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planning of an orchard mower
based on safe corridor and
quadratic programming
Jun Li1,2,3, Haomin Li1, Ye Zeng1, Runpeng Jiang1,
Chaodong Mai1, Zhe Ma1, Jiamin Cai1 and Boyi Xiao1,2*

1College of Engineering, South China Agricultural University, Guangzhou, China, 2Guangdong
Laboratory for Lingnan Modern Agriculture, Guangzhou, China, 3State Key Laboratory of Agricultural
Equipment Technology, Beijing, China
Introduction: Path planning algorithms are challenging to implement with

mobile robots in orchards due to kinematic constraints and unstructured

environments with narrow and irregularly distributed obstacles.

Methods: To address these challenges and ensure operational safety, a local path

planning method for orchard mowers is proposed in this study. This method

accounts for the structural characteristics of the mowing operation route and

utilizes a path-velocity decoupling method for local planning based on following

the global reference operation route, which includes two innovations. First, a

depth-first search method is used to quickly construct safe corridors and

determine the detour direction, providing a convex space for the optimization

algorithm. Second, we introduce piecewise jerk and curvature restriction into

quadratic programming to ensure high-order continuity and curvature feasibility

of the path, which reduce the difficulty of tracking control. We present a

simulation and real-world evaluation of the proposed method.

Results: The results of this approach implemented in an orchard environment

show that in the detouring static obstacle scenario, compared with those of the

dynamic lattice method and the improved hybrid A* algorithm, the average

curvature of the trajectory of the proposed method is reduced by 2.45 and 3.11

cm–1, respectively; the square of the jerk is reduced by 124 and 436 m2/s6,

respectively; and the average lateral errors are reduced by 0.55 cm and 4.97 cm,

respectively, which significantly improves the path smoothness and facilitates

tracking control. To avoid dynamic obstacles while traversing the operation

route, the acceleration is varied in the range of -0.21 to 0.09m/s2. In the orchard

environment, using a search range of 40 m × 5 m and a resolution of 0.1 m, the

proposed method has an average computation time of 9.6 ms. This is a

significant improvement over the open space planning algorithm and reduces

the average time by 12.4 ms compared to that of the dynamic lattice method,

which is the same as that of the structured environment planning algorithm.
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Discussion: The results show that the proposed method achieves a 129%

improvement in algorithmic efficiency when applied to solve the path planning

problem of mower operations in an orchard environment and confirm the clear

advantages of the proposed method.
KEYWORDS

mower robot, safe corridor, path planning, quadratic programming, jerk
1 Introduction

Weed control is a crucial aspect of orchard production. Grass

infestation can have adverse effects on soil nutrients, the growing

space of orchard crops, and light availability, ultimately leading to a

reduction in fruit tree yield (Hu et al., 2023). Using mowers with an

autonomous navigation system can significantly enhance the

efficiency of mowing operations compared to the traditional

manual method (Bai et al., 2023; Rai et al., 2023; Thakur et al.,

2023). Path planning is the foundation for achieving autonomous

navigation of lawn mowers. The objective of this strategy is to

compute an optimal collision-free operation path that meets

constraints while minimizing operation costs, such as total

operation distance, operation time, and energy consumption.

Reasonable path planning algorithms ensure operational safety,

reduce the total operating path length and excess coverage, and

improve the operational efficiency of mowers. Promoting the

standardization and normalization of agricultural production

methods is significant for efficient smart agriculture (Yang et al.,

2023; Fasiolo et al., 2023).

Dur ing normal operat ions , the mower fo l lows a

predetermined global route. However, when a collision risk is

detected, local path planning is performed to ensure a collision-

free and feasible time sequence that meets kinematic constraints

and avoids obstacles. This is achieved without deviating

excessively from the global route or exceeding the boundaries of

the operating area (Chengliang et al., 2020). Local path planning

algorithms can be classified into several categories, including

graph search-based, sampling-based, curve interpolation fitting-

based obstacle avoidance, artificial potential field-based,

reinforcement learning-based, and numerical optimization-based

local path planning (Bloch et al., 2018; Ren et al., 2020; Zhong

et al., 2020; Hu et al., 2021; Wang et al., 2021; Zhang et al., 2022;

Zhuang et al., 2023). Graph search-based methods, such as the

A* algorithm and the state lattice algorithm, are capable of

handling high-dimensional data and are suitable for local

planning in dynamic environments. However, these methods are

computationally expensive and have limitations in discrete

resolution. On the other hand, sampling-based methods perform

well in high-dimensional spaces but are prone to expansion failure

in narrow environments and tend to generate overly aggressive
02
planning trajectories (Yang and Lin, 2021). Curve-based methods

can generate smooth trajectories, but they are usually

computationally expensive (Xi et al., 2019; Cheng et al., 2022;

Yang et al., 2022). Optimization-based methods, such as those

used by Dmitri Dolgov et al. (Dolgov et al., 2010), can improve the

quality of existing paths. In their study, hybrid A* trajectories were

optimized using numerical nonlinear functions, which performed

well in unstructured and complex environments. The solution

time was controlled in the range of 50-300 ms. The search problem

can be modeled as an optimization problem, in which various

constraints, such as the velocity, acceleration, and minimum

steering radius, are integrated into a unified model for problem

solving. This approach is widely used in autonomous driving and

robotics systems due to its ability to handle dynamic obstacles and

different types of constraints. The proposed method also utilizes

an optimization-based approach.

