection algorithm, which

comprehensively considers the appearance and motion features of

T. immissaria and compares and corrects the detected results, is

proposed to accurately detect the entire movement process of T.

immissaria. The overall logic of the algorithm is shown in Figure 6.

First, the GMM algorithm is used to extract i moving targets

from each frame image, obtaining their coordinate boxes list1 (xi, yi,

wi, hi). The pixel size range S of T. immissaria is determined to

exclude the influence of background factors, and possible moving

targets are selected according to the size of S. The image channels

corresponding to the original image position are overlaid frame by

frame to enhance the contrast of the moving target in the thermal

infrared image. Then, the confidence threshold of the YOLOX

detector is set to 0.3, and the coordinates of k T. immissaria are

outputted, forming list 2 (xk, yk, wk, hk), to prevent missed

detections. The F(x) function is used to compare and correct the

output results of list1 from the GMM algorithm and list 2 from the

YOLOX algorithm to increase detection result storage and prevent

false detections. The correction logic is as follows:
Fron
1. If a target is only detected by the YOLOX algorithm, its

confidence level is judged. If the confidence level is greater

than 0.7, the target is determined to be a true target.

2. If a target is only detected by the GMM algorithm, its

consecutive frame appearance count is judged. If the count

is greater than 30 frames, the target is determined to be a

true target.

3. If a target is detected by both algorithms, the center point

positions of the target boxes of the two algorithms are first

checked to determine whether they are within a range of 20

pixels. If so, it is determined to be a possible true target and

further checked. The intersection-over-union (IOU) ratio

of the target boxes of the two algorithms is calculated using

Equation 1. If the ratio is greater than 0.5, the target is

determined to be a true target.
IOU = Area of Intersection=Area of Union (1)
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3.2 SORT-Pest object tracking algorithm

After detecting T. immissaria, it is necessary to track it and

obtain the 2D trajectory of the entire video sequence. The

commonly used multiobject tracking algorithm is the SORT series

algorithm (Bewley et al., 2016). Based on the current experimental

environment, T. immissaria is prone to sudden changes in motion

direction and speed within the observation box, which can cause

problems such as loss and ID switching in traditional SORT

algorithms for multiobject tracking of T. immissaria. To solve

these issues, this paper proposes two strategies, namely, dynamic

IOU matching and cascaded improvement, based on the SORT

algorithm, which is called the SORT-Pest algorithm. The overall

logic of the algorithm is shown in Figure 7.

3.2.1 Dynamic IOU matching
The SORT algorithm associates targets based on the IOU between

the predicted boxes and detected boxes. When the IOU is above a set

threshold, it is considered the same target, and when it is below the

threshold, it is considered a different target, as shown in Figure 8A.

However, for fast-moving targets such as T. immissariawith significant

shape changes, it is difficult for appearance-based reidentification

models to associate objects with appearance variations. Moreover,

tracking models based on fixed IOU threshold matching are prone

to missed detections. Therefore, this paper proposes a strategy for

dynamically adjusting the IOU threshold based on the velocity change

in T. immissaria in each frame. When the velocity is high, the IOU

threshold is lowered to tolerate larger position deviations, and when the

velocity is slow, the IOU threshold is increased to improve matching

accuracy, as shown in Figure 8B. This strategy effectively addresses

challenges such as target velocity changes and shape variations,

improving the accuracy and stability of object tracking.

3.2.2 Cascaded improvement
The SORT algorithm calculates the cost matrix between the

detection boxes and trackers and matches them using the
FIGURE 6

YOLOX-GMM algorithm logic.
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Hungarian algorithm. When the matching between the detection

box and tracker fails, a tracker is assigned to represent a newly

discovered target. However, for enclosed spaces such as observation

boxes, the number of targets is fixed. Therefore, this paper proposes

an improved cascaded strategy to limit the generation of trackers.

