
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Dilip R. Panthee,
North Carolina State University, United States

REVIEWED BY

Yuyang Zhang,
Huazhong Agricultural University, China
Dinesh Kumar Saini,
Texas Tech University, United States

*CORRESPONDENCE

Sung-Chur Sim

sungchur@sejong.ac.kr

RECEIVED 18 March 2024
ACCEPTED 07 May 2024

PUBLISHED 30 May 2024

CITATION

Yeon J, Le NT, Heo J and Sim S-C (2024)
Low-density SNP markers with high
prediction accuracy of genomic selection for
bacterial wilt resistance in tomato.
Front. Plant Sci. 15:1402693.
doi: 10.3389/fpls.2024.1402693

COPYRIGHT

© 2024 Yeon, Le, Heo and Sim. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 30 May 2024

DOI 10.3389/fpls.2024.1402693
Low-density SNP markers with
high prediction accuracy of
genomic selection for bacterial
wilt resistance in tomato
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1Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Republic of Korea,
2Plant Engineering Research Institute, Sejong University, Seoul, Republic of Korea
Bacterial wilt (BW) is a soil-borne disease that leads to severe damage in tomato.

Host resistance against BW is considered polygenic and effective in controlling

this destructive disease. In this study, genomic selection (GS), which is a

promising breeding strategy to improve quantitative traits, was investigated for

BW resistance. Two tomato collections, TGC1 (n = 162) and TGC2 (n = 191), were

used as training populations. Disease severity was assessed using three seedling

assays in each population, and the best linear unbiased prediction (BLUP) values

were obtained. The 31,142 SNP data were generated using the 51K Axiom array™

in the training populations. With these data, six GSmodels were trained to predict

genomic estimated breeding values (GEBVs) in three populations (TGC1, TGC2,

and combined). The parametric models Bayesian LASSO and RR-BLUP resulted in

higher levels of prediction accuracy compared with all the non-parametric

models (RKHS, SVM, and random forest) in two training populations. To

identify low-density markers, two subsets of 1,557 SNPs were filtered based on

marker effects (Bayesian LASSO) and variable importance values (random forest)

in the combined population. An additional subset was generated using 1,357

SNPs from a genome-wide association study. These subsets showed prediction

accuracies of 0.699 to 0.756 in Bayesian LASSO and 0.670 to 0.682 in random

forest, which were higher relative to the 31,142 SNPs (0.625 and 0.614).

Moreover, high prediction accuracies (0.743 and 0.702) were found with a

common set of 135 SNPs derived from the three subsets. The resulting low-

density SNPs will be useful to develop a cost-effective GS strategy for BW

resistance in tomato breeding programs.
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1 Introduction

Bacterial wilt (BW) is a soil-borne disease that is caused by

Ralstonia solanacearum and leads to severe yield loss in major

vegetables including tomato. After infection via roots, this pathogen

rapidly colonizes the xylem of host plants, resulting in lethal wilting

within several days (Vasse et al., 1995; Denny, 2000). Ralstonia

solanacearum is distributed worldwide with five races, six biovars,

and four phylotypes (Fegan and Prior, 2005; Denny, 2006). For

cultivated tomato, the most virulent pathogens are race 1

(phylotypes I and II) and race 3 (phylotype II) in temperate

regions (Carmeille et al., 2006). Chemical control is widely used

to eliminate this pathogen but is often ineffective due to bacterial

localization in deep soil (Sharma et al., 2021). As an alternative

control strategy, using host resistance is cost-effective and

environment-friendly. Through extensive studies in tomato and

other crop species, BW resistance was found to have polygenic

inheritance (Hayward, 1991).

Different levels of BW resistance were found in several tomato

varieties including Hawaii 7996 (Ha7996), which is an important

source of polygenic resistance (Danesh et al., 1994; Wang et al.,

1998). These varieties have been used to investigate quantitative

trait loci (QTL) in bi-parental mapping populations (Danesh et al.,

1994; Thoquet et al., 1996a; Thoquet et al., 1996b; Wang et al., 2000;

Carmeille et al., 2006; Wang et al., 2013; Truong et al., 2015).

