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Mitigating citrus fruit cracking:
the efficacy of chelated calcium
or silicon foliar fertilizers in
‘Okitsu no. 58’ citrus fruit
Tie Wang1†, Liping Tan1†, Zhaofang Chen2, Youting Yang1,
Ya Yuan1, Zhendong Zheng1, Lijun Deng1, Mingfei Zhang1,
Guochao Sun1, Siya He1, Jun Wang1,
Bo Xiong1* and Zhihui Wang1*

1College of Horticulture, Sichuan Agricultural University, Chengdu, China, 2The Industrial Crop
Institute, Dazhou Academy of Agricultural Sciences, Dazhou, China
The ‘Okitsu No. 58’ citrus variety is highly prone to fruit cracking, which jeopardizes

yield and results in economic losses. In this study, we investigated the impacts of

spraying 5 distinct concentrations (0.1, 0.2, 0.3, 0.4, and 0.5 g/L) of chelated calcium

(Ca) or silicon (Si) fertilizers at the young fruit stage (60-90 days after flowering, DAF)

on fruit cracking and quality in the citrus variety ‘Okitsu No. 58’. The results showed

either Ca or Si fertilizer treatments reduced fruit cracking. We found that all Ca and

partial Si treatments (0.4 and 0.5 g/L) significantly promoted the accumulation of Ca

content in the peel. Notably, Ca or Si treatments significantly reduced

polygalacturonase (PG) activity and inhibited the production of water-soluble

pectin (WSP) in the peel. Additionally, Ca or Si treatments elevated the superoxide

dismutase (SOD) activity and decreased the malondialdehyde (MDA) content of the

peels. Changes in these parameters likely contributed to strengthening the durability

of peel cell wall constituents, thus enhancing the fruit’s resistance to fruit cracking.

Overall, except for the C3 (0.3 g/L of Ca), Ca or Si fertilizers contributed to fruit

conventional quality, mainly in terms of higher soluble sugars (SS) and SS/TA

(titratable acid). Therefore, our findings will provide a reference for the prevention

and control of citrus fruit cracking and the development of new fertilizers.
KEYWORDS
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1 Introduction

Citrus is one of the most popular horticultural crops in the world (Wang et al., 2020).

Citrus fruits are consumed in large quantities because of their attractive aroma and flavor as

well as their rich nutritional and biological activities, which provide high nutritional value

and various health-promoting effects (Lu et al., 2021; Sun et al., 2023). However, the fruits
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of some cultivars are prone to fruit cracking, leading to yield loss

and significant commercial losses to growers (Li and Chen, 2017;

Huang et al., 2024). ‘Okitsu No. 58’ (Citrus reticulata Blanco,

(Sweets pring tangelo × Terovita orange) × [Citrus reticulate

×(C.reticulata×Csinenesis)]) is a high-quality late maturing hybrid

citrus variety introduced to China in recent years. Its pulp has high

sugar content and has important market value and market

competitiveness (Zhai et al., 2022). However, according to our

investigation, ‘Okitsu No. 58’ has a serious fruit-cracking problem

during the fruit expansion stage, which significantly inhibits the

sustainable development of this cultivar (Huang et al., 2024).

