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Soil drought sets site specific
limits to stem radial growth
and sap flow of Douglas-fir
across Germany
Armin Niessner1*, Stefan Ehekircher1, Reiner Zimmermann2,
Viviana Horna3, Daniel Reichle4, Alexander Land1,4,
Göran Spangenberg1 and Sebastian Hein1

1Department of Silviculture, University of Applied Forest Sciences, Rottenburg am Neckar, Germany,
2Ecological Botanical Gardens ÖBG, University of Bayreuth, Bayreuth, Germany, 3Department of
Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany, 4Institute of
Biology, University of Hohenheim, Stuttgart, Germany
Introduction: Soil drought during summer in Central Europe has become more

frequent and severe over the last decades. European forests are suffering

increasing damage, particularly Norway spruce. Douglas-fir (Pseudotsuga

menziesii (Mirbel) Franco), a non-native tree species, is considered as a

promising alternative to build drought-resilient forests. The main goal of this

study was to investigate the intraannual radial stem growth and sap flow

performance of Douglas-fir along a precipitation gradient across Germany

under severe drought.

Material and methods: Sap flow and stem radial changes of up to ten trees each

at four sites with different precipitation regimes were measured in combination

with volumetric soil water content during the growing season of 2022.

Measurements of stem radial changes were used to calculate the trees’ stem

water deficit, a proxy for tree water status and drought stress.

Results: The severe summer drought of 2022 led to an early growth cessation

and a significant reduction in daily sap flow at all four sites monitored. We could

identify a site-specific threshold in soil water availability ranging between 21.7

and 29.6% of relative extractable water (REW) under which stem water reserves

cannot be replenished and thereby inhibiting radial growth. We could also

demonstrate that at this threshold, sap flow is heavily reduced to between 43.5

and 53.3%, and for a REW below 50%, sap flow linearly decreases by 1.1–2.0% per

1% reduction in REW. This reduction tends to follow the humidity gradient, being

more pronounced at the most oceanic characterized site and suggesting an

adaptation to site conditions. Even though Douglas-fir is considered to be more

drought stress resistant than Norway spruce, growth and sap flow are greatly

reduced by severe summer drought, which became more frequent in recent

years and their frequency and intensity is likely to increase.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1401833/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1401833/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1401833/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1401833/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1401833&domain=pdf&date_stamp=2024-08-06
mailto:armin.niessner@fh-rottenburg.de
https://doi.org/10.3389/fpls.2024.1401833
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1401833
https://www.frontiersin.org/journals/plant-science


Niessner et al. 10.3389/fpls.2024.1401833

Frontiers in Plant Science
Conclusions:Our results suggest that timber production of Douglas-fir in Central

Europe will decline considerably under projected climate change, and thus

pointing to site specific growth constraints for a so far promising non-native

tree species in Europe.
KEYWORDS

Pseudotsuga menziesii, drought stress, non-native tree species, forestry, dendrometer,
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1 Introduction

Soil drought has become a dominant feature during summer

over the last decades in Central Europe (Briffa et al., 2009; Petrow

and Merz, 2009; Ruosteenoja et al., 2018; Intergovernmental Panel

On Climate Change, 2023) and most studies forecast even higher

temperatures and further shifts in precipitation patterns

(Christensen and Christensen, 2004; Christensen et al., 2015;

Huang et al., 2015). The occurrence of soil drought in Germany,

documented through the German drought monitor (Zink et al.,

2016), has raised significant concerns regarding the future of

temperate tree species (broad leaved and conifer trees). The

decreasing availability of water resources, as e.g., demonstrated by

Köcher et al. (2009), exerts adverse effects on the hydric condition of

these trees, leading to reduced growth (Ma et al., 2012; Land et al.,

2017), reduced sap flow (Clausnitzer et al., 2011; Brinkmann et al.,

2016) and increased mortality (Wang et al., 2012; Allen et al., 2015;

Gessler et al., 2017). Of particular concern is the susceptibility of

Europe’s main timber species (Caudullo et al., 2016), Norway

spruce (Picea abies (L.) H. Karst.), to the threads of drought and

bark beetle infestations (Dobbertin et al., 2007; Marini et al., 2017).