After performing the Hungarian algorithm matching, a logical

function G(x) is introduced to determine the number of detection

boxes. ① When the number of detection boxes is greater than the

actual value, it indicates the presence of false alarm targets, and no

new trackers are added for unmatched detection boxes. ②When the

number of detection boxes equals the actual value, all the targets

have been detected. A second matching is conducted for the

unmatched detection boxes and trackers, the optimal solution is

found, and an ID is assigned based on the Euclidean distance. ③

When the number of detection boxes is less than the actual value, it

indicates that there are missed targets. Unmatched trackers are

retained for 20 frames until the target reappears. This cascaded

approach effectively controls the number of trackers and improves

algorithm stability.
Frontiers in Plant Science 07
3.3 3D trajectory reconstruction algorithm

After obtaining the planar trajectory of T. immissaria, to

reconstruct its 3D trajectory, it is necessary to first match the

target images captured by the binocular camera and then

combine the internal and external parameters obtained from

camera calibration to calculate the disparity map for each frame

and convert it into depth information. According to the spatial

coordinate transformation relationship of the camera, the

correspondence between disparity and depth is shown in

Equation 2, and the 3D position relationship of the target relative

to the camera is shown in Equation 3.

Zc = f *B=d (2)

Pc = ½Xc,Yc,Zc, 1�T = inv(K)*½u, v, 1�T*Zc (3)

In these formulas, f represents the camera focal length, B

represents the baseline length, d represents the left-right image
FIGURE 8

Matching strategy comparison (the green area represents the IOU). (A) Associating targets based on a fixed IOU. (B) Associating targets by
dynamically adjusting the IOU based on velocity.
FIGURE 7

Logic of the SORT-Pest algorithm.
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disparity, Pc represents the spatial coordinates of the target relative

to the camera coordinate system, and K represents the camera

intrinsic matrix.

The SGBM algorithm is a matching algorithm used to calculate

depth information in stereo vision. The main steps are as follows:

① Construct a cost function by measuring the differences between

each pixel and other pixels to quantify their relationships.

② Perform cost aggregation by calculating the minimum cost for

each pixel using a global path approach. ③ Select the disparity with

the minimum accumulated cost as the depth value for each pixel

and optimize the final disparity map.

The SGBM algorithm provides good accuracy in-depth

information while maintaining relatively high computational

efficiency. Therefore, in this paper, the SGBM algorithm is chosen

for feature matching and 3D reconstruction of the target

tracking results.
4 Model experiment and
results analysis

4.1 Model training and parameter design

This experiment combined the GMM algorithm and YOLOX

model to recognize moths. The training and testing processes were

conducted on a server running Ubuntu 20.04 LTS. The main

hardware devices used were as follows: GPU - RTX A6000, CPU

- Intel Core i9-10980XE, and RAM - 64 GB. PyTorch 2.0.1 was

utilized as the deep learning framework, and the CNN model was

built using the Python programming language. The CUDA version

is 11.7, and GPU acceleration is performed using the CUDNN

version v8.9.0. The parameters of the YOLOX model were adjusted

accordingly to adapt to the specific detection environment of the

moths. The input image size of the YOLOX model was set to

640×640 pixels. The IOU threshold was set to 0.5, and a cosine

annealing decay strategy was employed to dynamically adjust the

learning rate, with a minimum learning rate of 1e-4. The dataset

was split into an 80% training set and a 20% validation set. A total of

300 iterations of training were performed, resulting in a series of

model parameters that accurately fit the detection boxes of the

target moths.

The coordinate information of T. immissaria was extracted

from the Pest_IR dataset, and its pixel size S was calculated. After

removing outliers, the distribution of S is shown in Figure 9. It can

be observed that S mainly falls within the range of 150-550. This

range is used as the threshold for the GMM algorithm to extract

moving objects.