Consequently, several QTL associated with BW resistance have

been found in previous studies. Of these, two loci on chromosomes

6 and 12, named Bwr-6 and Bwr-12, were identified as major QTL

for stable resistance against BW, explaining up to 22.2% and 56.1%

of total phenotypic variations (Wang et al., 2013). In addition, a

genome-wide association study (GWAS) in a collection of diverse

tomato varieties revealed another major QTL on chromosome 4

along with Bwr-6 and Bwr-12 (Nguyen et al., 2021). These QTL

studies also identified several loci with minor effects on different

chromosomes that could be environment- or race-specific.

Major QTL have been used to improve BW resistance via

marker-assisted selection (MAS) in tomato breeding programs.

However, this approach has a limitation for minor QTL with

small effects (Goddard, 2009; Phan and Sim, 2017). Genomic

selection (GS) is considered an effective method to improve

complex quantitative traits that are regulated by a large number

of QTL (Meuwissen et al., 2001). For GS, genome-wide single

nucleotide polymorphisms (SNPs) are used to predict genomic

estimated breeding values (GEBVs) of breeding lines (Bernardo

and Yu, 2007; Heffner et al., 2009; Crossa et al., 2010). Therefore,

the prediction accuracy of GEBVs is a key to select breeding lines

with favorable traits. To estimate GEBVs, parametric and non-

parametric GS models have been developed, and their performances

depend on the genetic architecture of traits (Zhong et al., 2009;

Daetwyler et al., 2010; Merrick and Carter, 2021). Training

population and marker density are other factors to determine the

prediction accuracy of GEBVs (Heffner et al., 2009; Heffner et al.,

2011a, Heffner et al., 2011b; Desta and Ortiz, 2014; Crossa et al.,

2017). GEBVs with high levels of accuracy can be obtained using

training populations consisting of individuals with diverse genetic

backgrounds. Although large numbers of markers across genomes
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lead to high prediction accuracy, the effect of marker density can be

variable for species and traits (Hao et al., 2019; Juliana et al., 2019).

For tomato, GS was investigated for fruit traits, metabolic traits,

yield, earliness, heat tolerance, and bacterial spot resistance

(Duangjit et al., 2016; Hernández-Bautista et al., 2016; Yamamoto

et al., 2016; Yamamoto et al., 2017; Liabeuf et al., 2018; Hernández-

Bautista et al., 2020; Cappetta et al., 2021; Tong et al., 2022).

However, a cost-effective strategy with high prediction accuracy is

still required to accelerate GS. In addition, BW resistance has been

less studied for GS relative to other traits in tomato, even though

MAS has been limited to major QTL. Therefore, the objective of this

study was to assess the prediction accuracy of GEBVs for BW

resistance and increase the efficiency of GS using low-density SNP

markers in tomato. We used two tomato germplasm collections

(TGC1 and TGC2) as training populations for phenotyping and

genotyping. Each population was independently evaluated for BW

resistance based on three seeding assays and was genotyped using

the 51K SNP array. The TGC1 and TGC2 data were combined to

generate a large training population, and the phenotypic data were

adjusted using best linear unbiased prediction (BLUP). With these

data, the prediction ability of six GS models was compared in the

three training populations (TGC1, TGC2, and combined).