According to research, both internal and external conditions

can underly the dynamics of fruit cracking (Fischer and Álvarez-

Herrera, 2021). Intrinsic factors mainly include the genetic

characteristics of the variety (Li et al., 2009) and rootstock variety

characteristics (Agustı ́ et al., 2003), whereas the extrinsic

environment mainly includes environmental conditions and

cultivation management levels (Measham et al., 2009). It is well

known that plant growth and development are related to numerous

factors, but the availability of adequate nutrients is the main focus

(Davarpanah et al., 2018). Previous studies show that nutritional

deficits in some peels can cause them exhibiting metabolic and

developmental issues, further exacerbating fruit wrinkling and

cracking (Li and Chen, 2017). Calcium (Ca) is an important

mineral nutrient involved in citrus fruit development (Storey and

Treeby, 2002; Dong et al., 2009; Tam et al., 2012). Previous studies

in ‘Hongjiang’ orange citrus found that foliar spraying of Ca nitrate

during rapid fruit expansion could increase Ca content in citrus peel

and further inhibit the expression of cell wall degrading enzyme

genes in the peel, thus reducing the occurrence of fruit cracking

(Huai et al., 2022). In addition, it was also found that Ca treatment

significantly increased the expression of antioxidant-related genes

in the citrus peel, improved antioxidant enzyme activity, and

maintained the balance of reactive oxygen species metabolism,

thus reducing fruit cracking (Zhang et al., 2021). To further

determine how Ca reduces susceptibility to fruit cracking

Schumann et al., (2022), studied the effects of Ca on the cell wall

under a microscope, they found that Ca reduces swelling, the

susceptibility of the fruits to cracking. Besides the focus on Ca in

fruit cracking, silicon (Si) also been emphasized and applied for

fruit cracking control (Landi et al., 2016). Si is one of the

components of plant cell walls; it increases the strength of plant

stalks, and improves the resistance to stress (Qin et al., 2016). In

addition, Si has the ability to strengthen the cell walls of fruit tree

plants, improving plant health and productivity (Etesami and Jeong,

2018) Lü et al., (2021). demonstrated that proper Si fertilizer

treatment significantly reduced the occurrence of watermelon

fruit dehiscence. However, the application of Si fertilizer in fruit

trees, especially for fruit cracking, has been reported relatively little.

Overall, the research on Si nutrition in fruit trees is still in its

infancy, and the discovery of related mechanisms needs to be

further developed (Wang et al., 2021). Hence, we speculate that

optimal concentrations of Ca and Si fertilizers exert a suppressive

effect on fruit cracking in ‘Okitsu No. 58’ citrus. However, the extent

of their effectiveness remains unreported.
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Fruit cracking is closely related to peel cell wall substances,

hydrolytic enzymes, and antioxidant enzymes (Guo et al, 2019;

Choi et al., 2020). Our previous investigation into cell wall

composition in crack-prone and non-crack-prone citrus varieties

revealed that the morphological transformation of pectin and the

degradation of hemicellulose and lignin in citrus peel are significant

contributors to fruit cracking in crack-prone citrus varieties (Huang

et al., 2024). Among the enzyme activities affecting fruit cracking,

researchers studying navel oranges found that cell wall hydrolases

can weaken peel strength by breaking down cellular

polysaccharides. This was evidenced by the increased activities of

pectinase, pectin methyl esterase, xylanase, and peroxidase in the

peel (Li, 2009; Li and Chen, 2017). Additionally, fruit cracking is

closely associated with antioxidant enzyme activities. For instance

Zhang et al., (2021), conducted a study where citrus plants were

treated with Ca fertilizer spraying. They observed that Ca ions

notably upregulated the expression levels of CsSOD, CsCAT,

CsAPX, and CsGPX, while downregulating the expression level of

CsPOD. This led to heightened activities of SOD, CAT, APX, and

GPX, and a reduction in POD activity. These alterations in enzyme

activities resulted in enhanced peel cell wall integrity and delayed

fruit cracking onset. Studies on tomatoes have found that cracked

fruit had significantly lower SOD levels compared to normal fruits,

possibly due to inactivation of the enzyme by reactive oxygen

species (ROS) or reduced enzyme synthesis (Zhang et al., 2020).

POD is a common oxidoreductase in plants that can cross−link

phenolic groups of cell wall constituents, which leads to a decrease

in peel extensibility (Elstner, 1982; Campa, 1991).

Current research has established the definitive impact of Ca on

citrus fruit quality. For instance, in Newhall navel orange trees,

foliar application of Ca(NO3)2 during the physiological fruit drop

stage not only significantly increases individual fruit weight but also

affects the metabolism of fruit titratable acidity (TA), thereby

enhancing fruit maturity (Zheng et al., 2017). In studies on

Tarocco oranges, it was found that with the increase in Ca

fertilizer concentration, the levels of total soluble solids (TSS),

total sugars, and the ratio of TSS to TA generally decreased, while

fruit TA levels tended to increase (Wang et al., 2012). Furthermore,

a composite product of Ca and Si fertilizer applied via foliar spray

before harvest also plays a role in regulating citrus fruit quality.

Specifically, it delays fruit ripening, increases TSS, TA, ascorbic acid,

total phenolics, and total antioxidant capacity, while reducing fruit

decay during shelf storage (Ziogas et al., 2022). Although no specific

studies on the impact of sole Si fertilizer application on citrus fruit

quality have been documented, such effects have been reported in

strawberries (Dou et al., 2023; Xu et al., 2023). Researchers found

that foliar spraying of Si on leaves helps increase strawberry yield

and quality. Based on the aforementioned studies, we speculate that

Si also significantly influences citrus fruit quality.

In summary, both Ca or Si fertilizer treatments demonstrated

significant effects on fruit cracking and quality across different

varieties, albeit with varying treatment concentrations among them.