Regarding the relationship between the dynamic IOU and

velocity in the tracking algorithm, by testing the tracking

performance with different threshold values, the optimal dynamic

threshold expression is obtained as Equation 4. Based on the

average motion speed of T. immissaria, the possible Euclidean

distance of its motion is calculated as d = 20 pixels, which is used

as the threshold for the second matching.
Frontiers in Plant Science 08
IOU = −0:025v + 0:3 (4)
4.2 Model evaluation metrics

4.2.1 Evaluation indices for the object
detection algorithm

In this experiment, R (recall), P (precision), F1 score, and AP

(average precision) are used as evaluation metrics for the object

detection stage to measure the performance of the model. The

formulas for calculating these evaluation metrics are as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 score =
2*P*R
P + R

(7)

AP =
Z 1

0
P(R)dR (8)

where TP represents the number of true positive samples

correctly predicted as positive, FN represents the number of true

positive samples incorrectly predicted as negative, and FP

represents the number of negative samples incorrectly predicted

as positive.

4.2.2 Evaluation indices for the
tracking algorithm

In this study, the identity switch (IDS), multiple object tracking

accuracy (MOTA), and multiple object tracking precision (MOTP)

are selected to evaluate the effectiveness of the multiobject tracking

algorithm. The IDS represents the number of times the target ID is

changed. A smaller value indicates better tracking stability. MOTA
FIGURE 9

Histogram of the size distribution of T. immissaria.
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refers to the accuracy in tracking multiple targets, including aspects

such as missed detections, false alarms, and tracking errors. A

higher value indicates better algorithm performance. MOTP refers

to the average tracking error of the object’s center point. A smaller

value indicates higher detector accuracy. The calculation formulas

are as follows:

MOTP = oi,td
i
t

otct
(9)

MOTA = 1 −ot(FNt + FPt + IDSt)=otGTt (10)

where ct represents the number of matches between the

detected and predicted targets in frame t, dit represents the

Euclidean distance between the detected and predicted targets in

frame t, GT represents the number of true target boxes, and t

represents the frame in the video stream.
4.3 Results and discussion

4.3.1 The detection model
To comprehensively evaluate the performance of the YOLOX-

GMM model in detecting T. immissaria, first, the YOLOX model is

trained based on the training parameters set in Section 4.1, and the

weight file with the best training effect is used as the test model

performance weight file. Figure 10 shows the P-R curve of the

YOLOX model, with the overall P value remaining above 90%. This

is because there are many stationary T. immissaria in the test set,

and the YOLOX algorithm has excellent detection capabilities for

static targets, leading to a generally high level of P. Since this paper

only focuses on improving moving targets, to highlight the

improvement effect of the model, only the evaluation metrics for

moving targets are calculated, and the results are shown in Table 1.

The AP of the YOLOX-GMMmodel is 89.6%, which is 3.7% higher

than that of the original algorithm, mainly reflected in a 5.4%

increase in R compared to that of the original algorithm, indicating
Frontiers in Plant Science 09
that the improved model has achieved good detection performance

for moving targets.

Figure 11 compares the detection effects of the two algorithms

on T. immissaria. From the detection results, From the detection

results, the YOLOX algorithm encounters challenges in detecting

images with motion blur, leading to a significant number of missed

detections. In contrast, the proposed algorithm effectively restores

the clarity of blurred targets and improves target recognition rate.

Additionally, when addressing the background noise problem in the

infrared image, under the same confidence threshold of 0.3, the

YOLOX-GMM algorithm has a lower false alarm rate. Overall, the

YOLOX-GMM object detection model adapts well to the

experimental environment and is far superior to the original

algorithm in terms of the recognition accuracy of moving targets

in thermal infrared images. Simultaneously, an analysis was

conducted on the images where the YOLOX-GMM algorithm

failed to detect targets, revealing that the main reason was the

uneven heating at the edge of the constant-temperature plate,

resulting in imaging failure of T. immissaria. However, this issue

can be addressed through subsequent hardware optimizations to

enhance the practical detection performance of the algorithm.

