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The agricultural sector is pivotal to food security and economic stability

worldwide. Corn holds particular significance in the global food industry,

especially in developing countries where agriculture is a cornerstone of the

economy. However, corn crops are vulnerable to various diseases that can

significantly reduce yields. Early detection and precise classification of these

diseases are crucial to prevent damage and ensure high crop productivity. This

study leverages the VGG16 deep learning (DL) model to classify corn leaves into

four categories: healthy, blight, gray spot, and common rust. Despite the efficacy

of DL models, they often face challenges related to the explainability of their

decision-making processes. To address this, Layer-wise Relevance Propagation

(LRP) is employed to enhance the model's transparency by generating intuitive

and human-readable heat maps of input images. The proposed VGG16 model,

augmented with LRP, outperformed previous state-of-the-art models in

classifying corn leaf diseases. Simulation results demonstrated that the model

not only achieved high accuracy but also provided interpretable results,

highlighting critical regions in the images used for classification. By generating

human-readable explanations, this approach ensures greater transparency and

reliability in model performance, aiding farmers in improving their crop yields.
KEYWORDS

intelligent agriculture system, machine learning (ML), corn leaf disease, explainable
artificial intelligence (XAI), Visual Geometry Group 16 (VGG16), layer-wise relevance
propagation (LRP)
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1 Introduction

Economic development remains highly dependent on the

agricultural sector (Mgomezulu et al., 2024), particularly in low-

income nations where the industry significantly depends on the

total labor force for income (Dethier and Effenberger, 2012). After

rice and wheat, corn is one of the most important food crops in the

world. People in central and south America generally get their

carbohydrates from it. In the United States, corn is an essential

alternate food source. Corn is a staple grain consumed by people in

several Indonesian areas. In addition to providing humans with

energy, corn is grown for animal feed, cooking oil is made from

grains, and flour (sometimes known as cornstarch) is also made

from grains). Corn and cob flour are also industrial raw materials

(Kusumo et al., 2018). Corn is susceptible to many diseases, some of

which can make it difficult for the crops to grow to their full

potential (Widmer et al., 2024). The intensity of attacks on corn

plants dictates how much of an impact it has. The disease usually

causes irregular cell and tissue activity and stunted growth in

affected plants. Some plants experience stunting and withering,

while others show chromatic changes such as leaf drying or

yellowing (Khoirunnisak, 2020). Early diagnosis mainly prevents

and controls plant diseases, so agricultural production management

and decision-making depend heavily on them. Plant disease

identification has become a critical issue in recent years. Usually,

leaves, stems, flowers, or fruits of disease-infected plants have visible

scars or markings. Every disease or pest issue typically has a distinct

visual pattern that can be utilized to identify anomalies. Most

disease symptoms can initially manifest on the leaves of plants,

making the leaves the primary source of information when

diagnosing plant disease (Li et al., 2021). Figure 1 shows the

different steps involved in intelligent agriculture systems in smart

cities to detect plant diseases.

Smart agriculture utilizes various sensors to collect data

(Rajamohana et al., 2024) that can be used to make better

decisions and increase crop production. This generates large

datasets that can be processed and analyzed by artificial

intelligence (AI) and machine learning (ML) algorithms with high

accuracy. While developing these algorithms improves decision-

making, it will take more time to fully understand and leverage their

capabilities. This decision-making process must be transparent so

that people can trust AI as a part of their daily routine (Hagras,

2018). Machine learning and interoperability mean presenting

machine learning models in a way understandable to humans

(Linardatos et al., 2020); Bridgelall, 2024). While interpretability

ensures the model is transparent before deployment, explainability

explains the black box model post hoc. While the definition of
Frontiers in Plant Science 02
interpretability differs from explainability in machine learning, both

terms denote more or less the same meaning (Carvalho et al., 2019).

Figure 2 demonstrates the difference between explainable artificial

intelligence (XAI) and non-explainable artificial intelligence (non-

XAI) by enhancing people’s abilities with broader contextual

knowledge, logical inference, and problem-solving, ultimately

improving human–machine collaboration (Alsaleh et al., 2023).