In a standardized orchard, fruit trees are distributed according

to specific rows and plant spacings, resulting in a highly structured

operation path. Weeds typically grow between the rows of fruit

trees, which creates a parallel distribution of the operation area

boundary and the operation path, also known as the global

reference route. Therefore, for mowing operations, algorithms

that are applicable to structured environments are more

advantageous than open-space algorithms. Optimization-based

methods are commonly used in structured scenarios with existing

reference lines. In addition to path planning methods in the

Cartesian frame, some approaches transform the planning

problem to different dimensions to reduce complexity. The Frenet

frame is commonly utilized for trajectory planning in structured

environments (Werling et al., 2010). As depicted in Figure 1,

irregularly shaped reference lines in the Cartesian frame are

transformed into straight reference lines in the Frenet frame. This

approach has the advantage of normalizing any road to a straight

tunnel with left and right boundaries. Consequently, the nonlinear

obstacle avoidance constraints in the trajectory planning problem

are converted into linear in-channel constraints. Furthermore, the

motion constraints that were originally coupled are now decoupled

into independent forms in both the longitudinal and lateral

directions (Li et al., 2016). This reduces the planning dimension.

The Frenet frame-based method allows for the description of the

trajectory planning problem as an optimization problem,
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specifically quadratic programming (QP), which can be solved

quickly (Wang et al., 2020; Lim et al., 2021). Optimization-based

methods that utilize the Frenet frame are commonly employed in

industry (Paden et al., 2016; Zhang et al., 2022). Lim et al. (2018)

employed a hierarchical trajectory planning algorithm that

integrated a sampling-based behavioral planner and an

optimization-based motion trajectory planner to facilitate

autonomous driving in urban environments. Fan et al. (2018)

utilized a combination of dynamic programming and quadratic

programming to generate path and speed profiles by lateral and

longitudinal decoupling in the Frenet frame. They obtained a rough

solution using dynamic programming to create a convex space for

the solution and then used quadratic programming to solve the

problem with second-order convergence of the speeds. This method

was applied to Baidu’s self-driving car and was successfully tested

on highways and urban roads in Beijing. However, agricultural

scenes are mostly unstructured, resulting in fewer applications in

agriculture. Yang Lili et al. (Fan et al., 2018) proposed a method for

behavioral decision-making and real-time local path planning for

agricultural machines in the Frenet frame. The method is designed

for real-time obstacle avoidance and speed planning in machinist

trials. Trajectory behavioral decision-making and speed behavioral

decision-making methods were developed using a finite state

machine and an improved dynamic lattice method. The

algorithms’ redundancy was reduced, and their timeliness was

improved. However, the dynamic lattice method has limitations

due to its searching resolution, which allows for only suboptimal

solutions. Additionally, multiple collision detections are required at

each layer, which limits the computational efficiency of

the algorithm.

One of the main challenges of optimization-based methods is

obtaining the optimized constraint space, which includes kinematic

constraints and obstacle avoidance. In the proposed method, a safe

corridor is utilized to represent the obstacle constraint space. In

several approaches, safe corridors (SCs) are utilized to plan and

avoid static obstacles for autonomous mobile robots, including

humanoid robots (Yang et al., 2024), quadrotors (Banerjee et al.,

2015), and ground robots (Liu et al., 2017). A safety corridor

consists of a series of overlapping convex shapes that can be
Frontiers in Plant Science 03
effectively used by existing optimization solvers for robot

planning due to their convex enveloping nature. These safety

corridors are generated around a reference path that does not

consider the system’s dynamics. The generation method typically

involves sampling a given path and creating convex shapes around

the sampling points or path segments. Within the safety corridor,

dynamically feasible trajectories are generated to avoid collisions

with static obstacles. A planning method using safe corridors (Liu

et al., 2017; Tordesillas et al., 2022) has recently been proposed and

compared with other state-of-the-art methods. It has been proven

to be superior in terms of computation time, trajectory speed, and

trajectory smoothness. The trajectories are confined to safe

corridors, ensuring collision-free movement. Safe corridors are

well suited for integration with optimization-based methods. The

key is to improve the quality of the safe corridor generator in terms

of computation time.