4.3.2 The tracking model
To validate the effectiveness of the proposed multiobject

tracking algorithm SORT-Pest in this study, we compared

different strategies of the SORT algorithm using the validation set

of the Pest_IR dataset. To ensure fairness in the experiments, we

uniformly used the YOLOX-GMM model as the detector. The

experimental results are shown in Table 2.

A comparison between the actual trajectories using four

tracking models to test the effectiveness on a 276-frame video is

shown in Figure 12. The experimental results indicate that the

improvement strategy proposed for the traditional SORT algorithm

effectively addresses the issues of ID switching and tracking loss.

This is because the SORT-Pest model accounts for the fixed

quantity of T. immissaria in the observation box, thus strictly

limiting the generation of trackers. For the first unmatched

detection box and tracker, distance threshold matching is

performed again, reducing the frequency of ID switching.

Furthermore, considering the change in the speed of T.

immissaria during the tracking process, the dynamic IOU

matching strategy can appropriately adjust the threshold

according to the speed of the tracker when the speed of T.

immissaria changes suddenly, thereby improving the stability of

the model’s tracking.

4.3.3 The 3D trajectory reconstruction model
4.3.3.1 Tracking accuracy comparison

Based on the stereo matching results of the SGBM algorithm on

the infrared images from the left and right cameras and considering

the pose relationship between the cameras, the output trajectories of

the tracking model were reconstructed in 3D to obtain the 3D

spatial coordinates of the T. immissaria for each frame. The 3D

trajectory of T. immissaria was plotted using MATLAB software

and then compared with the true 3D trajectory drawn based on the

annotation results, as shown in Figure 13. The comparison result
FIGURE 10

P-R curves of YOLOX detection methods.
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indicates a high degree of overlap between the two trajectories,

thereby validating the accuracy of the tracking algorithm proposed

in this study for tracing the trajectory of T. immissaria.

4.3.3.2 Evaluation of 3D coordinate accuracy

Because it is difficult to obtain the true spatial coordinates of T.

immissaria in the actual environment, this study chose LED lights

similar in size to T. immissaria to evaluate the accuracy of the

proposed method in determining the 3D coordinates of insect

targets. Within the observation box, 10 LED lights were hung at

different positions using thin wires, and the actual 3D spatial

coordinates of each LED light were measured using a tape

measure. By applying the method described in this study, the

theoretical 3D spatial coordinates of each LED light were

obtained. The 3D spatial coordinates of the 10 LED lights were

obtained using both methods and then transformed into a

coordinate system with the camera center as the origin, as shown

in Table 3. The minimum error calculated for these points was 8

mm, the maximum error was 19 mm, the average error was 15 mm,

and the standard deviation was 3.8 mm. The average error range is

close to the size of T. immissaria, demonstrating that it essentially
Frontiers in Plant Science 10
meets the accuracy requirements of the 3D coordinates

of T.immissaria.

4.3.4 Innovations and limitations
Currently, behavioral analysis of insects is primarily conducted

using RGB cameras, achieving notable success in species detection,

behavior recognition, and trajectory tracking. However, for light-

sensitive nocturnal insects, the accuracy of behavioral analysis using

RGB cameras is often compromised due to limitations in light

sources. Therefore, this study innovatively introduces thermal

infrared cameras as imaging devices, enabling trajectory tracking

of nocturnal insects without the need for lighting and providing

more authentic behavioral data.

In contrast to RGB cameras, which are highly sensitive to visual

features and require separate deep learning models even for similar

insects of the same genus, thermal infrared imaging technology

effectively mitigates the visual distinctiveness of insects in

incubation chambers. This allows tracking of multiple congeneric
FIGURE 11

Target detection results (there are actually five T. immissaria in the image, the left two columns show the results of the missed detection
comparison, and the right two columns show the results of the false alarm comparison). (A) Detection results of the YOLOX model. (B) Detection
results of the YOLOX-GMM model.
TABLE 1 Evaluation results of the test dataset for different models.