Systems with non-XAI may find it challenging to convey higher

contextual concreteness and transparency, thus limiting their ability

to interact and collaborate with humans as shown in Table 1.

XAI is crucial for anticipating corn leaf disease since it gives

farmers explicit knowledge of the logic of the predictions. This

transparency helps farmers manage their crops.

To effectively safeguard their crops, it is essential to enhance

farmers' confidence in AI systems. So, XAI facilitates knowledge

sharing and collaboration among academics, agronomists, and

farmers, which support the development of more effective disease

prediction models and farming methods tailored to corn

leaf production.

This study focuses on leveraging explainable AI for diagnosing

corn leaf diseases, emphasizing early detection, precise diagnosis,

and informed decision-making. This technology aims to help

farmers improve crop health, minimize yield losses, and optimize

resource management in agriculture.

The paper is structured as follows: Section 2 discusses the

previous research on corn leaf diseases, disease prediction

methods, and the application of AI in agriculture. This section

also highlights the limitations of traditional disease prediction

approaches. Section 3 provides a detailed description of the

methodology employed in this study, including the data collection

process, preprocessing techniques, feature selection methods, and

model development. It emphasizes using XAI techniques, such as

interpretable machine learning algorithms, to predict corn leaf

diseases while providing transparent insights into decision-

making. Section 4 discusses the study’s findings, including the

performance metrics of the XAI model in predicting corn leaf

diseases. The results are presented clearly and concisely to

understand the extent to which the developed model can predict

corn leaf diseases accurately. The conclusion summarizes the

study’s key findings and highlights the significance of the research

in the context of agriculture and AI.

Main contributions

The following are the main contributions of this article:
• This study employed Explainable AI (XAI) to elucidate the

decision-making process, setting it apart from previously

published works that lacked such transparency.
FIGURE 1

Steps involved in an intelligent agriculture system.
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Fron
• This paper effectively presents a visual geometry group 16

(VGG16) model for utilizing a dataset containing images

that address four classes of corn leaf diseases: healthy,

common rust, blight, and gray leaf spot.

• The incorporation of layer-wise relevance propagation (LRP)

enhances the accuracy of the analysis by providing valuable

insights into the model’s decision-making process.

• The combination of VGG16 and LRP offers a viable method

for perceiving and investigating corn leaf diseases, enabling

precise disease classification and facilitating a deeper

understanding of the underlying mechanisms influencing

the model’s predictions.
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2 Literature review

In recent times, smart agriculture has been a field of active

research. However, it is essential to note that authors have been

unable to find a solution with the necessary features of

customizability, interpretability, and anomaly detection in the

smart agriculture field. In this section, we will discuss the existing

literature related to different modules.

Using a convolutional neural network (CNN) model, Yang et al.

(2019) assessed maize seedlings by analyzing spectral characteristics

in the visible near-infrared region. Each maize variety’s 3,600-pixel

samples were utilized for CNN modeling, and an extra 400 samples

were used for testing to achieve a correlation coefficient of 0.8219

with chemical methods for cold damage detection.

Agarwal et al. (2019) used a CNN with three convolution layers,

three max-pooling layers, and two fully connected layers. The

dataset contains corn leaves with three diseases: corn gray leaf

spot, corn common rust, and corn northern leaf blight, and

obtained an accuracy of 94%.

Zhen et al. (2020) used regression-guided detection network

(RDNet) with the VGG16 model as a foundation and replaced the

global pooling layer with a fully connected layer. Based on the

encoder–decoder structure, a regional segmentation network
TABLE 1 Comparison between XAI and non-XAI.

Aspect Non-XAI XAI

Transparency Operates as black boxes Designed
for transparency

Interpretability Lack of
interpretability

Prioritizes
interpretability

Accountability Challenges
in accountability

Enhances accountability
FIGURE 2

Comparison between XAI and non-XAI.
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(RSNet) was created. The use of multi-scale kernels of varying sizes

enabled the model to detect different features on different scales.