Furthermore, the five subsets of markers were generated from the

31,142 SNPs using different methods and were evaluated for

prediction accuracy using the selected models. All the subsets

showed higher levels of prediction accuracy compared with the

31,142 SNPs, suggesting that low-density markers can be effective

for GS. Our results will facilitate GS-based prediction of BW

resistance in tomato breeding programs.
2 Materials and methods

2.1 Plant materials

Two tomato germplasm collections, TGC1 (n = 162) and TGC2

(n = 191), were used in this study. The TGC1 accessions included

119 determinate breeding lines, 42 semi-determinate breeding lines,

and one undetermined breeding line from a private breeding

program, or ig inat ing from seven different countr ies

(Supplementary Table S1). For TGC2 representing indeterminate

accessions, 98 breeding lines were derived from the National

Institute of Horticultural and Herbal Science (NIHHS) in Rural

Development Administration (RDA), the Republic of Korea (ROK).

The other 93 accessions were collected from the National

Agrobiodiversity Center (NAC) in RDA, the Germplasm

Resources Information Network (GRIN) in the U.S. Department

of Agriculture, the C. M. Rick Tomato Genetics Resource Center

(TGRC), and Sejong University (Supplementary Table S1).
2.2 Disease evaluation

These collections were independently evaluated for BW

resistance at the seedling stage in a greenhouse. Three seedling

assays for each collection were conducted with artificial inoculation
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of a virulent strain WR-1 (race 1, biovar 3, and phylotype I) in

different seasons (spring, summer, and fall). For inoculum, this

strain was cultured in the Difco™ nutrient broth medium

containing 3 g/L of beef extract and 5 g/L of peptone (BD,

Sparks, MD, USA) at 28°C for 48 h. Bacterial cells were collected

and resuspended in sterile, double-distilled water, and the resulting

suspension was standardized to OD600 = 0.3 (108 CFU/mL) using

the NanoDrop™ One spectrophotometer (Thermo Fisher

Scientific, Waltham, MA, USA). The roots of 6- to 8-week-old

seedlings were wounded by cutting for inoculation and then dipped

in the bacterial suspension for 30 min (Carmeille et al., 2006). For

each assay, five to seven seedlings per tomato accession were

inoculated and then placed in the greenhouse with a randomized

complete block design. Wilting symptoms were scored 10 or 14 days

after inoculation using a 1–5 scale, where 1 = no wilting symptom,

2 = one or two leaves wilted, 3 = most of the leaves wilted, 4 = all the

leaves wilted, and 5 = plant died (Kelman, 1953). To correct

environmental effects between assays, the BLUP values were

calculated for the phenotypic data of BW resistance using the R

package “lme4” (Bates et al., 2015) and used for further analysis.
2.3 Genotyping

Genomic DNA of each accession was isolated from fresh and

young leaf tissue of 3- to 4-week-old seedlings using a modified cetyl

trimethyl ammonium bromide (CTAB) method (Kabelka et al.,

2002). The isolated DNA pellets were resuspended by T1/10E buffer

(10 mM of Tris–HCl pH 8.0, 0.1 mM of EDTA), and their

concentrations were estimated using the NanoDrop™ One

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA). The final concentration was adjusted to 50 ng/µL for

genotyping with the Axiom® tomato array containing 51,912 SNPs

(Yamamoto et al., 2016). For this SNP array-based genotyping, 200

ng of genomic DNA for each accession was amplified and then

fragmented into 25–125 bp using the Axiom® 2.0 reagent kit

(Thermo Fisher Scientific, Waltham, MA, USA). The resulting

DNA fragments were hybridized to the array in the Affymetrix®

GeneTitan system according to the manufacturer’s instructions. SNP

calling was conducted using the Affymetirx® Power Tools software

package v1.18, and high-quality SNPs were filtered based on <10% of

missing data and >5% of minor allele frequency. The remaining

missing data of these SNPs were imputed using BEAGLE v5 with

default parameter settings (Browning, 2008).
2.4 Assessment of GS model performance

Six GS models were used to predict GEBVs for BW resistance in

three training populations (TGC1, TGC2, and combined). Of these,

the parametric models included ridge regression-best linear

unbiased prediction (RR-BLUP), BayesA, and Bayesian LASSO.