To identify suitable fertilization concentrations for ‘Okitsu No. 58’

citrus, we established different concentration gradients of Ca or Si

fertilizer treatments in this experiment. Subsequently, we examined
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their combined effects on fruit cracking and overall fruit quality of

‘Okitsu No. 58’ citrus. The findings from this investigation will serve

as a valuable reference for controlling citrus fruit cracking.
2 Materials and methods

2.1 Plant materials and experimental design

In this experiment, high grafted 3-year-old ‘Okitsu No. 58’

citrus was used as test material. Trees were grafted on ‘Newhall

navel orange’ (Citrus sinensis Osbeck cv. Newhall) interstock with

‘red tangerines’ (Citrus reticulata Blanco) as the rootstock. The

spacing between plants and rows of all trees is 3×5 m, which were

managed using standard horticultural practices as reported (Chen

et al., 2019). The test site was located in Linqiong Town, Qionglai

City, Chengdu City, Sichuan Province, China, at 103°09′E, 30°33′N,
with an elevation of 504 m. The region has a subtropical monsoonal

and humid climate. The average annual temperature was 16.9°C,

the total annual sunshine was 1107.9 h, the average annual rainfall

was 1117.3 mm, and the annual frost−free period is 330 d.

Ninety−nine citrus plants of ‘Okitsu No. 58’ with uniform

growth and close proximity were randomly selected in the

experimental field, and 3 plants were set as one treatment with 3

replications. Each treatment was evenly distributed among the three

rows. Chelated Ca fertilizer (Ca = 30 g·L−1, amino acid = 100 g·L−1)

(Sichuan Runer Technology CO.,LTD, China), and Si fertilizer

(SiO2 = 290 g·L−1, nano-powder silicon source, particle size 8-10

nm, pH=5.0) (Chengdu Huahong Biotechnology Co., China) were

used as fertilizers to provide Ca and Si elements. It is worth noting

that the amino acid inside chelated Ca fertilizer is more of a

chelating agent, and have a limited impact on fruit cracking

(Zhao et al., 1995; Mohamed et al., 2020).

Five gradient concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5 g·L−1 were

set for Ca and Si fertilizers according to fertilizer use

recommendations and reference to previous studies (Chen et al.,

2014; Landi et al., 2016). The corresponding dilutions were 300, 150,

100, 75 and 60 for Ca fertilizer and 2900, 1450, 966.70, 725 and 580 for

Si fertilizer. The measured fertilizer is meticulously mixed with the

appropriate volume of water and subsequently foliar-sprayed at 60,

75, and 90 days after flowering (DAF) until excess water drips from

both the foliage and fruit surface. Importantly, Ca or Si foliar fertilizers

are administered separately. In the experiment, water served as a

control check (CK), with specific treatments outlined in Table 1.
2.2 Sample collection and processing

Sampling started from 110 DAF, and the sampling time was

110, 130, 150, 170, 190, 210, and 280 DAF. A total of 10 fruits of

medium size, free from diseases and pests, and mechanical damage,

were randomly selected from the upper and middle layers of the

outer canopy of each tree. The fruits were brought back to the

laboratory in ice boxes for processing, washed, and the peel and

flesh were separated. Part of the peel was snap−frozen in liquid

nitrogen and stored in a −80°C refrigerator to determine relevant
Frontiers in Plant Science 03
enzyme activities. The other part of the sample was dried to

constant weight in an oven at 60°C and stored in a dehumidifier

for determination of cell wall material, mineral elements, etc.
2.3 Fruit cracking rate

The percentage of cracked fruits was counted at 20−day

intervals from the appearance of the cracked fruits. Fruit cracking

rate = number of cracked fruits per plant/total number of fruits per

plant (Different developmental periods); values are shown as

percentages (%).
2.4 Mineral elements

A dry sample of 200 mg of crushed peel was carbonized in an

electric furnace and then placed in a high−temperature resistance

furnace at 550°C for 6 h. After cooling, the sample was dissolved in

2 mL of concentrated hydrochloric acid and fixed to 100 mL with

distilled water, and the Ca or Si contents were determined using the

Shimadzu AA6300G atomic absorption spectrophotometry

(Hamamatsu Photonics, Hamamatsu, Japan) (Mohammadzai

et al., 2010), results were expressed in g/Kg DW.
2.5 Cell wall polysaccharides

The dried sample (2 g) was accurately added to 100 mL of 80%

(v/v) ethanol, boiled in a water bath for 20 min, cooled, centrifuged at

3000 × g for 10 min, and the residue was thoroughly washed three

times with 15 mL of 80% (v/v) ethanol. The filter residue was

collected, and the water−soluble pectin (WSP), CDTA−soluble

pectin (CSP), Na2CO3−soluble pectin (NSP), hemicellulose (HC),

and cellulose (CEL) contents were determined according to
TABLE 1 The concentration and timing of Ca and Si
fertilizer applications.