Drought-related stress impairs tree growth and increases

susceptibility to pathogens (Ma et al., 2012).

This has led to a reconsideration of the role and potential of

non-native species in German forestry. Douglas-fir emerged as a

focal point of interest for its ability to withstand drought stress.

Originating from North America and introduced approximately

150 years ago, Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco)

has exhibited remarkable drought resilience compared to species

native to Central Europe (Eilmann and Rigling, 2012; Nadezhdina

et al., 2014; Vitali et al., 2017) and has now become one of the

economically most significant non-native tree species in European

forests (Kohnle, 2007; Brus et al., 2019). Its rapid growth and

prolific biomass production, underscored by Dietz and Bürgi

(1991), Hessemöller et al. (2001) and Miller et al. (2022), along

with its favorable wood properties (Zeidler et al., 2017), even

outperforming Norway spruce and Scots pine (Zeidler et al.,

2022), and resistance to native fungal pathogens (Möller and

Heydeck, 2009), have made it a crucial component of many of

today’s forestry plans. Douglas-fir covered approximately 3% of the
02
total potential forest area in France (ca. 420,000 ha) and 2% in

Germany (ca. 220,000 ha), as reported by Kownatzki (2011) and

Spiecker et al. (2019), respectively.

Continuous monitoring of stem radial changes using automated

dendrometers can complement the conventional assessment of tree

water status, measured through leaf water potential (pre-dawn and

midday) using a Scholander pressure bomb (Scholander et al.,

1965). These radial changes primarily result from two

physiological processes: irreversible stem expansion due to growth

and reversible stem size variations driven by hydration and

dehydration, especially in the bark. The negative deviation from

the previous maximum stem expansion is referred to as tree water

deficit (TWD, Zweifel, 2016), which is markedly influenced by the

tree’s water status and provides continuous, detailed assessments

throughout entire seasons in mature trees and unveiling drought

stress (Zweifel, 2016). The “zero growth concept” postulates that

radial stem growth is only possible when the cells of the cambium

are turgescent (Lockhart, 1965; Steppe et al., 2006), i.e. a prolonged

TWD inhibits stem radial growth (Zweifel et al., 2016).

Furthermore, sap flow measurements are crucial for

understanding the dynamics of tree water-use under drought

conditions. If soil water is scarce, while evaporative demand of

the atmosphere is high, trees will close their stomata to avoid

dehydration of cells. This, however, strongly reduces carbon uptake.

Low soil water potentials during soil drought induces critical xylem

water potentials, which can cause cavitation and xylem dysfunction

(Tyree and Sperry, 1989). As a result, xylem resistance to water flow

is increased and maximum sap flow capacity is reduced (Willson

and Jackson, 2006). E.g. Brinkmann et al. (2016) used such relations

and showed for temperate angiosperm tree species a uniform

threshold in soil moisture that induces TWD and a species-

specific decline in sap flow.

In particular, the severe soil droughts that frequently occurred

in Germany since 2018, as recorded by the German drought

monitor (Zink et al., 2016), raise concerns about the future

suitability of Douglas-fir to replace Norway spruce for high

timber production (Podrázskỳ et al., 2016). To better understand

whether Douglas-fir is indeed a suitable alternative in Central

European forestry under dry conditions and under predicted

future climate change, we studied the intraannual stem radial
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changes and xylem sap flow of ten Douglas-fir trees at four locations

in Germany. Studies on drought response of Douglas-Fir in Central

Europe are still scarce, so the primary goal of this study was to

analyze the effects of soil drying during the summer drought of 2022

on Douglas-fir trees along a precipitation gradient across Germany.

We hypothesized that:
Fron
1. Soil drying below a certain threshold prevents stem radial

growth of Douglas-fir, leading to early growth cessation as a

consequence of a persistent water deficit in the stem

(TWD) analog to a threshold reported for angiosperm

tree species by Brinkmann et al. (2016).