Existing studies on obstacle avoidance in agricultural scenarios

are often based on open space planning algorithms in unstructured

environments. However, in these studies, deviations from reference

routes and operational boundary constraints are often not

considered. Additionally, the increase in search dimensions and

search space can reduce the efficiency and optimality of algorithmic

solutions. It is important to address these issues in future research.

Furthermore, the high-order derivative terms of the path, such as

the curvature and jerk, which significantly affect the driving

stability, are often overlooked. Although structured algorithms are

used in agricultural scenarios, they still have deficiencies in terms of

computational efficiency and path quality.

To address the aforementioned challenges and account for the

structured nature of mowing operation routes, a local path planning

algorithm that utilizes safe corridors and quadratic programming is

presented in this paper. The algorithm introduces two

key innovations.
1. A depth-first search method is employed to rapidly

construct a safe corridor, which can then be used to

determine the detour direction and provide a convex

space for the optimization algorithm.

2. Piecewise constraints on jerk and curvature are introduced

into the quadratic planning process. This ensures higher-

order continuity and curvature feasibility of the paths and

reduces the difficulty of tracking control.
The method described has been tested in simulations with

narrow scenarios and has been implemented on hardware for real-

vehicle testing in an orchard. The results of both simulation and real

vehicle tests demonstrate that the proposed method significantly

improves computational efficiency when compared to the open space

planning algorithm (Dolgov et al., 2010) and the dynamic lattice

method (Zhou et al., 2022), which is also a structured environment

planning algorithm. The results validate the advantages of the

proposed method in addressing the path planning problem of

mowing operations in an orchard environment.

The rest of this article is organized as follows. We give an

overview of the complete system pipeline and the details of each key

components in Sections 2. The benchmark comparison on
FIGURE 1

Schematic diagram of the conversion from Cartesian to
Frenet frames.
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simulation map and the real-world experiments are reported in

Section 3. Finally, Section 4 concludes this article.
2 Local path planning method
based on safe corridors and
quadratic programming

In this paper, the current motion state (x, y, q , k , v, a) of the
lawn mower is laterally and longitudinally divided with the help of a

reference line in trajectory planning. The global reference line and

the operation boundary are typically parallel distributed straight

lines instead of curves in the usage scenario of this paper, as shown

in Figure 2. No iterative optimization is needed. Thus, the Cartesian

frame can be used to represent the lateral and longitudinal motions

directly, reducing the planning dimension with the aid of reference

lines in the XY grid instead of the Frenet frame.

The operational area is situated amidst the rows of fruit trees,

and the red path serves as the global reference route for operations.

In this paper, a path-speed decoupling approach is proposed to

separate path planning and speed planning. Moreover, static

obstacles are considered in path planning, and a speed profile is

generated to avoid dynamic obstacles based on the initial trajectory.

While the path-speed decoupling method may not be optimal for

dynamic obstacles, it offers great flexibility in both path and speed

planning and has higher computational efficiency.

Path planning is initially based on the depth-first search

method. The decision on the detour direction is made by

constructing a safe corridor. Once the convex solution space is

obtained, piecewise optimization is performed via quadratic

programming to derive a smooth original trajectory that can

avoid static obstacles. In speed planning, when planning for low-

speed dynamic obstacles, we refer to the method described in the
Frontiers in Plant Science 04
literature (Paden et al., 2016). We make the decision on obstacle

avoidance behavior by finding an optimal piecewise speed profile

on the XT grid using dynamic programming. We then optimize

it using quadratic programming, resulting in a feasible and

smooth speed profile. For high-speed dynamic obstacles, we

prioritize immediate stopping for safety reasons rather than

obstacle avoidance.
2.1 Method for generating safety corridors
using a depth-first search algorithm

Our approach determines the objectives and constraints for

path optimization based on the generated reference line. In this

section, the method for generating feasible search regions for the

optimization process is explained. To ensure convergence to an

optimal solution, the cost function must be convex, requiring the

optimization matrix of the model to be semi-positive definite, i.e.,

the space to be solved must be convex. The feasible region of the

path may consist of multiple geometric spaces separated by

obstacles. For example, passing a static obstacle from the left or

right will create a two-way direction around the obstacle. At this

point, the optimal path and speed solutions are still in the

nonconvex space, and a method is needed to make decisions

about the bypass direction. In this paper, we propose a decision-

making strategy that utilizes depth-first search to search for safe

corridors in an entire operation area. The strategy accounts for the

operation boundary, the positions of static obstacles and the

geometric information. Therefore, inequality constraints are

determined for use in later optimization steps. This approach

enables the creation of convex feasible spaces. As a result, a

quadratic programming-based smooth spline curve solver can

produce smoother path and speed profiles that adhere to

this decision.
FIGURE 2

Schematic diagram of the operation route.
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Fron
Parameters: Preset resolution Ds

1 s ← discretize the vertical displacement space along

the reference line to the preset resolution Ds;

2 lbound ← generate job road boundary;

3 lobs ← generate obstacle boundary;

4 for each si in s do

5 if exists obstacle boundary(si) then

6 if is detour longitudinal interval(si) then

7 detour_directions ← sort(all detour directions

(si));

8 for each direction in detour_directions do

9 if search fails(si, direction) then

10 continue;

11 endif

12 else

13 break;

14 endif

15 endfor

16 endif

17 else if is single row longitudinal interval(si)

then

18 continue;

19 endif

20 endif

21 else

22 llow, lup ← lbound (si);
tiers in Plant Science 05
23 endif

24 endfor

25 return lbound;
Algorithm 1. Safe Corridor Search Algorithm.