Treatment
Application concentration (g/L)

60 d 75 d 90 d

C1 Ca 0.1 Ca 0.1 Ca 0.1

C2 Ca 0.2 Ca 0.2 Ca 0.2

C3 Ca 0.3 Ca 0.3 Ca 0.3

C4 Ca 0.4 Ca 0.4 Ca 0.4

C5 Ca 0.5 Ca 0.5 Ca 0.5

S1 Si 0.1 Si 0.1 Si 0.1

S2 Si 0.2 Si 0.2 Si 0.2

S3 Si 0.3 Si 0.3 Si 0.3

S4 Si 0.4 Si 0.4 Si 0.4

S5 Si 0.5 Si 0.5 Si 0.5

CK water water water
C, Ca treatment; S, Si treatment; CK, control check.
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previously reported methods (Wang et al., 2015). The pectin content

in the fraction was determined by the m−hydroxydiphenyl method

using galacturonic acid (GA) as a standard and was expressed as mg

g−1FW. WSP, CSP, and NSP values were summed to obtain the total

pectin (TP) content. The hemicellulose and cellulose fractions were

estimated to be glucose using the anthrone method. The results were

expressed as mg g−1 DW.
2.6 Cell wall enzyme activity, antioxidant
enzymes, and malondialdehyde (MDA)

Determination of PG activity: 2 g of the sample to be tested was

taken, 95% ethanol was used for enzyme extraction, and then the

absorbance was measured at 540 nm with reference to the previous

measurement method (Krebbers et al., 2003). The PME activity was

determined by extracting 1 g of the sample to be tested with 2 mL of

5%NaCl solution in an ice bath and following the previousmethod of

treatment (Krebbers et al., 2003). The endoglucanase (EG) activity

was measured using the DNS method (Andrews and Li, 1995).

SOD and POD activities were measured as previously described

(Liao et al., 2015). All enzyme activity units were U/g FW. MDA

content was measured using the method described by Bian et al

(Bian et al., 2018), the results were expressed as mmoL/g FW.
2.7 Fruit quality

Single fruit weights were weighed using an electronic balance

(AL204, METTLER, Switzerland). The total soluble solid (TSS) and

titratable acid (TA) contents were determined using an integrated

sugar and acid machine (Pocket PAL−BXIACID1, ATAGO, Japan),

with results expressed as a percentage (%). Soluble sugars

(SS) were determined using the anthrone colorimetric method

(Bian et al., 2018). Accurately weigh 0.25 g of crushed fruit pulp

sample, place it in a 15 mL centrifuge tube, add 10 mL of deionized

water, immerse it in a boiling water bath for 1 hour, let it cool

naturally, and then centrifuge it at 8000 rpm for 3 minutes. The

supernatant was then used for the determination of soluble sugar.

The content of vitamin C (Vc) was determined by spectrophotometry

(Kelebek and Selli, 2014), with units expressed as mg/100mL.

Accurately aspirate 5 mL of the juice, dilute it with 1% oxalic acid,

and bring the volume to 50 mL. Pipette another 5 mL of the

diluted solution into a 50 mL triangular flask, and add 2, 6-

dichlorophenolindophenol through a semi-microburette until the

solution turns pink in color and remainsstable for 30 seconds.

Record the amount of 2, 6-dichlorophenolindophenol consumed,

and calculate the Vc content.
2.8 Statistical analysis

Statistical analysis was performed via the use of the IBM SPSS

Statistics 23.0 (IBM, Armonk, NY, USA), with the use of a one-way

analysis of variance (One-way ANOVA) (Tukey’s test; different

letters in the figures indicate differences for P<0.05). Principal
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component analysis (PCA) at https://www.omicstudio.cn/tool/13.

The correlation Network was constructed using OmicStudio tools at

https://www.omicstudio.cn/tool.
3 Results

3.1 Fruit cracking rate

The growth status and fruit cracking rate of ‘Okitsu No. 58’

citrus at different developmental stages are depicted in Figure 1.