Models/Evaluation
index

AP (%) R (%) P (%) F1 score

YOLOX model 85.9 90.1 97.9 0.938

YOLOX-GMM model 89.6 95.5 99.6 0.975
TABLE 2 Evaluation index results obtained by different models.

Models/Evaluation
index

IDS MOTA (%) MOTP

SORT model 47 75.4 0.43

Sort model + IOU 27 87.6 0.44

Sort model + Cascade 7 91.7 0.45

SORT-Pest model 3 96.9 0.45
frontiersin.org

https://doi.org/10.3389/fpls.2024.1403421
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qiu et al. 10.3389/fpls.2024.1403421
insects using a single deep learning model, significantly reducing

system application costs. Furthermore, traditional manual

observation methods face challenges and errors, particularly with

small-bodied and fast-flying insects, often constrained to two-

dimensional planes (Machraoui et al., 2019). Although some

studies have achieved three-dimensional trajectories of insects,

they often lack real-world coordinates and error calculations

(Nasir et al., 2021; Chen et al., 2021).

In this study, using binocular cameras, we not only achieved

simultaneous three-dimensional positioning of multiple insects but

also accurately calculated positioning errors. Although the average

error in this study is greater compared to the 8.8mm error achieved

by Guo et al. (2018) in 3D spatial positioning of cabbage butterfly

using RGB stereo cameras, this research addresses the precise

measurement of nocturnal insect positioning in low-light

environments, a challenge RGB cameras cannot meet.

Furthermore, with the ongoing development of thermal infrared

imaging technology, this error is expected to decrease gradually in

the future. Consequently, the value of this research in the field of

insect behavioral analysis is anticipated to increase.
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Nevertheless, due to time and resource constraints, this study

remains technically focused, lacking specific behavioral analysis

experiments as its major limitation. Future research will focus on

exploring the effects of different times, temperatures, and chemical

hormones on the movement trajectories of T. immissaria,

documenting and summarizing their motion data and behavioral

patterns. These findings will assist in determining the most suitable

repellents and concentrations based on the insects’ responses to

various stimuli, or optimizing trap placement angles according to

their behavioral patterns, thereby providing substantial information

support for refining pest management strategies.
5 Conclusion

This study proposed and evaluated a multiobject 3D trajectory

tracking method for T. immissaria based on thermal infrared video.

The proposed method consists of three main parts. Firstly, a

YOLOX-GMM combined optimization detection algorithm is

proposed by integrating deep learning and image processing

techniques to address the challenges of small and difficult-to-

detect objects in infrared videos, significantly improving the
FIGURE 13

3D trajectory comparison (the actual trajectory is drawn based on
the annotation results, while the theoretical trajectory is drawn
based on the tracking matching results). Points A and B represent
the starting points, and points A’ and B’ represent the endpoints).
TABLE 3 Comparison of 3D coordinate results.

Number
Theoretical
coordinates

(cm)

Actual
coordinates

(cm)

Error
(cm)

1 (7.7, -8.1, 43.4) (7.7, -8.2, 45.3) 1.90

2 (-10.9, 0.2, 32.67) (-9.7, 0.7, 32.0) 1.46

3 (-14.7, -12.6, 42.7) (-15.1, -11.4, 43.2) 1.36

4 (-12.4, 5.0, 46.0) (-11.8, 5.4, 46.3) 0.78

5 (-5.7, 7.2, 34.1) (-4.8, 8.1, 35.4) 1.82

6 (8.5, 12.8, 32.3) (9.9, 11.6, 32.1) 1.85

7 (-3.0, 3.2, 48.8) (-2.3, 2.4, 50.0) 1.60

8 (12.6, -8.0, 37.2) (11.2, -8.6, 36.4) 1.72

9 (-13.4, 6.6, 37.5) (-13.2, 5.5, 36.9) 1.27

10 (2.5, 4.8, 48.9) (1.9, 5.1, 49.6) 0.97
FIGURE 12

Trajectory tracking results under different strategies (colors of trajectories represent the number of trackers). (A) Tracking results of the original SORT
model. (B) Tracking results of the SORT + IOU matching model. (C) Tracking results of the SORT + Cascaded improvement model. (D) Tracking
results of the SORT-Pest model. (E) Actual motion trajectories of T. immissaria.
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accuracy of T. immissaria recognition. Additionally, this method