Algorithm 1 shows the process for identifying safe corridor

boundaries for mower accessibility. The space for longitudinal

displacement is discretized to a predetermined resolution along

the reference route. Then, operational road boundaries and obstacle

boundaries are generated. The operational road boundary, lbound(si),

is the lateral boundary of the current operational area at each point.

It usually coincides with the rows of fruit trees. Only static obstacles

within the rectangle formed by the search distance and the

operational road boundary are considered in the obstacle

boundary. It expands outward by an appropriate safety distance.

Obstacles are typically irregular edges, and regularization is carried

out at an appropriate resolution, Dsob, to obtain one or more pairs of

lateral obstacle boundaries, lobs(si), and each pair of lateral obstacle

boundaries contains upper and lower boundaries located on the

upper and lower sides of the obstacle, respectively, as shown in

Figure 3. If an obstacle boundary extends beyond the operational

roadway boundary or overlaps with other obstacle boundaries, it is

considered a non-detourable direction, and all boundaries of the

obstacle on that side are removed. The intervals along the

longitudinal axis where obstacles are present are referred to as

obstacle intervals. When there are two or more obstacle boundaries

within a longitudinal interval, it is called a detour longitudinal

interval. On the other hand, when there is only one obstacle

boundary on a side, it is referred to as a one-way longitudinal

interval, and there is no need to decide on a detour direction. If

there are obstacles present but no obstacle boundaries, a complete

blockage occurs, resulting in a failed search.

The length of an obstacle interval segment cannot exceed Dsob.
If the obstacle occupies less than Dsob units longitudinally, the

segment length is equal to the obstacle’s longitudinal length. If the

obstacle’s longitudinal occupation exceeds Dsob, multiple obstacle

interval segments exist.

To determine the safe corridor boundary, we first search forward

from the starting point, s0. If there is no obstacle boundary at si, we use

the operational road boundary as the lower boundary of the safe

corridor at si. We then continue to the next point. However, if there is

an obstacle boundary at si, we employ a depth-first search method:

First, a feasibility assessment is carried out based on the lateral

acceleration limit of the chassis. There is a limit to the rate of change

of lateral displacement with constant longitudinal speed. Therefore,

the most backward boundary of the interval is connected to the

most forward boundary of the previous obstacle interval, and the

slope of the line is evaluated. If the slope of this line is outside the

acceptable range or the connection line cannot avoid the obstacle,

the current interval is deemed unreachable, as shown in Figure 4. If
frontiersin.org
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there are additional detour options, the next direction is searched.

Otherwise, the search is unsuccessful. After the feasibility

assessment, if it is a one-way longitudinal interval, we skip to the

next si. If it is a detour longitudinal interval, we sort all the detour

directions by their lateral widths. We then start with the widest

detour direction and search for subsequent si. If the search along

this direction fails, we gradually backtrack and try other directions.

This process is repeated until complete blockage or until the

maximum search range of 15 meters or 15 seconds of travel in

our implementation is reached.
Frontiers in Plant Science 06
Concatenation is conducted to select the closest boundary of the

two obstacle intervals, which can be the upper boundary, the lower

boundary, or the center. Using this figure as an example, Detour

Direction 1 is closest to the previous interval as the lower boundary,

and the previous interval is closest to Detour Direction 1 as the

upper boundary. Similarly, Detour Direction 2 is closest to the

previous interval as the lower boundary, and the previous interval is

closest to Detour Direction 1 as the lower boundary.

The output of the depth-first search described above is a feasible

region for all sampling points. Backtracking from the endpoints yields a
FIGURE 3

Schematic diagram of boundary generations.
FIGURE 4

Schematic diagram of the detour direction decisions.
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series of safe corridors consisting of operational road boundaries, one-

way intervals, and detour intervals. The method produces a function

that maps the safe corridor boundaries, (ylow, yup), to each longitudinal

location, s. The overall flow of the algorithm is shown in Figure 5.
2.2 Path optimization method based on
piecewise jerk

In this section, we establish the optimization model and use the

piecewise step-by-step construction method to optimize the

obstacle avoidance trajectory using quadratic programming based

on current state. The safe corridor boundaries calculated in Section

2.1 are also considered.

The path optimization model has the following several

constraints that must be satisfied:
Fron
1. The lawnmower must remain within the boundaries of the

operating area and avoid any collisions with obstacles.