Through extensive observation, it was determined that fruit

cracking commenced at 110 DAF, reached its peak at 150 DAF,

and ceased by 190 DAF. Across each developmental phase, the CK

exhibited a notably higher crack rate, particularly evident at 150

DAF, where the cracking rate soared to 18.29%. In contrast, the Ca

or Si treatments demonstrated significantly lower cracking rates,

suggesting that either Ca or Si fertilizers suppressed fruit cracking,

with a more pronounced effect observed in C3 and S4 treatments. In

the case of silicon fertilizer application, except for 110 DAF and S5

of 150 DAF, the other treatments showed a decreasing trend in fruit

cracking with increasing Si fertilizer concentration.
3.2 Mineral elements

Aligned with the fruit cracking rate (Figure 1B), ‘Okitsu No. 58’

citrus fruits at 110, 150, and 190 DAF were chosen for the

assessment of Ca and Si accumulation and subsequent in-depth

analysis. Our results showed that Ca treatments significantly

increased Ca accumulation in the peel, especially in the C3, C4

and C5 treatments, whereas among the Si treatments S1, S2 and S3

treatments had no significant effect on Ca content. However, both

S4 and S5 treatments significantly facilitated peel Ca accumulation

(Figure 2A). Particularly noteworthy is the observation that at 190

DAF, the peel Ca content of S5 was significantly highest, measuring

at 3.64 g/kg DW. Moreover, the C3 treatment at 110 DAF exhibited

the highest peel Ca content, registering at a significant level of 5.72

g/kg DW. Regarding peel Si content, we observed that C3

demonstrated a promotional effect on Si from 110 to 150 DAF,

but this trend reversed at 190 DAF. Additionally, S2 and S4

treatments promoted Si enrichment in the fruit peel, whereas all

S5 treatments exhibited inhibition, possibly due to high Si

concentrations causing polymerization reactions thereby reducing

uptake by citrus leaves (Figure 2B). In summary, C3, C4, C5, S4, and

S5 treatments notably enhanced Ca enrichment in the peel, whereas

only S2 and S4 facilitated Si accumulation. Furthermore, the

majority of Ca treatments exhibited a greater promotion of peel

Ca enrichment compared to Si treatments, while Si treatments

induced a higher degree of Si enrichment than Ca treatments.
3.3 Cell wall polysaccharides

The effects of various treatments on the cell wall polysaccharide

contents of ‘Okitsu No. 58’ citrus fruit peel are illustrated in Figure 3.
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A

B

FIGURE 1

Developmental status of ‘Okitsu No. 58’ citrus fruits (A) and the effect of different treatments on fruit cracking rate (B). C, Ca treatment;
S, Si treatment. The parameter values presented in each figure are indicated as mean ± standard error (n=3). Different letters denote statistically
differences between different treatments (Tukey test, P < 0.05).
A

B

FIGURE 2

Effect of different treatments on the elemental Ca and Si content of the ‘Okitsu No.58’ citrus peel. (A) Ca, (B) Si. C, Ca treatment; S, Si treatment. The
parameter values presented in each figure are indicated as mean ± standard error (n=3). Different letters denote statistically differences between
different treatments (Tukey test, P < 0.05).
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The contents of WSP, CSP, and TP increased with fruit development,

while the pattern of change in NSP was less evident (Figures 3A–D).

Overall, at 150 DAF, most Ca treatments showed higher WSP, CSP,

NSP, and TP contents in the peel compared to Si treatments. Notably,

the CSP and TP contents in C3 were notably the highest (1.49 mg/g

DW and 6.91 mg/g DW), while those in S1 were notably the lowest

(0.87 mg/g DW and 5.11 mg/g DW). Among the WSP, CK peel

exhibited consistently higher levels, especially at 150 and 190 DAF,

with significant levels of 3.38 mg/g DW and 8.35 mg/g DW,

respectively. While the HC content from 110 to 190 DAF showed

an increasing and then decreasing trend, the CEL content exhibited a

decreasing trend (Figures 3E–F). The CEL content was significantly

higher under the C3 treatment, whereas the HC content showed the

opposite trend. The HC content in silicon-treated peel remained

consistently higher, particularly under S4 and S5 at 150 DAF (434.94

mg/g DW and 603.69 mg/g DW).
3.4 Cell wall enzymes, antioxidant
enzymes, and MDA

Figures 4A–F depict the variations in cell wall enzymes,

antioxidant enzyme activities, and MDA contents of ‘Okitsu No. 58’

citrus fruit peel. PME, PG, and EG activities exhibited an increasing

and then decreasing trend over time, while SOD, POD, and MDA
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displayed a decreasing trend. PME and PG activities were notably

lower in Si-treated peel compared to Ca treatment, particularly under

S5 at 110 DAF (361.73 U/g FW and 0.32 U/g FW). Conversely, EG

exhibited a tendency of higher enzyme activity in Si-treated peel than

in Ca treatment. Furthermore, PG activity in CK treatment was

significantly higher at 150−190 DAF. EG activity was significantly

lower at 110 DAF and notably higher at 150 DAF and 190 DAF for all

Ca treatments compared to CK, except for C5. EG activity was notably

higher in all Si-treated samples compared to CK.