significantly reduces the missed detection rate and false alarm rate,

providing a more reliable solution for small object detection in

thermal infrared videos.

In the second step, the detection results are tracked using the

proposed SORT-Pest tracking model, which significantly reduces

the ID switch frequency and achieves a 96.9% MOTA by

introducing dynamic IOU matching and cascade improvement

strategies. Compared to traditional multi-object tracking

algorithms (such as SORT and DeepSort), the proposed method

effectively addresses the difficulties of tracking fast and irregularly

moving targets, improving the accuracy and consistency of

target tracking.

The third part involves the use of a thermal infrared binocular

vision system to reconstruct the motion trajectories of T. immissaria

in three dimensions. The average positioning error of the

reconstructed 3D space is 15 millimeters, which basically meets

the accuracy requirements for quantitative behavioral analysis of

T. immissaria.

Overall, the proposed method can accurately obtain the three-

dimensional trajectories of T. immissaria and other insects

regardless of lighting conditions, providing important innovation

and contributions to the development of insect behavior analysis

systems and having broad application prospects in the field of plant

protection. This study serves as the foundation for the behavioral

analysis of nocturnal insects like T. immissaria. The next step will

focus on how their behavior patterns can contribute substantively to

pest management strategies.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Plant Science 12
Author contributions

XQ: Writing – review & editing, Writing – original draft. JX:

Writing – review & editing. YZ: Writing – review & editing. GH:

Writing – review & editing. BX: Writing – review & editing.

RJ: Writing – original draft. KW: Writing – original draft. ZM:

Writing – original draft. JL: Writing – review & editing.
Funding

The author(s) declare financial support was received for the research,

authorship, and/or publication of this article. This work was supported by

the Guangdong Laboratory for Lingnan Modern Agriculture under Grant

NZ2021040 NT2021009, the China Agriculture Research System under

Grant CARS-32, the Discipline Construction Project of South China

Agricultural University in 2023 under Grant 2023B10564002, and the

Special Project of Rural Vitalization Strategy of Guangdong Academy of

Agricultural Sciences under Grant TS-1-4.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016). “Simple online and
realtime tracking,” in 2016 IEEE International Conference on Image Processing (ICIP).
(Phoenix, AZ, USA), pp. 3464–3468. doi: 10.1109/ICIP.2016.7533003

Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. (2020). YOLOv4: optimal speed and
accuracy of object detection. Cornell Univ. arXiv. doi: 10.48550/arXiv.2004.10934

Chen, B. X. (2017). Identification and Control of Pest Insects on Litchi and Longan
(Beijing: China Agricultural Press).

Chen, B. X., Dong, Y. Z. , Chen, L. S., Lu, H., Cheng, J. N., Wang, A. Y., et al. (2010).
Identification and biological characteristics of Eudocima phalonia (L.) on litchi. J. Fruit
Sci. 27, 261-264, 322.

Chen, C.-H., Chiang, A.-S., and Tsai, H.-Y. (2021). Three-dimensional tracking of
multiple small insects by a single camera. J. Insect Sci. 21 (6), 14. doi: 10.1093/jisesa/
ieab079

Cheng, D. F., Li, H. J., and Lu, Y. Y. (2021). Research progress on the impact of
microorganisms on insect behavior. Acta Entomol. Sin. 64, 743–756. doi: 10.16380/
j.kcxb.2021.06.010
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