2. There are specific kinematic constraints on the lateral

speed, lateral acceleration, and lateral plus acceleration of

the mower depending on the current state.

3. All kinematic relationships must be satisfied.
The optimization metrics considered are as follows:
1. There must be no collisions. It is crucial that the path does

not intersect with any obstacles in the environment, and a

buffer space must be reserved to ensure this condition.

2. When there is no risk of collision, the mower should follow

the reference operating route as closely as possible.
tiers in Plant Science 07
3. The lateral deviation should be minimized as much as

possible. The rate of change of lateral displacements, as well

as their accelerations and jerks, should be minimized. To

facilitate trajectory tracking control, it is recommended to

use lower lateral speeds and their higher-order derivatives.

4. The distance between the mower and the obstacle should be

maximized. To ensure the safe passage of the mower, it is

important to maximize the distance between the mower

and any obstacles. The metric for this is the distance

between the mower and the corresponding safety corridor

boundary. This can be achieved by using safety corridors,

which provide a safe and feasible space.
To summarize, the cost function for optimizing path, y(x),

construction is determined by the weighting of the metrics

mentioned above.

f (y(x)) = wy ∗
Z

y(x)2dx + wy0 ∗
Z

y0(x)2dx

+ wy00 ∗
Z

y00(x)2dx + wy‴ ∗
Z

y‴(x)2dx (1)

+ wobs ∗
Z

(y(x) − 0:5 ∗ (ybound(x)min + ybound(x)max))
2dx

The weight coefficients for lateral deviation, lateral movement

speed, acceleration, and jerk cost are represented by wy , wy0 , wy00 ,

and wy‴ , respectively. The objective is to minimize these factors.

Additionally, wobs represents the weight coefficient for the obstacle

distance cost, and the objective is to maximize the distance from the

obstacle. In the above cost function, the offset from the safety

corridor boundary is relatively more important. A cost function has
FIGURE 5

Flow chart for safe corridor generation.
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been added for the offset indicator, but it is only a soft constraint

and cannot limit the specific value of the offset. Therefore, a hard

constraint on the amount of safety corridor offset has been added:

ybound(x)min < y(x) < ybound(x)max ,∀x∈½0, xmax� (2)

The longitudinal coordinates of the safety corridor are indicated

by ybound(x)min and ybound(x)max , representing the lower and upper

boundaries, respectively.

To formulate the optimization problem and evaluate constraint

satisfaction efficiently, a series of densely discretized points along

the longitudinal direction of a reference line is used in the piecewise

optimization approach. These points represent the path and are

used to control its shape, allowing for the assessment of constraint

satisfaction. The main concept is to discretize the one-dimensional

lateral displacement function up to the second-order derivable level.

Then, a constant third-order derivative term is used to connect two

consecutive discrete points to achieve local second-order derivable

path smoothness. This approach maintains flexibility and

robustness in complex scenarios. The third-order derivative of a

position variable is commonly referred to as the jerk, hence the

name ‘piecewise jerk method’.

y0

y
0
0

y000

→
Dx

y1

y
0
1

y001

→
Dx

y2

y
0
2

y002

…

yn−2

y
0
n−2

y00n−2

→
Dx

yn−1

y
0
n−1

y00n−1

(3)

The equation above illustrates the discretization of the path

function. The variables y
0
i and y00i represent the first- and second-

order derivatives of yi with respect to the longitudinal coordinates x.

Each discrete point of yi, y
0
i , and y00i controls the shape of the path

and is to be optimized. The piecewise jerk method assumes that

consecutive points are connected by a constant third-order term y‴.

The third-order value is calculated by subtracting the second-order

value using the finite difference method:

yi→i+1‴ =
y   00
i+1 − y  00i

Dx
(4)

where the third-order term y‴i is a constant only between two

consecutive points, while y‴i may vary between different consecutive

points. To maintain path continuity, an additional equational

constraint is introduced between the ith and i + 1th points.

y   00
i+1 = y  00i +

Z Dx

0
y‴dx = y  00i + yi→i+1‴ ∗Dx

y   0
i+1 = y  0i +

Z Dx

0
y(x)00dx = y  0i + y  00i ∗Dx +

1
2
∗ yi→i+1‴ ∗Dx2

(5)

yi+1 = yi +
Z Dx

0
y(x)

0
dx

= yi + y  0i ∗Dx +
1
2
∗ y  00i ∗Dx2 +

1
6
∗ yi→i+1‴ ∗Dx3
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The procedure for solving the piecewise jerk optimization

method is as follows: yi,  y
0
i ,  and y

00
i must be found within i ∈

½0, n − 1� to minimize the following cost function:

f y(x)ð Þ = wy ∗o
n−1

i=0
yi

2 + wy0 ∗o
n−1

i=0
y  02i

+ wy00 ∗o
n−1

i=0
y  002i + +wy‴ ∗o

n−2

i=0

y   00
i+1 − y  00i

Dx

� �2

(6)

+ wobs ∗o
n−1

i=0
(yi − 0:5 ∗ (yibound_min + yibound_max))

2

where yibound _min and yibound _max denote the lower and upper

boundaries of the path boundary corresponding to the i-th

longitudinal coordinate after discretization, respectively. The

constraints of the optimization problem include the path continuity

constraints and the constraints on the path boundary offsets.