The non-parametric models were reproducing kernel Hilbert space

(RKHS), support vector machine (SVM), and random forest. The

SNP genotypes were used to train the GS models along with the
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BLUP values for BW resistance in each population. The estimates of

GEBVs were obtained in the GS models implemented in several R

packages: “rrBLUP” for RR-BLUP and RKHS (Endelman, 2011),

“BGLR” for BayesA and Bayesian LASSO (Pérez and De Los

Campos, 2014), “e1071” for SVM (Meyer et al., 2023), and

“randomForest” for random forest (Liaw and Wiener, 2002).

Cross-validation was conducted using the leave-one-out cross-

validation (LOOCV) method (Molinaro et al., 2005). Prediction

accuracy was determined based on the Pearson correlation

coefficients between GEBVs and observed phenotypes (BLUP

values) in the training populations.
2.5 Prediction accuracy analysis of low-
density markers

The prediction accuracy of low-density markers was

investigated using the selected models, which showed the best

performance in each of the two groups (parametric and non-

parametric). For this analysis, several subsets were generated by

filtering the total marker set of confident 31,142 SNPs. The first

subset was obtained based on the marker effect values of 31,142

SNPs that were determined by estimating the effects of SNP allele

substitution in a parametric model. With a non-parametric model,

the second subset was generated based on variable importance

(VIM) values that were determined as the percentage of increased

mean squared error (MSE) after this marker was randomly

permuted in a new sample (Nicodemus et al., 2010). The marker

effect and VIM values were calculated in the combined population

and 1,557 of 31,142 SNPs were selected as the top 5% of marker

effects or VIM values. The third subset consisted of SNPs that were

significantly associated with BW resistance. For this subset, a

GWAS was conducted in the combined population. Population

structure was inferred to determine the best K (number of clusters)

using the STRUCTURE v.2.3.4 program (Pritchard et al., 2000).

The 10 Ks (1–10) were tested in 10 independent simulations for

each K with a burn-in of 20,000 iterations and a run length of

100,000 iterations. With the resulting log-likelihood values, the best

K was found in the delta K method (Evanno et al., 2005), and the

corresponding membership coefficients of tomato accessions were

used as the Q matrix. In addition, a kinship matrix was generated

using the VanRaden algorithm (Vanraden, 2008) for association

analysis. Marker–trait association was detected using a multilocus

mixed model (MLMM) implemented in the genomic association

and prediction integrated tool (GAPIT) (Lipka et al., 2012). In this

model, both Q and kinship matrices were used as covariates to

reduce false-positive associations due to population structure and

familial relatedness (Yu and Buckler, 2006). Significant associations

were determined using two thresholds, P <0.05 and P <0.005. Two

additional subsets (fourth and fifth) were also generated using the

first to third subsets. For the fourth subset, all of the SNPs in the

three subsets were combined, while the common SNPs were used

for the fifth subset. These five subsets and a total marker set (31,142

SNPs) were used to estimate GEBVs for BW resistance, and their

prediction accuracies were evaluated in the combined population.
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3 Results

3.1 Phenotypic variation of BW resistance
in the tomato collections

Two collections (TGC1 and TGC2) were evaluated for BW

resistance in three independent greenhouse trials, respectively. For

TGC1 (n = 162), we found asymmetric distributions skewed

toward resistant responses in all the seedling assays (Figure 1A).

The first and third assays, which were performed in spring and

fall, showed the five rating scales (1 = no wilting symptom to 5 =

plant died) with means of 1.76 and 1.98, respectively. The Pearson

correlation coefficient was 0.69 between these assays (Table 1).

The second assay conducted in summer showed a mean of 2.80

and relatively lower correlations with the first assay (0.16) and the

third assay (0.36). The BLUP data of all the seedling assays showed

less asymmetric distribution with a mean of 2.18 and correlation

coefficients of 0.70 (vs. the second assay) to 0.87 (vs. the third

assay) (Figure 1A, Table 1). For TGC2, the first and third assays

showed skewed distributions to susceptible responses with means

of 3.93 and 3.57, while the second assay showed a relatively

symmetric distribution with a mean of 2.99 (Figure 1B).