SOD activity under all Ca treatments, except for C5, was

significantly higher than that under CK during various periods,

notably in C2 and C3. At 110 DAF, either Ca or Si treatments

moderately reduced POD enrichment. Between 150 and 190 DAF,

MDA content was significantly lower in all Ca treatments,

excluding C1, than in CK, while all Si treatments exhibited lower

MDA levels than CK throughout all periods. Additionally, MDA

content under Si treatment was significantly lower than under Ca

treatment, particularly notable in S2 at 190 DAF, where it reached

52.87 mmoL/g FW.
3.5 Fruit quality

The impact of Ca or Si foliar fertilizers on the fruit quality of

‘Okitsu No. 58’ citrus is illustrated in Figure 5. In comparison to the
A

B

D

E

FC

FIGURE 3

Effect of different treatments on the polysaccharide content of the cell wall of the ‘Okitsu No.58’ citrus fruit peel. (A) WSP, (B) CSP, (C) NSP, (D) TP,
(E) CEL, (F) HC. C, Ca treatment; S, Si treatment. The parameter values presented in each figure are indicated as mean ± standard error (n=3).
Different letters denote statistically differences between different treatments (Tukey test, P < 0.05).
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CK, only the C1 treatment significantly decreased fruit weight per

fruit, while other treatments did not exhibit notable differences. TSS

were notably lower under C3 and S3 (9.5% and 8.6%, respectively)

and significantly higher under C1, C2, S1, and S2. Further analysis

of SS content revealed that C3, C4 and S3 also had substantially

lower contents of 6.99%, 6.98% and 6.82%, respectively. Moreover,

C3 demonstrated the lowest TSS/TA, and SS/TA ratios (10.59 and

7.79, respectively), yet displayed significantly higher TA at 0.90%

and Vc at 19.09 mg/100mL. Overall, Si fertilizer treatments

exhibited notably higher TSS/TA, and SS/TA ratios compared to

those of Ca. This suggests that Si contributes to enhancing fruit

quality in ‘Okitsu No. 58’ citrus.
3.6 PCA and correlation analysis

PCA was conducted to elucidate the changes in peel

composition of ‘Okitsu No. 58’ citrus fruit under different

treatments and time points. The PCA results demonstrated a

distinct separation of peel substances among the various

treatment groups at 150 DAF (Figure 6A), suggesting that either

Ca or Si treatments exerted differential effects on each physiological

index of the peel, particularly evident at 150 DAF. Subsequent

correlation analysis revealed a significant and positive correlation

between fruit cracking rate and PME, PG, HC, and Ca, while the
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correlation with Si did not reach statistical significance. Moreover,

Ca exhibited significant positive correlations with CEL, POD,

MDA, and SOD, but significant negative correlations with WSP,

TP, and CSP (Figure 6B). These findings underscore the significant

regulatory impact of Ca on fruit cracking rate and various

physiological indicators.
4 Discussion

Ca or Si reduce fruit cracking by increasing the resistance of the

fruit to cracking (Li and Chen, 2017; Lü et al., 2021). In this study,

we observed that either Ca or Si fertilizer treatments promoted Ca

or Si accumulation in the peel, with particularly notable Ca

enrichment under C3 and C4 peels (Figure 2A). Furthermore,

when combined with fruit cracking rate, we found C3, with a

higher Ca content in the peel, exhibited the lowest fruit cracking

rate. This finding aligns with an earlier study on litchi (Huang et al.,

2001). This may be attributed to the high uptake of exogenous Ca by

the C3 peel, creating conditions to ionic cross−linking between cell

wall polymers, especially between pectin molecule chains, which in

turn reduces the fruit cracking rate (Davis, 1991). However, the

reasons for the high rate of fruit cracking despite the fact that C2, C4

and C5 peel Ca content was also higher remain to be investigated.

Under Si treatment, S4 at 150 DAF exhibited a lower fruit cracking
A

B

D

E
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FIGURE 4

Effect of different treatments on cell wall hydrolase, antioxidant enzyme activity, and MDA content of the ‘Okitsu No.58’ citrus fruit peel. (A) PME,
(B) PG, (C) EG, (D) SOD, (E) POD, (F) MDA. C, Ca treatment; S, Si treatment. The parameter values presented in each figure are indicated as mean ±
standard error (n=3). Different letters denote statistically differences between different treatments (Tukey test, P < 0.05).
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rate (6.25%). It is speculated that this is because the treatment

promoted the Ca uptake in the peel, consequently enhancing the

peel’s resistance to cracking (Figure 2A). Similarly, in tomato

studies, the addition of Si was found to significantly enhance Ca

uptake, which the researchers consider to be a specific mechanism

by which the plant copes with stress, but the mechanism of action

remains to be explored (Zhang et al., 2023).