The optimization of the path must adhere to the kinematic

feasibility constraints of the chassis, in addition to satisfying the

geometric continuity and path boundary constraints. The curvature

of the path is the most crucial factor for kinematic feasibility. The

equation defining the curvature of the path points is determined by

the coordinate transformation formula.

k = y00j j
1+y02ð Þ32 (7)

To simplify the equation, we assume that the mower is nearly

parallel to the reference operating route. This means that the

heading angle of the mower is assumed to be in the same

direction as that of the reference operating route at the matching

point. Therefore, DQ = y0 = 0.

Furthermore, k can be approximated as follows:

k = y00j j (8)

The maximum curvature that the chassis can withstand can be

calculated using the tracked chassis dynamics model, the track

center distance B, and the maximum steering angular velocity wmax

corresponding to the maximum track sliding rate at a certain speed

v that keeps the body stable.

kmax =
1
B
·
wmax

v
(9)

The motion feasibility is considered in the optimization process

by adding the following linear constraints:

By00 − wmax
v ≤ 0 (10)

A quadratic programming model is constructed to solve the

problem based on the optimization objective cost function and

constraints described above. The quadratic programming standard

model is as follows:

min f (x) = 1
2 x

TPxT + qTx (11)
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s : t : lb ≤ Ax ≤ ub

In path planning, the optimization variable x are the lateral

coordinates y and their first-, second- and third-order derivatives.

x = ½ y0 ⋯ yn−1 _y0 ⋯ _yn−1 €y0 ⋯ €yn−1 y…0 ⋯ y…
n−1 �T (12)

where n is the number of discrete points of the generated path,

and the dimension of this optimization problem is 3n. The

optimization objective matrix P is constructed based on the cost

function.

P =

2wy ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 2wy

   

 

2wy0 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 2wy0

 

   

2(wy00 +
wy‴
Dx2 ) 0 ⋯ ⋯ 0

 2 −2
wy‴
Dx2

� �
2(wy00 + 2

wy‴
Dx2 ) 0 ⋯ 0

0 2 −2
wy‴
Dx2

� �
⋱   ⋮

⋮ 0 ⋱ ⋱ ⋮

⋮     ⋱ 0

0 ⋯ ⋯ 0 2(wy00 +
wy‴
Dx2 )

2
6666666666666666666666666666664

3
7777777777777777777777777777775

(13)

The matrix A that constrains the path continuity, path

boundary offset, and curvature is as follows:

A =

1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1

   

 

1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1

1 ⋯ ⋯ 0

⋮ ⋱ ⋮

⋮ ⋱ ⋮

0 ⋯ ⋯ 1

   

−1 1

⋱ ⋱

−1 1

 

−1 1

⋱ ⋱

−1 1

− Dx
2 − Dx

2

⋱ ⋱

− Dx
2 − Dx

2

−1 1

⋱ ⋱

−1 1

−Dx

⋱

−Dx

− (Dx)2
3 − (Dx)2

6

⋱ ⋱

− (Dx)2
3 − (Dx)2

6

1

1

1

2
666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777775

(14)

The upper and lower bounds of the constraint are expressed as

follows:
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lb =

y0l

⋮

y(n − 1)l

y0  0l

⋮

y(n − 1)0  l
y00   0l

⋮

y(n − 1)00   l

− (Dx)3
6 y‴bound

⋮

− (Dx)3
6 y‴bound

− (Dx)2
2 y‴bound

⋮

− (Dx)2
2 y‴bound

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

,  ub =

y0u

⋮

y(n − 1)u

y0  0l

⋮

y(n − 1)0  u

y00   0l

⋮

y(n − 1)00   u

− (Dx)3
6 y‴bound

⋮

− (Dx)3
6 y‴bound

− (Dx)2
2 y‴bound

⋮

− (Dx)2
2 y‴bound

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

(15)

The constructed quadratic planning model is input to the OSQP

solver. The planning trajectory obtained from the above method

contains the position and speed information of the trajectory points,

as well as the lateral acceleration and jerk information. The

trajectory is input into the speed planning module, and the speed

planning is performed according to the position occupied by the

dynamic obstacle at each time point calculated by the prediction

module to avoid the dynamic obstacle. The computed results of

speed planning are assigned to the original trajectory, i.e., the final

trajectory that can avoid static and dynamic obstacles is obtained. In

the real-vehicle experiments, the LQR control algorithm is used to

calculate the optimal control amount based on the gap between the

current position and the position of the trajectory matching point,

which is input to the motor controller for execution.
3 Algorithm test and result analysis

3.1 Test content and parameter setting

To assess the effectiveness of the trajectory planning algorithm,

we tested it in a simulated multi-obstacle environment that

resembles farmland paths. The algorithm was implemented on a

self-developed lawn mower platform. The proposed algorithm was

tested in an orchard, and the results were analyzed. In this paper, we

compare the algorithm presented here with the improved Hybrid

A* algorithm described in Reference (Cheng et al., 2022) and the

improved dynamic lattice method in Reference (Lim et al., 2021).