2. This threshold value for soil moisture and the response of

sap flow to soil drying of Douglas-fir is site-specific and a

consequence of adaptation to the growing conditions at

the site.
tiers in Plant Science 03
2 Materials and methods

2.1 Study sites

Four sites were selected along a gradient in annual precipitation

and with different rainfall regimes throughout the year from east to

west Germany. The driest and most continental site (BB) is located

near Bad Belzig, Brandenburg, in the Hoher Fläming at 145 m a.s.l.

While there is an average annual precipitation of 626 mm and a mean

temperature of 9.2°C, most rainfall is received during summer

months (Figure 1). Selected trees grow in an 80 years old pure

Douglas-fir forest with abundant natural regeneration and with an

average height of 34 m. These are the tallest trees compared to the

following sites. A soil profile was taken in approximately 3 m distance

to neighboring trees and with no other tree species nearby. We

counted the coarse (diameter>2 mm) and fine roots (diameter<2
FIGURE 1

Climate diagrams of all four sites (1986–2015). For each panel, red line indicates the mean monthly temperature, blue solid line the mean monthly
precipitation and blue dashed line shows monthly precipitation for the year 2022. Mean annual temperature (T) and mean annual sum of rainfall is
shown at the top right corner. Along the left axis, from top to bottom, the maximum recorded T, the mean daily maximum T, the mean daily range
in T, the mean daily minimum and the minimum recorded T. Solid black bar along the bottom axis indicates months with frost and hatched bar
months with possible frost. Source data obtained from the DWD/BfG-HYRAS v2.0 data set (Rauthe et al., 2013; Brienen et al., 2016).
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mm) along the soil profile using a metrical frame for tree-root

measurements. Around 70% of the fine and coarse roots are found

within the upper 25 cm of a silty sand soil and 90% of the roots are

found within the upper 35 cm (Table 1; Supplementary Figure S1).

The second site (RO) is in the Rammert Forest near Rottenburg,

Baden-Württemberg. It lies at 510 m a.s.l. with an annual average

precipitation of 765 mm and an annual mean temperature of 9.1°C.

Rainfall is dominantly received during summer months (Figure 1).

Trees were selected within a 45 years old almost pure Douglas-fir

forest, however, already reaching heights of almost 30 m on average.

This site is relatively open with only 560 stems and a basal area of 33

m² per hectare. Similar to BB, about 70% of the roots are found

within the upper 25 cm of a sandy silt soil and 90% within the upper

40 cm. Between 45 and 65 cm, there is a layer of loamy clay (Table 1;

Supplementary Figure S1).

A third site (HE) is located in the Heinersreuth Forest near

Bayreuth, Bavaria at 450 m a.s.l. While the average annual

precipitation is 805 mm and the annual mean temperature 8.5°C,

rainfall is more evenly distributed throughout the year, but most

rain is still received during summer (Figure 1). Trees were selected

within a 110 years old-growth mixed Douglas-fir forest, reaching

heights of 31.5 m on average. Besides Douglas-fir, also European
Frontiers in Plant Science 04
beech (Fagus sylvatica L.), oak (Quercus sp.) and fir (Abies alba

Mill.) occur, however, rather sparsely distributed. With 1744 stems

and a basal area of 54.54 m² per hectare, this site is relatively dense.

Trees predominantly root in a silty sand soil layer of 45 cm depth,

whereas about 50% are found within the upper 25 cm (Table 1;

Supplementary Figure S1).

The most oceanic site (ME) is located in the Palatinate Forest

near Merzalben, Rhineland-Palatinate at 550 m a.s.l. With an

annual average temperature of 9.3°C and 1026 mm of

precipitation, it is the warmest and wettest of the four sites.

Rainfall is evenly distributed throughout the year, but most rain

is received during winter months (Figure 1). Trees were selected

within a relatively young (55 years) Douglas-fir dominated forest,

intermingled with few European beech trees. Tree heights reach

32.5 m on average and are sparsely distributed with only 366 stems

per hectare, but a relatively high basal area with 57.44 m² per

hectare. The upper 100 cm of the soil is continuously sandy silt,

where only about 40% of roots are found within the upper 25 cm

and 90% of roots are found up to a depth of 55 to 60 cm (Table 1;

Supplementary Figure S1).