The shallow field of the original convolution kernel is near the given

image and accurately isolates the suspect area. Segmentation

experiments were conducted on a dataset comprising field

photographs of various crop diseases such as corn leaf spot, corn

round spot, wheat stripe rust, wheat anthracnose, cucumber target

spot disease, and cucumber anthracnose. This model achieved an

accuracy of 87.04%.

Saeed et al. (2021) proposed an automated crop disease

detection system by using partial least squares (PLS) for the

feature selection. The authors used the pre-trained VGG19

network to extract-deep features from the plant village dataset,

which included images of tomato, corn, and potato. Then, the PLS

parallel fusion approach was employed to merge the features

acquired through the 6th and 7th layers of the VGG19 network.

Moreover, the PLS method was used to select the best features and

achieved an accuracy of 90.1%.

A study by Sandotra et al. (2023) included the implementation of

pre-trained DL models for corn leaf disease detection and compared

various CNN architectures. Residual network (ResNet50), VGG16,

VGG19, InceptionV3, and EfficientNetB0 were trained and used on a

leaf dataset of corn leaf, and achieved accuracy rates of 70.02%, 91.37%,

89.69%, 87.77%, and 92.33%, respectively.

Table 2 shows the different AI models for the diagnosis of corn leaf

disease, involving their types, accuracies, limitations, and their applied

datasets. Two authors used the CNN model that was applied to two

different studies based on supervised learning, and reached accuracy

rates of 82.19% and 94% on the hyperspectral data and the multi-corn

leaf diseases, respectively. Other studies employed the RDNet method

using unsupervised learning, achieving an accuracy of 84.04% in

detecting both corn leaf spot and corn round spot. Some authors

focused on the fusion of VGG19, CNN, and PLS using supervised

learning. It gave an accuracy of 90.01% on the images of tomato, corn,

and potato. The last one used five different CNNmodels to detect corn
Frontiers in Plant Science 04
leaf disease. So, all the given models did not use XAI to predict corn

leaf disease.
3 Materials and methods

The dataset contained 4,188 total images that included four

corn leaf disease classes. There were 1,146 images of blight leaf,

1,306 images of common rust, 574 images of gray spot, and 1,162

images of healthy leaf, and this dataset was divided randomly into

70% (2,930 images) for training and 30% (1,258 images) for testing.

The data were acquired from the Kaggle repository (Smaranjit

Ghose, 2024). Figure 3 shows the samples of corn leaf disease.

Image classification involves several steps: First, a labeled

dataset of images is created. Second, the images are preprocessed

by way of resizing, normalizing, and augmenting them; then, the

features are extracted using pre-trained CNN or other methods. On

the basis of the extracted features and their corresponding labels, a

model is trained, after which it is validated for generalization, fine-

tuned as required, and evaluated on a different test dataset. Lastly,

the trained model is put to use in the real world, which classifies the

new images by their visual content. This iterative process enables

the creation of robust models for tasks such as object detection,

classification, segmentation, and generation across diverse domains

(Fadhilla et al., 2023). Figure 4 is an illustrated representation of

this process.

The proposed model design has two phases: training testing.

This design contains five essential steps, as shown in Figure 5. In the

first step, the data are incorporated, and then used for preprocessing

in the second step. After applying DL models to the data, the XAI

model is used to explain the results. Ultimately, the last step ensures

the model’s performance.

Figure 6 depicts the architecture of the proposed approach,

providing a general overview. The dataset (Smaranjit Ghose, 2024)

is processed in two phases: training and testing. So, a DL model is
TABLE 2 Comparison of different AI models used to predict corn leaf disease.