Interestingly, the first assay showed a higher correlation with

the second assay (0.64) compared with the third assay (0.35)

(Table 1). The first and second assays were conducted in two fall

seasons, but the third assay was done in summer. In addition, the

BLUP data of TGC2 showed a mean of 3.50 and correlation

coefficients of 0.74 (vs. the third assay) to 0.84 (vs. the second

assay) (Table 1). For the combined population, additional BLUP

data were generated with six phenotypic data sets of both TGC1

and TGC2 and showed normal distributions with a mean of 3.09

(Figure 1C). The BLUP data of the three populations (TGC1,

TGC2, and combined) were used to assess the prediction accuracy

of GEBVs for BW resistance.
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3.2 Prediction accuracy of GEBVs between
GS models

The 51K SNP array generated common 31,142 SNPs with

reliable polymorphisms in both tomato collections. Their

genotypic data were used to train six GS models along with the

BLUP data in three training populations (TGC1, TGC2, and

combined). The parametric models, RR-BLUP, BayesA, and

Bayesian LASSO, showed higher prediction accuracies in TGC2

(0.672–0.680) relative to the TGC1 (0.518–0.544) and combined

(0.609–0.625) populations (Table 2). Of these models, Bayesian

LASSO showed the highest prediction accuracy in both TGC1

(0.544) and combined (0.625) populations. The prediction

accuracy of Bayesian LASSO in TGC2 was 0.672, which was

slightly lower than 0.680 for RR-BLUP. Similarly, three non-

parametric models (RKHS, SVM, and random forest) revealed

higher prediction accuracies in TGC2 (0.595–0.683) relative to

the TGC1 (0.451–0.526) and combined (0.549–0.614) populations

(Table 2). In addition, random forest provided the highest

prediction accuracy in both TGC2 (0.683) and combined (0.614)

populations, while SVM resulted in the lowest prediction accuracy

in all the populations. With these results, Bayesian LASSO and

random forest were selected as the best models to predict GEBVs for

BW resistance and used to identify low-density SNP sets for

genomic selection.
3.3 Efficiency of low-density SNP markers
for genomic selection

The marker effects of 31,142 SNPs were estimated using

Bayesian LASSO in the combined population and 1,557 SNPs in

the top 5% were selected to generate a subset of markers

(Figure 2A). Similarly, the second subset of 1,557 SNPs was
A

B

C

FIGURE 1

Phenotypic distributions of independent seedling assays and best linear unbiased prediction (BLUP) for bacterial wilt resistance in three populations:
(A) TGC1 (n = 162), (B) TGC2 (n = 191), and (C) combined (n = 353). BLUP values were calculated by the random-effect model including genotype,
location, year, and replication as variables to correct the environmental effects.
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produced using the VIM values, which were calculated in random

forest (Figure 2B). For the third subset, GWAS for BW resistance

was conducted in the combined population. Population structure

analysis revealed that 353 tomato accessions were separated into

seven clusters, and the number of accessions per cluster ranged

from 10 (cluster 7) to 102 (cluster 6) (Supplementary Table S1). The

majority of accessions in clusters 1 (88.0%) and 2 (89.7%) were

derived from TGC1, while clusters 6 and 7 were represented by the

TGC2 accessions (89.2% and 100.0%). In the other clusters, we

found relatively high levels of mixture (31.9%–68.1% for each

collection). The multilocus mixed model (MLMM) identified 63

SNPs significantly associated with BW resistance at P <0.005 on

nine chromosomes (1, 2, 4, 6–9, 11, 12) including three major QTL

(Bwr-4 , Bwr-6 , and Bwr-12) (Supplementary Figure S1,

Supplementary Table S2). With the threshold of P <0.05, a total

of 1,357 SNPs showed significant associations across 12

chromosomes (Figure 2C). This number of SNPs could be large

enough to capture QTL with minor effects and, thus, was used to

generate the third subset.