Soil types for all sites were determined using the test method of

Boden (2005).
TABLE 1 Summary of site characteristics based on observations taken within one circular plot of radius 15 m (BB), 20 m (RO, HE) and 25 m (ME)
containing all studied trees.

site Bad Belzig (BB) Rottenburg (RO) Heinersreuth (HE) Merzalben (ME)

Coordinates 52.166838° N
12.514308° E

48.446685° N
8.968711° E

49.960089° N
11.464497° E

49.273530° N
7.807540° E

Elevation [m a.s.l.] 145 510 450 550

Site age [years] 80 45 110 55

Average tree height [m] 34.0 29.3 31.5 32.5

Forest Site Index
(m height at age 100)

37 (Site class II.25) 43 (Site class 0.75) 30 (Site class IV.0) 42 (Site class I.0)

Vegetation Pure Douglas-fir
(100% of BA) forest with

abundant natural regeneration

Almost pure
Douglas-fir (74% of

BA) forest

Mainly Douglas-fir
(88% of BA) forest with few

European beech and oak trees

Mainly Douglas-fir
(98% of BA) forest with few

European beech trees

Stems ha−1 (>15
cm circumference)

668 560 1744 366

Basal area, BA [m²
ha−1]

45.48 33.12 54.54 57.44

Soil texture 0–60cm: silty sand,
60–90 cm: slightly silty sand,

below
90 cm: sand

0–45 cm: sandy silt, 65–45
cm: loamy clay, below

65 cm: slightly silty clay

0–45 cm: silty sand, below 45 cm:
loamy clay

sandy silt

% of FR (CR) found up
to 25 cm depth

71 (68) 69 (70) 49 (69) 38 (41)

max. depth of 90% of
FR (CR) [cm]

35 (35) 40 (40) 45 (45) 55 (60)

max. VSWC [%] 22.3 21.2 34.5 27.2

min. VSWC [%] 6.4 6.2 14.9 5.8
Forest Site Index according to Noack (2021). FR, fine roots (diameter<2mm); CR, coarse roots (diameter>2mm). Maximum and minimum volumetric soil water content (max. and min. VSWC),
corresponding to estimates for field capacity and permanent wilting point of soils, respectively. See also Supplementary Figure S1 for soil texture and distribution of roots and Supplementary
Tables S1–S4 for individual tree characteristics.
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2.2 Meteorological data

Data on long-term daily temperature and precipitation was

obtained from the DWD/BfG-HYRAS v2.0 precipitation data set

(Rauthe et al., 2013; Brienen et al., 2016). Hourly values for air

vapor pressure deficit (VPD, haPa) were calculated after Goff and

Gratch (1946) from recorded air temperature, humidity and air

pressure using Watchdog 2700ET weather stations (Spectrum

Technologies,Inc., USA) placed in a clearing close to the site at 2

m height. Volumetric soil water content (VSWC, %) was measured

at 20 cm and 40 cm depth and at five points at each of the four sites,

except in Bad Belzig, where it was measured at 20 cm and 60 cm

depth due to the sandy soil. VSWC was measured using Teros 10

soil water content sensors (Meter group GmbH, Munich,

Germany), connected to open-source data acquisition systems

(“Loguino”, https://github.com/ArminNiessner/Loguino, last

access: 15 December 2023). The five hourly time series at each

site and soil depth were cleaned for outliers and obvious errors, and

then averaged for each soil depth in order to receive the site’s

average VSWC. Further analysis was carried out with data from 20

cm soil depth only, as the dynamic and values were very similar for
Frontiers in Plant Science 05
the two soil depths (Figure 2). Historical data on the Soil Moisture