Hybrid A* is a classical open space planning algorithm widely used

in practice, while the dynamic lattice method is an excellent lateral

and longitudinal decoupled farm machinery path planning

algorithm based on reference lines, exhibiting high path quality

and rapid solving speed. All three algorithms are implemented in C
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++14/Ubuntu18.04. The algorithm presented in this paper is

written in-house and solved using the quadratic convex optimizer

OSQP. The other two algorithms use open-source code

implementation and default settings.

3.1.1 Simulation test scenarios and
parameter settings

An AMD Ryzen 5 4500 6-Core Processor with 16 GB of RAM

was used for the simulation. To represent obstacles, the occupancy

grid of the ROS was implemented. For collision detection, a

rectangle with an outer contour size of 1300 mm × 890 mm

(length × width) was used to represent the lawnmower. The

simulation scenario includes obstacles of varying sizes to test local

path planning algorithms in different obstacle avoidance scenarios.

The obstacles consist of four static objects with dimensions of 3 m ×

2 m, 1 m × 2 m, and 1 m × 1 m. The location and orientation of each

obstacle are fixed in the test for comparison purposes.

First, the map of the operation area is established, the reference

operation route consists of straight-line trajectory points, the whole

length of the operation area is 40 m, the width is 5 m, the starting

coordinates of the agricultural machine are (0, -0.1), the endpoint

coordinates are (40,0), and the single planning cycle is 100 ms,

ignoring the control error. The parameters in the test are set as

follows: the maximum acceleration is 0.6 m/s^2, the operating

speed is set to a constant 1 m/s, the maximum curvature limit is 0.21

m−1, the maximum slope of the interval connecting line is 3.8, and

the lateral expansion distance is 0.5 m. The optimization weights are

set as follows: wy is 0.01, wy0 is 0.5, wy00 is 3, wy‴ is 0.1, and wobs is 0.2.
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3.1.2 Orchard test scenarios and
parameter settings

A self-developed lawn mower platform based on a TK-52

tracked chassis was utilized to conduct a realistic real-machine

verification test of the algorithms in this paper.

The semisolid-state LiDAR LIVOX MID 70 can sense the

environment around the mower and fuse the IMU high-

frequency position information to realize obstacle sensing and

localization. High-precision GNSS antennas at the front and rear

of the vehicle provide the coordinates of the global reference route.

The mower receives the real-time wheel speed through the adaptive

encoder and feeds it back to the path tracking module. The LQR

control algorithm is used to calculate the optimal control quantity

based on the gap between the current position and the position of

the trajectory matching point, which is input to the motor

controller for execution. The experimental environment is a

modern standard orchard in the school, as shown in Figure 6A,

with a spacing of 4 meters and a length of 25 meters. The real

machine platform is shown in Figure 6B.

The obstacle and environment settings are the same as those

designed in Section 3.1, and pedestrians crossing the operation

route with a size of 1 m×1 m and both longitudinal and lateral

speeds of 1 m/s are added to serve as dynamic obstacles whose

locations and sizes are given by the prediction module, avoided by

the speed planning module, and mapped in the XT map.

The algorithms are run on an NVIDIA Jetson NX-based

industrial computer with an NVIDIA Carmel ARM®v8.2

hardware configuration and 8 GB of RAM.
FIGURE 6

Physical map of the orchard trial. (A) Mower platforms. The mower has a traction layout with a tracked undercarriage towing the rear mower
module and a white electrical control box at the rear that contains the electrical components of the undercarriage and mower module. (B)
Test environment.
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3.2 Test results and analysis

In the experiments, we concentrate on path deviation, average

curvature, integral of jerk², and computation time for planning

results. Path deviation is defined as the distance between the path

and the line y = 0. A smaller distance indicates a lesser deviation from

the operational path, thereby focusing more on the operational area.

The term “average curvature” is used to describe the mean value of

the curvature of the planning result. A reduction in the average

curvature results in a smoother transition in steering angular velocity,

which in turn makes control and navigation more straightforward

and reduces the likelihood of contact with the ground. The integral of

jerk² thus represents the degree of aggressiveness of the lateral speed.
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The computation time is a crucial parameter for assessing the efficacy

of an algorithm. A reduction in computation time allows the mower

to respond to unforeseen circumstances in a prompt manner.