Each subset included not only subset-specific but also common

SNPs, which were found in more than two subsets (Figure 3). For

the first subset, 845 (54.3%) of 1,557 SNPs were subset-specific and

other SNPs were also present in the second (344 SNPs) and third

(503 SNPs) subsets. Of the 1,557 SNPs, 1,118 (71.8%) in the second
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subset were subset-specific, while 230 SNPs were also found in the

third subset. Moreover, a total of 135 SNPs were found in all the

subsets (Figure 3A). With only 63 significant SNPs at P <0.005 in

the third subset, we found much smaller numbers of common SNPs

in all pairwise comparisons, ranging from 24 to 344 (Figure 3B).

Therefore, the significant 1,357 SNPs at P <0.05 were used as the

third subset to generate two additional subsets. The fourth subset

consisted of 3,529 that were obtained by combining all the SNPs in

the first to third subsets, while the fifth subset included 135

common SNPs (Figure 3A).

Five SNP subsets were assessed for prediction accuracy using two

GS models, Bayesian LASSO and random forest, in the combined

population. With Bayesian LASSO, all the subsets showed higher

prediction accuracies compared with 0.625 in the total set of 31,142

SNPs (Figure 4). Of these, the first (marker effect-based) and third

(GWAS-based) subsets resulted in 0.753 and 0.756 that were higher

than 0.699 of the second subset (VIM-based). Interestingly, the fourth

and fifth subsets, which consisted of 3,529 and 135 SNPs, showed a

little difference in prediction accuracy (0.740 vs. 0.743) (Figure 4).

The random forest model also provided higher prediction accuracies

in the five subsets (0.661 to 0.702) compared with the total set (0.614).

However, the first to fourth subsets showed similar levels of

prediction accuracy ranging from 0.661 to 0.682. In addition, the

highest prediction accuracy was found in the fifth subset (Figure 4).
TABLE 2 The prediction accuracy of six genomic selection models for bacterial wilt resistance in the three training populations (TGC1, TGC2, and
combined) based on 31,142 SNP markers.

Genomic selection model
Prediction accuracya

TGC1 (n = 162) TGC2 (n = 191) Combined (n = 353)

Parametric models

RR-BLUP 0.537 0.680 0.621

BayesA 0.518 0.672 0.609

Bayesian LASSO 0.544 0.672 0.625

Non-parametric models

RKHS 0.526 0.669 0.611

SVM 0.451 0.595 0.549

Random forest 0.506 0.683 0.614
RR-BLUP, ridge regression best linear unbiased prediction; RKHS, reproducing kernel Hilbert space; SVM, support vector machine.
aPrediction accuracy was determined using the Pearson correlation coefficients between genomic-estimated breeding values (GEBVs) and BLUP. GEBVs were estimated using the leave-one-out
cross-validation method in each model.
TABLE 1 Correlations between three independent seedling assays and best linear unbiased prediction (BLUP) for bacterial wilt resistance in two
tomato germplasm collections: TGC1 and TGC2.

Collection Phenotype
Pearson correlation coefficient

2nd assay 3rd assay BLUP

TGC1 (n = 162)

1st assay 0.16 0.69 0.76

2nd assay – 0.36 0.70

3rd assay – – 0.87

TGC2 (n = 191)

1st assay 0.64 0.35 0.83

2nd assay – 0.42 0.84

3rd assay – – 0.74
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4 Discussion

GS was proposed to increase genetic gains for quantitative traits

by predicting GEBVs with genome-wide molecular markers

(Meuwissen et al., 2001). In the present study, we investigated GS

for BW resistance using two tomato collections, TGC1 and TGC2.

Different phenotypic distributions and correlations were observed

between three seedling assays for disease evaluation in both

collections, suggesting that environmental effects were present.