Fruit cracking is closely associated with the developmental stage

of the peel, and the metabolism and structure of the peel’s cell walls

play crucial roles in determining fruit cracking (Monselise et al.,

1976; Jona et al., 1989; Huang et al., 2006; Li and Chen, 2017). In

this study, although TP content in the peel showed an increasing

trend, there was no noticeable difference between the CK and C3

treatments. Further research showed that WSP content under C3

was considerably lower than CK, while levels of CSP and NSP were

notably higher (Figures 3A–D). Similar results were observed in

pepper research (Liu et al., 2022). This can be explained by Ca
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inhibiting the increase of WSP, reducing the degree of protopectin

degradation (CSP and NSP), stabilizing the cell wall structure,

enhancing peel resistance to cracking, and significantly reducing

the cracking rate (Huang et al., 1999). The lower activities of PME

and PG under C3 would further contribute to its reduced WSP

(Figures 4A, B), a relationship supported by correlation analysis

(Figure 6B). However, Si primarily enhances crack resistance by

reducing PME and PG enzyme activities and maintaining high CSP

levels, particularly under the S4 treatment. Moreover, CEL and HC

also play important roles in maintaining cell wall structure (Yang

et al., 2011). Previous studies have indicated that litchi fruits prone

to cracking exhibit reduced CEL and HC contents in their peel cell

walls compared to crack−resistant varieties, suggesting that this

discrepancy contributes significantly to the reduced mechanical

strength of the peel in crack-prone varieties (Huang et al., 1999).

In our study, C3 exhibited higher CEL but notably lower HC levels

compared to the CK (Figures 3E, F), a trend consistent with the
A
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FIGURE 5

Effect of different treatments on the fruit quality of the ‘Okitsu No.58’ citrus. (A) Single fruit weight, (B) TSS, (C) SS, (D) TA, (E) TSS/TA and SS/TA,
(F) VC. C, Ca treatment; S, Si treatment. The parameter values presented in each figure are indicated as mean ± standard error (n=3). Different
letters denote statistically differences between different treatments (Tukey test, P < 0.05).
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observed EG activity at 110 DAF (Figure 4C). However, the reason

for the significantly higher EG activity of C3 compared to CK at 150

and 190 DAF requires further investigation. It is noteworthy that

although the difference in CEL content between S4 and CK was not

significant, the HC content was significantly higher. This disparity

may also contribute to the reduced frequency of fruit cracking

observed under S4. In addition, fruit cracking is also closely related

to antioxidant enzyme activity (Zhang et al., 2021; Huang et al.,

2024). In this study, SOD activity was higher under C3 treatment,

especially at 110 and 190 DAF, being 16.93% and 43.99% higher

than that of the CK, respectively. In contrast, POD activity was

noticeably lower than CK. In addition, the C3 treatment had lower

MDA levels. These findings indicate that C3 exhibited a stronger

antioxidant capacity (Wang et al., 2013)and peel extensibility
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(Elstner, 1982; Campa, 1991), which could be significant factors

contributing to its decreased fruit cracking rate. The Si results were

similar to those Ca treatment.

Previous studies have shown that spraying Ca or Si improves

the intrinsic quality of fruit (Wang et al., 2022; Dou et al., 2023).

Our results also showed that Ca or Si fertilizer treatments, except for

the C3 treatment, had a beneficial effect on ‘Okitsu No. 58’ citrus

fruit quality, mainly in terms of increasing the fruit SS/TA ratio

(Figures 5A–F). Notably, treatment C3 resulted in the lowest TSS/

TA and SS/TA (10.59 and 7.79), likely due to Ca fertilization

inducing metabolic rearrangements in the fruit, consequently

delaying ripening (Viviana Martins et al, 2021). In summary, Ca

or Si fertilizers were effective on ‘Okitsu No. 58’ citrus fruit cracking,

with C3 and S4 exhibiting relatively better in our results. The
A B

FIGURE 7

Diagram of the mechanism of action of C3 and S4 in controlling fruit cracking. (A) C3, (B) S4. FCR, fruit cracking rate. Orange arrows indicate
inhibition and blue arrows indicate facilitation.
A B