Furthermore, in the real machine test, we also prioritize the

assessment of control error, as the quality of the planning results

can significantly influence the control effect.

3.2.1 Simulation test results and analysis
The experimental results are shown in Figure 7 and Table 1, where

a is the result of the planned trajectory and b, c, and d are the curvature,

jerk, and control error changes of the planned path, respectively.

As shown in the table, all three methods generate kinematically

feasible trajectories. However, the method proposed in this paper is
TABLE 1 Comparison of the planning paths.

method
Path

deviation (m)
Average curvature

(m−1)
Integral of jerk²

(m2=s6)

Computation
time
(s)

Improved hybrid A* (Dolgov
et al., 2010)

mean 0.102 0.02 2008.00
0.2592

max 0.224 0.06 2920.00

Dynamic lattice method (Fan
et al., 2018)

mean 0.123 0.02 364.882
0.027

max 0.437 0.15 524.50

Proposed method
mean 0.075 0.01 103.473

0.0098
max 0.176 0.07 107.50
FIGURE 7

Simulation experiment results. (A) Path planning results. (B) Planning path curvature. (C) Planning path jerk.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1403385
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1403385
an order of magnitude faster and tends to generate a path that

deviates less from the original route but is smoother while

maintaining a curvature that is at a minimum and does not

exceed the maximum curvature limit and an order of magnitude

lower acceleration change rate. In the proposed method, deviation,

curvature, and jerk are all minimized as optimization terms, thereby

facilitating the generation of superior-quality paths.
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3.2.2 Real machine test results and analysis
The experimental results are shown in Figure 8 and Table 2, where

a is the result of the planned trajectory and b, c, and d are the curvature,

jerk, and control error changes of the planned path, respectively.

In Figure 8A, the blue trajectory is planned by the algorithm

proposed in this paper, the green trajectory is planned by the

dynamic lattice method, and the red trajectory is planned by the
FIGURE 8

Experimental results for a real vehicle. (A) Path planning results, (B) Safe Corridor, (C) Planning path curvature, (D) Planning path jerk, (E) Absolute
control error, (F) Result of speed planning.
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improved hybrid A* method. Moreover, the pedestrian crosses the

operation area at x = 17.

As shown in the data in the table, the algorithm proposed in this

paper ensures the continuity of the mower path, speed and

curvature changes, and at the same time, it automatically adjusts

the longitudinal speed of the mower in the process of obstacle

detouring. This guarantees the safety of the mower operation in

terms of path planning and speed planning, which is favorable for

the control of the mower. The algorithm proposed in this paper,

which features a smaller curvature and lower degree of transverse

motion, exhibited the lowest control error. In addition, due to the

reduced search dimension, the algorithm proposed in this paper

and the dynamic lattice method, which are lateral and longitudinal

decoupling path planning algorithms based on the reference line,

respectively, have a significant advantage in terms of computing

time compared with the path planning algorithms under open

space. The proposed safe corridor search method is characterized

by a reduced number of arithmetic steps in comparison to dynamic

programming. This results in the creation of a convex space for

searching in quadratic programming. Once more, the rapidity of

quadratic programming allows the method proposed in this paper

to have a markedly lower computational time overhead in

comparison to the other two methods. Consequently, the average

computing time is reduced by 398.5 ms and 326.1 ms, respectively,

which guarantees the timeliness and safety of the lawnmower to

make a correct response when it encounters an obstacle.
4 Conclusion

The current open space and structured algorithms for local path

planning in orchard mowing operations have shortcomings in

terms of both computing efficiency and path quality. In this

paper, we propose a local path planning method that utilizes safe

corridors and quadratic programming. Moreover, depth-first search

is implemented to determine detour directions, and safe corridors

are constructed to provide a convex space for the optimization

algorithm. Additionally, piecewise jerk and curvature limits are
Frontiers in Plant Science 13
introduced in quadratic programming to ensure higher-order

continuity and curvature feasibility of the path.

During real-vehicle tests, this method plans an obstacle avoidance

path with an average curvature of 0.008 m-1 and generates an average

lateral error of 3.73 cm during path tracking. The algorithm presented

in this paper has an average consumption time of 9.6 ms, which is a

significant improvement compared to the dynamic lattice method

and the hybrid A* algorithm, reducing the average time consumed by

12.4 ms and 387.4 ms, respectively. The algorithmic efficiency is

improved by 129% and 4035%, respectively. The algorithm proposed

in this paper plans an obstacle avoidance path that meets the

maximum curvature requirement of the mower chassis. This

enables the mower to smoothly and stably avoid stationary

obstacles. Therefore, a new path planning method for the

automatic operation of a mower is presented in this paper. We are

continuously refining the pipeline of the method and will conduct

tests on complex and diverse orchard scenarios in subsequent studies

to improve its robustness and broad applicability.
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