Ref. Model Model
type

Accuracy
(%)

Applied on Limitations

Yang et al. (2019) CNN Supervised
learning

82.19 hyperspectral images
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Agarwal et al. (2019) CNN Supervised
learning

94 corn gray leaf spot, corn common
rust, corn northern leaf blight,

and healthy

Zhen et al. (2020) RDNet Un-
supervised
learning

84.04 corn leaf spot and corn round spot

Saeed et al. (2021) VGG19, CNN,
and
PLS

Supervised
learning

90.01 images of tomato,
corn, and potato

Sandotra
et al. (2023)

ResNet50,
VGG16, VGG19,
InceptionV3,

and
EfficientNetB0

Supervised
learning

70.02, 91.37,
89.69,

87.77, and
92.33

corn blight, corn
common rust, corn

gray leaf spot, and corn healthy
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used for training in which the VGG16 model is employed; after that,

XAI techniques are implemented to visualize the essential features

using the trained model employing LRP. This study used the LRP

method for XAI. LRP, one of the primary algorithms for network

explainability, uses the backpropagation algorithm (Bach et al.,

2015). LRP explains a classifier’s prediction for a specific data

point by attributing ‘Relevance values’ (Ri) to important input

components using the topology of the trained model. It is

effective for images, videos, and text (Ullah et al., 2021). The DL

model is used for the basic prediction of preprocessed data

(Makridakis et al., 2023). The XAI model contrasts these

expectations and the preprocessed data and utilizations for the

correlations to make sense of the prediction made by the DL model.

So, the clarifications given by the XAI model are good and show fair

thinking behind the prediction, and the testing data are applied to

the trained model to check the performance of the model.

The proposed model for detecting corn leaf disease, which

incorporates XAI, is presented in detail in Figure 7. In this

proposed model, during the training phase, the data acquisition

step is responsible for obtaining the raw dataset (Smaranjit Ghose,

2024) of corn leaf disease images from the Kaggle repository. This

dataset includes four categories: blight, gray spot, common rust, and
Frontiers in Plant Science 05
healthy. The initial step is to preprocess the raw dataset. This

involves resizing the images and normalizing the data. After that,

the dataset is then divided into training and testing steps by the

requirements of the DL model implementation. In this approach,

the CNN–VGG16 model used for this research includes a

convolution layer, a pooling layer, a dropout layer, a flattened

layer, and a dense layer (Asriny and Jayadi, 2023); Mardiana

et al., 2023). The VGG16 model was modified to include the four

classes required by the sample dataset (Smaranjit Ghose, 2024).

During the testing phase, the testing dataset is used for assessment.

The trained model stored in the cloud is then used to classify the

corn leaf diseases into four classes: blight, gray spot, common rust,

and healthy, which explain the corn leaf disease.

In this study, a previously trained VGG16 model was used for

transfer learning in AI. This technique is precious for AI developers

as it gives them a shortcut to building good models, which is a

bonus for both time and computer resources. The process usually

involves the utilization of the VGG16 as a feature extractor, which

in turn captures the particular characteristics of images related to

the new task from the dataset. This model has several advantages,

such as better performance, a smaller amount of labeled data, and

efficient use of computational resources. So, transfer learning with
FIGURE 4

A general view of the prediction flow.
FIGURE 3

Samples of corn leaf disease (Smaranjit Ghose, 2024).
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pre-trained models such as VGG16 basically makes the

development of AI applications easier by using previous

knowledge for adaptation to the new tasks (Özden, 2023).

XAI in predictive modeling is the key to the enhancement of the

transparency and the trust of the users by giving them information

about the decision-making process of an AI model. XAI methods are

designed to make complicated models comprehensible to people, thus,

it would be easy for users to understand why a particular prediction is

made. These techniques produce explanations by focusing on the vital

attributes, visualizing the model behavior, or providing context-

oriented insights specific to the application domain. Through the

introduction of XAI into predictive models, stakeholders will be able

to not only acquire useful information aboutmodel predictions but also

reduce the risks related to bias, mistakes, and the lack of transparency,

hence fostering the acceptance and trust of AI systems in the real world

(Ullah et al., 2021).