For BW, high temperatures (30°C–35°C) are known to increase

susceptibility in tomato (Lee et al., 2011; Singh et al., 2014; Yeon

et al., 2022). Therefore, the phenotypic data of each collection were

adjusted using BLUP, which accounts for random effects

(Henderson, 1975; Robinson, 1991). Furthermore, the TGC1 and

TGC2 data were integrated based on BLUP to produce a large

training population. The size and genetic diversity of the training

populations are factors that affect the prediction accuracy of GEBVs

(Desta and Ortiz, 2014; Edwards et al., 2019). The resulting BLUP

data in the three training populations (TGC1, TGC2, and
Frontiers in Plant Science 06
combined) were used to evaluate the prediction accuracies of

GEBVs between different GS models and develop a cost-effective

strategy for BW resistance.

Several GS models have been developed to estimate GEBVs for

traits of interest based on different assumptions (Zhong et al., 2009;

Daetwyler et al., 2010; Desta and Ortiz, 2014). Parametric models

are commonly used to estimate additive genetic effects, while non-

parametric models are appropriate for non-additive genetic effects

and multivariates (De Los Campos et al., 2010; Holliday et al., 2012;

Pérez-Rodrıǵuez et al., 2012; Krishnappa et al., 2021). In this study,

the GEBVs of BW resistance were estimated using both parametric

(RR-BLUP, BayesA, and Bayesian LASSO) and non-parametric

(RKHS, SVM, and random forest) models. Of these, Bayesian

LASSO and RR-BLUP showed better performances than the non-

parametric models, except random forest in TGC2. For BW

resistance, additive genetic effects with lack of epistasis were

previously reported in tomato (Da Silva Costa et al., 2018; Costa

et al., 2019). In addition, three major QTL (Bwr-4, Bwr-6, and Bwr-

12) have been known to be associated with BW resistance along
A B

FIGURE 3

Venn diagram for the number of SNPs in three subsets based on marker effects (subset 1), variable importance values (subset 2), and marker–trait
associations (subset 3). The intersections of circles represent the number of common SNPs of two or three subsets. Subsets 1 and 2 consist of 1,557
SNPs representing the top 5% of marker effects or VIM values, respectively. The SNP markers significantly associated with BW resistance were
selected as subset 3 using two thresholds: (A) P < 0.05 and (B) P < 0.005.
A B C

FIGURE 2

Distribution of (A) marker effects, (B) variable importance (VIM) values, and (C) −log10(P-values) of 31,142 SNP markers obtained in the combined
population (n = 353). The marker effects and VIM values were obtained using Bayesian LASSO and random forest, respectively. The P-values were
derived from the multilocus mixed model (MLMM) in a genome-wide association study. The red lines represent the thresholds for marker selection,
with the top 5% of marker effects, VIM values, and P-value of 0.05.
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with several minor QTL (Thoquet et al., 1996a, Thoquet et al.,

1996b; Wang et al., 2013; Nguyen et al., 2021). This genetic control

of BW resistance supports that the parametric models are more

appropriate to predict GEBVs than the non-parametric models.

Since the Bayesian methods have various degrees of shrinkage for

marker effects due to their prior distributions (De Los Campos et al.,

2009; Wang et al., 2018), we found different prediction accuracies

between BayesA and Bayesian LASSO. For RR-BLUP, all markers

are assumed to have equal variances with small effects, and this

model is known to be appropriate for complex traits controlled with

several minor QTL (Meuwissen et al., 2001; Wang et al., 2018).

Similar levels of prediction accuracy between Bayesian LASSO and

RR-BLUP were also found for fruit traits in hot pepper (Hong et al.,

2020). These results demonstrate that model performance depends

on the complexity of quantitative traits.