Index (SMI), Soil Drought Intensity (SDI) and Magnitude (SDM)

was extracted for each site from the German drought monitor (Zink

et al., 2016) in order to rank the year of observation (2022) in the

course of the last 70 years. The dataset enables drought estimates at

a 4 x 4 km² resolution across Germany and gives estimates for the

upper soil layer (25 cm) and total soil bulk.
2.3 Dendrometer measurements

At each location, ten apparently vital and dominant individuals

of the same age and upper canopy level were selected for monitoring

diurnal stem radial changes and sap flow (predominant or

dominant, social class 1, Kraft, 1884). Two cores per tree of all

trees were extracted before growth started in 2022, using a 5 mm

increment borer (Haglöf, Sweden). Cores were used to determine

tree age and mean annual growth over the previous ten years (2012–

2021). Tree heights were determined using the “TruPulse Laser 200”

(Laser Technology, Inc., USA). All selected individuals were

equipped with spring-loaded linear displacement potentiometers

(MMR 10 11 R5 K, MEGATRON Elektronik AG und Co., Munich,
FIGURE 2

Stem radial change (SRC), relative tree water deficit (rel TWD), relative sap flow (rel sap flow), volumetric soil water content (VSWC) and rainfall at all
sites from March to September 2022. Mean absolute SRC, mean daily TWD, mean maximum TWD, mean daily sap flow and mean maximum sap
flow are indicated in the respective panels. k1 and k2 are the determined thresholds for VSWC in % for 20 (blue line) and 40 cm (red line) soil depth
(60 cm in BB), respectively. The daily sum of rain (blue) and daily maximum VPD (red) during the time of observation are indicated in the
bottom panels.
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Germany) with a resolution of<10 μm to record stem radial

changes. The potentiometers were mounted in the center of

stainless steel frames and then attached to the trunk at a height of

1.3 m with two screws anchored at least 5 cm deep in the xylem and

at least 6 cm from the measurement point. They were placed with

their tips on the innermost bark after partially removing the outer

parts without damaging living bark and cambium, and covered and

shielded. Each dendrometer was connected to a “Loguino” attached

to each tree and recorded every 10 minutes. Stem radial change

(SRC) is the reversible and irreversible change in tree radius over

time. Although tree-ring widths are not 1:1 comparable with SRC,

as the latter includes additional bark tissue, we used the mean tree-

ring width of the 10 previous years to put the total SRC of 2022 into

context. The measured changes in radial stem dimension allowed

for the calculation of the tree’s stem water deficit (TWD) following

the method by Zweifel et al. (2016). The TWD is calculated as the

difference between the highest previous stem radius and the current

stem radius, given that the current stem radius is smaller than

previously, otherwise, TWD = 0. Since we were interested in the soil

moisture, below which the TWD can no longer be removed and

persists over a longer period of time, we focused on the daily

minimum TWD. This means that the daily TWD is only greater

than 0, as soon as the TWD, which builds up during the day, cannot

be removed overnight.

Unfortunately, we could only analyze four trees from HE and only

two out of ten fromME as a result of amajor dendrometer malfunction

(9/10 for BB and RO). In total, 24 dendrometer sequences were

available over all plots with recordings every 10 minutes.
2.4 Sap flow measurements

We used pairs of self-built sap flow sensors based on the method

described by Granier (Granier, 1985, 1987). The sensors were

installed at 1.3 m height on the north side of each trunk. The

sensors consist of a pair of copper-constantan thermocouples

placed inside 2 cm long needles in the xylem with about 10 cm

vertical distance. The upper sensor is constantly heated with 120 mA

and the temperature difference is recorded every 10 minutes with a

“Loguino”, together with the dendrometer. Higher sap flow means

faster heat dissipation and thus lower temperature differences. For

each sensor, we calculated sap flow rates after Granier (Granier, 1985,

1987), taking the maximum temperature difference of each day and a

linear interpolation in between as the corresponding reference value

with zero sap flow. The obtained volume flux density of sap flow (in g

cm−2 s−1) was further extrapolated for the whole tree, using the R

package developed by Berdanier et al. (2016) which accounts for the

tree’s sapwood area. Total sapwood area was obtained from visual

inspection of tree cores from each tree.
2.5 Data analysis

Statistical analysis and data visualization were done using

Python, version 3.10.13 (Van Rossum and Drake, 2009), with its
Frontiers in Plant Science 06
packages NumPy v. 1.22.3 (Harris et al., 2020), pandas v. 1.4.2