As shown in Table 3, the pseudo-code frames a proposedmodel for

foreseeing corn leaf diseases utilizing XAI with the VGG16 calculation.

The interaction includes two phases: training and testing. In the

training phase, the dataset (Smaranjit Ghose, 2024) is gathered from
Frontiers in Plant Science 06
Kaggle and then split into training and testing sets. A DLmodel is then

applied to the training dataset, and the model’s forecasts are done by

utilizing XAI procedures. If the clarifications meet the standards for

agreeable execution, the trained model is stored in the cloud. If not, it

sets off a retraining cycle. In the testing phase, testing data are used with

the trained model and then predict the corn leaf disease. After that, the

reasons for corn leaf disease are explained, and such are quite helpful

for farmers in smart agriculture systems.
4 Simulation and results

Some key metrics were evaluated to critically examine various

aspects of the model’s performance. These include accuracy,

precision, true positive rate, false positive rate, and misclassification

rate (Shahinfar et al., 2020). Accuracy is a performance metric that

measures how well a model classifies images, regardless of the

classification error type (Valero-Carreras et al., 2023).

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (1)

TP, FP, TN, and FN are symbols that indicate true positives,

false positives, true negatives, and false negatives, respectively

(Heydarian et al., 2022).

Precision measures how many images were correctly classified

by the model as a fraction of the total number of images classified

(Heydarian et al., 2022).

Precision =
TP

TP + FP
∗ 100 (2)

The false negative rate measures the fraction of incorrectly

classified images from all negative pictures (Renshaw, 1997).

False _ negative _ rate =
FN

FN + TP
∗ 100 (3)

In a confusion matrix, specificity is calculated by taking the TN

for a given class and dividing it by the sum of TN and FP for that

class (Van Stralen et al., 2009).

Specificity =
TN

TN + FP
∗ 100 (4)

The misclassification rate in the confusion matrix represents

the proportion of cases classified incorrectly by the model

(Llullaku et al., 2009).
FIGURE 6

A general view of the proposed model.
FIGURE 5

Five steps of the proposed model.
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Misclassification _ rate =
FN + FP

TP + TN + FP + FN
∗ 100 (5)

The evaluation metrics are used to measure the efficiency and

effectiveness of the proposed approach, as shown in Equations 1–5.

The suggested model classifies images of corn leaf diseases into

four categories: blight, common rust, gray leaf spot, and healthy.

The model’s training parameters are the number of epochs,
Frontiers in Plant Science 07
optimization algorithm, input image size, batch size, and learning

rate, as shown in Table 4.

Table 5 shows a confusion matrix generated during the training

process for classifying corn leaf diseases. The matrix lists the actual

classes as rows and the predicted classes as columns. Each matrix cell

represents the number of instances classified accordingly during

training. For example, the model accurately classified 800 instances

of blight, 914 instances of common rust, 400 cases of gray leaf spot, and

813 instances of healthy. The off-diagonal elements of the matrix

indicate the misclassifications, such as two instances of blight being

incorrectly classified as gray leaf spot and one example of gray leaf spot

being misclassified as blight. This matrix is a valuable tool for

evaluating the performance of the classification model, helping to

identify areas of accurate classification and pointing where errors occur,

so the training results of the model are as illustrated in Figure 8.
FIGURE 7

Detailed proposed model for predicting corn leaf disease with XAI using VGG16.
TABLE 3 The pseudo-code of the proposed model with XAI
using VGG16.