Marker density is an important factor that affects the prediction

accuracy of GEBVs for traits of interests (Heffner et al., 2009;

Heffner et al., 2011a, Heffner et al., 2011b; Desta and Ortiz, 2014;

Crossa et al., 2017). High-density markers across all the

chromosomes have been commonly used to preserve linkage

disequilibrium between markers and QTL for GS. However, a

simulation-based study proposed that using markers associated

with major QTL as fixed effects increases the prediction accuracy

in RR-BLUP (Bernardo, 2014). This strategy has been utilized to

estimate accurate GEBVs for agronomic traits and disease

resistance in wheat (Bentley et al., 2014; Rutkoski et al., 2014;

Sarinelli et al., 2019), pro-vitamin A content in maize (Owens et al.,

2014), agronomic traits in rice (Spindel et al., 2016), and

capsaicinoid content in hot pepper (Kim et al., 2022). In the
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present study, we also used marker–trait associations to identify

low-density markers with high prediction accuracy. A total of 1,357

SNPs were selected based on significant associations with BW

resistance at P <0.05. This GWAS-based subset included markers

for all the known QTL with large effects. Furthermore, the 31,142

SNPs were filtered based on the top 5% of marker effects and VIMs

to generate two subsets consisting of 1,557 SNPs. Two additional

subsets were also produced using all the markers (3,529 SNPs) and

common markers (135 SNPs) of the three subsets. All the subsets

revealed higher levels of prediction accuracy than the 31,142 SNPs

in the selected parametric (Bayesian LASSO) and non-parametric

(random forest) models. As expected, Bayesian LASSO showed

better performance in these subsets compared with random forest.

Moreover, the marker effect-based and GWAS-based subsets

resulted in higher prediction accuracies (0.753 and 0.756) relative

to the VIM-based subset (0.699) in Bayesian LASSO. We also found

that the subset of 135 SNPs showed slightly higher prediction

accuracy (0.743) relative to the subset of 3,529 SNPs (0.740).

These results demonstrate that a cost-effective marker set for GS

can be developed based on marker effects and marker–trait

associations. The VIM values are also suggested to be useful to

filter markers, depending on the genetic architecture of traits.

In conclusion, our study was conducted to investigate a cost-

effective GS approach with low-density markers for improving BW

resistance in cultivated tomato. The prediction accuracy of GEBVs

was evaluated in six GS models representing parametric (RR-BLUP,

BayesA, and Bayesian LASSO) and non-parametric (RKHS, SVM,

and random forest) models. Of these, Bayesian LASSO and RR-

BLUP resulted in higher prediction accuracies relative to the non-
A B

FIGURE 4

Prediction accuracy of genomic estimated breeding values (GEBVs) with the 31,142 SNPs and five subsets for bacterial wilt resistance in the
combined population (n = 353). GEBVs were estimated using two models: (A) Bayesian LASSO and (B) random forest with leave-one-out cross-
validation. Prediction accuracy was determined with the Pearson correlation coefficients between GEBVs and the observed phenotypes. Three
subsets were generated based on marker effects (subset 1, n = 1,557), variable importance values (subset 2, n = 1,557), and marker–trait associations
(subset 3, n = 1,357). All the SNPs of these subsets were combined for subset 4 (n = 3,529), and the common SNPs of the three subsets were used
for subset 5 (n = 135).
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parametric models in two of three training populations. In addition,

random forest showed better performance than the other non-

parametric models. The 31,142 SNPs were filtered to generate five

subsets using marker effects, variable importance values, and

marker–trait associations. All the subsets with low-density were

effective to estimate more accurate GEBVs compared with the high-

density marker set. Moreover, we found a high level of prediction

accuracy in the subset of 135 SNPs, which were selected as common

markers among the three subsets based on marker effects, variable

importance values, and marker–trait associations. These results

suggest that low-density markers can be effective to predict

accurate GEBVs, depending on the complexity of quantitative

traits. The SNP subsets from the present study will be valuable to

accelerate the practical application of GS for improving BW

resistance in tomato breeding programs.
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