FIGURE 6

PCA and correlation analysis. (A) PCA score plot, (B) Relationship plot between indicators with significant differences in correlations. C110 and S110,
Physiological indices of the ‘Okitsu No. 58’ peel at 110 DAF; C150 and S150, Physiological indices of the ‘Okitsu No. 58’ peel at 150 DAF; C190 and
S190, Physiological indices of the ‘Okitsu No. 58’ peel at 190 DAF; FCR, fruit cracking rate.
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specific mechanisms of action are shown in Figure 7, both of which

control fruit cracking by affecting the metabolism of cell wall

substances and the antioxidant system of the fruit peel. However,

further validation of our results is necessary through investigations

involving other citrus cultivars.
5 Conclusions

The study’s findings revealed that the spraying of Ca or Si

fertilizers reduced the fruit cracking rate of ‘Okitsu No. 58’ citrus

compared to CK. Specifically, at 150 DAF, CK exhibited a fruit

cracking rate of 18.29%, whereas C3 and S4 showed rates of only

2.47% and 6.25%, respectively. Both Ca treatment, S4 and S5 led to

an increase in elemental Ca content in the peel. In addition, Ca or Si

treatments may also affect WSP production by decreasing PG

activity in the peel, and further respond to fruit cracking by

increasing SOD activity, and decreasing MDA content in the peel.

In fruit quality, most of the Ca or Si fertilizers helped to improve the

conventional quality of the fruit. The combined analysis concluded

that either Ca or Si foliar fertilizer application was beneficial in

reducing fruit cracking in ‘Okitsu No. 58’ citrus with C3 (0.3 g/L of

Ca) and S4 (0.4 g/L of Si) being relatively more effective.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

TW: Conceptualization, Data curation, Writing – original draft,

Writing – review & editing. LT: Conceptualization, Validation,

Writing – original draft, Writing – review & editing. ZC:
Frontiers in Plant Science 10
Investigation, Writing – original draft. YTY: Investigation,

Writing – original draft. YY: Investigation, Writing – original

draft. ZZ: Data curation, Writing – original draft. LD: Data

curation, Writing – original draft. MZ: Data curation, Writing –

original draft. GS: Data curation, Writing – original draft. SH:

Writing – original draft. JW: Writing – original draft. BX: Data

curation, Writing – original draft. ZW: Funding acquisition, Project

administration, Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by the Sichuan Provincial Science and

Technology Department Breeding Research Project (Grant

No.21ZDYF2196), the Sichuan Provincial Science and Technology

Department Science and Technology Plan Project (Grant No.

2021YFN0025), and the National Key R&D Program of the

Ministry of Science and Technology of the People’s Republic of

China (Grant No. 2021YFD16008).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Agustı,́ M., Almela, V., Juan, M., Mesejo, C., and Martinez-Fuentes, A. (2003).
Rootstock influence on the incidence of rind breakdown in ‘Navelate’ sweet orange.
J. Hortic. Sci. Biotechnol. 78, 554–558. doi: 10.1080/14620316.2003.11511662

Andrews, P. K., and Li, S. (1995). Cell wall hydrolytic enzyme activity during
development of noncIimacteric sweet cherry (Prunlls avium L.) fruit. J. Hortic. Sci. 70,
561–567. doi: 10.1080/14620316.1995.11515327

Bian, W. J., Bao, G. Z., Qian, H. M., Song, Z. W., Qi, Z. M., Zhang, M. Y., et al. (2018).
Physiological response characteristics in medicago sativa under freeze-thaw and
deicing salt stress. Water Air Soil pollut. 229, 8. doi: 10.1007/s11270-018-3850-x

Campa, A. (1991). Biological roles of plant peroxidases: known and potential function
(Florida, USA: Peroxidases in Chemistry and Biology).

Chen, J., Liu, L., Chen, J., and Zhang, H. (2014). Effects of various calcium treatments
on fruit cracking and cell wall enzyme activities in navel orange. J. South China Agric.
Univ. 35(6), 29–32. doi: 10. 7671/j. issn. 1001-411X. 2014. 06. 006

Chen, X., Li, G., Dongkui, C., Qichun, H., Hongtao, Z., Yaoxin, L., et al. (2019).
Monthly calendar of cultivation and management of orah. Agric. Res. Appl. C1), 49–54.

Choi, J. H., Lee, B., Gu, M. M., Lee, U. Y., Kim, M. S., Jung, S. K., et al. (2020). Course
of fruit cracking in 'Whansan' pears. Horticulture Environ. Biotechnol. 61, 51–59.
doi: 10.1007/s13580-019-00200-1
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