Training phase

1-Data Acquisition
raw_dataset = acquire_raw_dataset_from_Kaggle()
2-Preprocessing
preprocessed_dataset = preprocess_dataset(raw_dataset)
Splitting into training and testing sets
training_set, testing_set = split_dataset(preprocessed_dataset)
3-Deep Learning
trained_model = train_deep_learning_model(training_set)
4- XAI
explanations = explain_predictions(trained_model, testing_set)

If explanations_are_satisfactory(explanations)
Store_model_in_cloud(trained_model)

Else
retrain_model()

EndIf

(Continued)
TABLE 3 Continued

Testing phase

5-Testing
raw_testing_data = collect_raw_testing_data()
preprocessed_testing_data = preprocess_testing_data(raw_testing_data)
Classification using the trained Model
classified_data = classify_data_using_trained_model(trained_model,
preprocessed_testing_data)
Import and utilize identified and predicted data
import_and_utilize_data(classified_data)
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Table 6 displays the confusion matrix for the corn leaf disease

classification test. The rows represent the actual classes, whereas the

columns indicate the predicted classes. Each cell in the table displays

the count of instances classified accordingly during the testing phase.

For example, the model correctly classified 306 instances of blight, 380

cases of common rust, 156 cases of gray leaf spot, and 349 instances of
Frontiers in Plant Science 08
healthy. However, some misclassifications were observed, such as 33

instances of gray leaf spot being misclassified as blight and seven

common rust misclassified as gray leaf spot. The testing accuracy,

shown at the bottom of the table, is 94.67%. This represents the

proportion of correctly classified instances from the total testing

dataset. This matrix provides valuable insights into the model’s

performance, identifying areas where misclassifications occur. It

helps further refine and evaluate the classification model, as shown

in Figure 9.

Table 7 presents the per-class performance metrics of a

classification model used to identify four different classes of corn

leaf disease. The performance metrics, namely, accuracy, precision,

false negative rate, specificity, and misclassification rate are all

expressed as percentages. The model shows high performance

over all the classes in the training phase. In the blight class,

accuracy is 99.98%, precision is 99.87%, and specificity is 99.95%,

where the false negative rate is 0.24% and misclassification rate is
TABLE 4 Training parameters.

Training parameters Values

No. of epochs 10

Batch size 32

Learning rate 0.0001

Optimization algorithm Adam

Input image size 224 × 224 × 3
TABLE 5 Training confusion matrix of the proposed model.

Actual/predicted Blight Common rust Gray leaf spot Healthy

Blight 800 0 2 0

Common rust 0 914 0 0

Gray leaf spot 1 0 400 0

Healthy 0 0 0 813

Training accuracy 99.89%
FIGURE 8

Training confusion matrix of the proposed model.
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0.1023%; common rust and healthy class show 100% accuracy,

precision, and specificity, and have 0% false negative rate and

misclassification rate; and in the gray leaf spot, the accuracy is

99.89%, precision is 99.50%, and specificity is 99.92%, where the

false negative rate is 0.249% and misclassification rate is 0.1023%.

Blight and gray leaf spots show equal accuracy and misclassification

rates. Overall, the model shows high accuracy in identifying corn

leaf diseases in the training phase.
Frontiers in Plant Science 09
Table 8 provides a detailed evaluation of a classification model’s

performance on the four classes of corn leaf disease in the testing

phase. The performance of each class is assessed using five key

metrics, namely, accuracy, precision, false negative rate, specificity,

and misclassification rate. In the blight class, the accuracy is 95.46%,

precision and specificity are 94.15%, the false negative rate is

11.046%, and the misclassification rate is 4.53%. The common

rust class achieved 98.48% accuracy, precision is 98.19%, and
TABLE 6 Testing confusion matrix of the proposed model.

Actual/predicted Blight Common rust Gray leaf spot Healthy

Blight 306 5 33 0

Common rust 5 380 7 0

Gray leaf spot 14 2 156 1

Healthy 0 0 0 349

Testing accuracy 94.67%
FIGURE 9

Testing confusion matrix of the proposed model.
TABLE 7 Per-class performance metrics in training.

Classes Accuracy (%) Precision (%)
False negative

rate (%)
Specificity

(%)
Misclassification

rate (%)

Blight 99.89 99.87 0.24 99.95 0.1023

Common rust 100 100 0 100 0

Gray leaf spot 99.89 99.50 0.249 99.92 0.1023

Healthy 100 100 0 100 0
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specificity is 99.19%. The gray leaf spot has the same accuracy as the

blight class, but the precision is 79.59%, the false negative rate is

9.82%, the specificity is 96.31%, and the misclassification rate is

4.53%. In the healthy class, the accuracy is 99.92%, precision is

99.71%, specificity is 99.88%, false negative rate is 0%, and

misclassification rate is 0.07%. The model shows excellent results

with respect to classifying different classes of corn leaf disease in the

testing phase.

Table 9 displays the proposed model’s performance metrics for

training and testing. Figure 10 shows the results of the VGG16

model enhanced with LRP. This technique helps us understand the

decisions made by the model. In this study, the LRP and VGG16

models are used to predict different types of corn leaf diseases, such

as healthy, blight, common rust, and gray leaf spot. LRP generates
Frontiers in Plant Science 10
results that allow us to understand the features and regions within

the corn leaf images that contribute most significantly to the model

decision-making process. This approach helps us interpret the

model predictions more transparently and explainable, making it

possible for researchers and practitioners to test the model

performance. It also helps identify areas that require

improvement or refinement in the classification task.

Table 10 compares the different models used to predict corn leaf

disease, showing their accuracy, loss rate, and whether they used

XAI. The suggested model used VGG16 with LRP and reached

94.67% accuracy. This is the only model that uses XAI to give

transparency in the decision-making process. In other models

compared, different AI models had lower accuracies and did not

use XAI techniques. So, the proposed model achieves a good

balance between high performance and interpretability using XAI.
5 Conclusion

In this paper, the model VGG16 is employed to deal with the

images used to detect the disease of corn leaves. This model achieves

a better performance in terms of accuracy, specificity,

misclassification rate, and false positive rate with respect to

previously published works. The LRP with VGG16 model is used

to accurately diagnose corn leaf diseases in agriculture. This

technique makes it possible for farmers to get information
TABLE 9 Overall performance metrics of training and testing.

Performance
metrics

Training (%) Testing (%)

Accuracy 99.89 94.67

Precision 99.84 92.91

False negative rate 0.12 5.98

Specificity 99.96 98.32

Misclassification rate 0.11 5.33
FIGURE 10

Results of the proposed model.
TABLE 8 Per-class performance metrics in testing.

Classes Accuracy (%) Precision (%)
False negative

rate (%)
Specificity

(%)
Misclassification

rate (%)

Blight 95.46 94.15 11.046 94.15 4.53

Common rust 98.48 98.19 3.06 99.19 1.51

Gray leaf spot 95.46 79.59 9.82 96.31 4.53

Healthy 99.92 99.71 0 99.88 0.07
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regarding what is happening with corn leaf diseases at the current

moment. This model enables farmers to take action at the right time

and utilize various resources efficiently. This method to detect

disease in the early steps can be used to prevent crop damage.

Therefore, this model enhances farmers’ understanding of disease

transmission or crop management and other facets of sustainable

agriculture with the help of proper explanations and visualizations.

This study demonstrates the relevance of XAI in smart agriculture

and acts as a foundation for future studies on how explainable

methods can be employed to achieve further improvements in the

performance and reliability of deep neural networks in agriculture.
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TABLE 10 Comparison of the proposed model with related works to predict corn leaf disease.

Ref. Model Accuracy (%) Misclassification
rate (%)

XAI

Yang et al. (2019) CNN 82.19 17.81
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Agarwal et al. (2019) CNN 94 6

Zhen et al. (2020) RDNet 84.04 15.96

Saeed et al. (2021) VGG19, CNN,
And PLS

90.01 9.99

Sandotra et al. (2023) ResNet50,
VGG16, VGG19,
InceptionV3, and
EfficientNetB0

70.02, 91.37,
89.69, 87.77,
and 92.33

29.98, 8.63, 10.31,
12.23, and 7.67

Proposed
model

VGG16 empowered with
LRP

94.67 5.33 Yes
Bold values show the results of the proposed model.
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