(McKinney, 2010), SciPy v. 1.10.1 (Virtanen et al., 2020) and

Matplotlib v. 3.7.1 (Hunter, 2007). We collected data from March

until the end of October 2022. For our analysis, however, we were

mainly interested in changes in sap flow and the persistence of

TWD in relation to soil water content during the main growing

season of 2022. All further analyses were carried out for the period

from April 15 (DOY 106) to August 31 (DOY 244), as all trees had

already started their radial growth from mid-April and as the sap

flow measurements in HE had to be stopped at the end of August

due to energy problems. Absolute values of sap flow rate and TWD

can vary considerably as a result of varying tree dimensions and

physiological parameters, even within species (Čermák et al., 1995;

Brinkmann et al., 2016). Thus, we normalized the data by dividing

the sap flow and TWD data of each tree by the average of the

highest 2.5% maximum values of the respective tree in order to

minimize the effect of single extreme values (analog to Brinkmann

et al., 2016). The resulting values range from 0 to ∼1 and are the

relative sap flow and relative TWD, respectively, and from here on

will only be termed sap flow and TWD.

In order to compensate for differences in tree dimensions, we

also calculated the basal area increment (BAI) and the relative BAI

(rBAI), by calculating the areal increment in stem basal area

according to the measured total annual SRC of 2022 and the

proportion of this area in relation to the total stem basal area,

respectively. Our first objective was to identify the onset of TWD

during decreasing soil moisture content, i.e. identify the threshold

in VSWC at which a TWD cannot be removed and persists, thereby

inhibiting radial growth. However, VSWC is strongly dependent on

soil conditions and therefore VSWC has been normalized in the

form of relative extractable water (REW). REW represents the ratio

between available soilwater and maximum extractable water

(Granier, 1987) and is expressed in Equation 1 as:

REW =
VSWC − VSWCmin

VSWCmax − VSWCmin
(1)

where VSWC is the volumetric soil water content and assuming

that VSWCmax equals VSWC at field capacity and VSWCmin equals

the permanent wilting point. We therefore used the entire data set

from March to October to calculate the REW. We plotted the daily

minimum TWD of each tree against the respective site’s daily

maximum REW at 20 cm depth and fitted the following

exponential equation:

TWD = a * e
(b*REW) (2)

Here, TWD is the relative daily minimum TWD, REW is the

relative extractable water, and a and b are coefficients fitted for each

tree individually and for the averaged time series of TWD for each

site. We then calculated a tangent with a fixed slope using the

“gradient”-function of the NumPy package. The intersection with

the x-axis was defined as the threshold (k) at which TWD onsets.

Analog to Brinkmann et al. (2016), we tested different fixed slopes (-2,

-3, -4, -5) and decided to take -3 as it resulted in values for k that are

close or identical to the value where one would intuitively expect it to

be when looking at the plotted data (see also Figure 3, upper left
frontiersin.org
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panel). Although this is relatively subjective, it is still a reproducible

method for determining the threshold value. Analog to this, we also

calculated k for VSWC instead of REW, presented in Supplementary

Table S5.

To analyze the changes in daily sap flow of trees to drying soils, we

plotted the calculated daily sum of sap flow of each tree against the

respective site’s REW at 20 cm depth. Dry air, i.e. a high VPD is a main

driving force for sap flow (O’Brien et al., 2004) and under wet

conditions (low VPD), sap flow is substantially reduced. We focused

on the effect of soil drying on sap flow, therefore, we excluded days

where maximum VPD did not exceed 1 kPa from the analysis. A

linear regression was fitted to the data for REW in the range between 0

to 0.5. The slope m represents the percentage decrease in daily sap

flow per percentage decrease in REW. Additionally, we used this linear

regression to calculate relative sap flow at soil threshold k. Relative sap
Frontiers in Plant Science 07
flow at maximum TWD was calculated taking the average relative sap

flow for days with a relative TWD>0.9. Similarly, relative sap flow

during maximum drought was calculated by taking the average

relative sap flow for days where REW was lower than the 10th

percentile, i.e. for the 10% lowest REW values. We performed a

Tukey’s HSD test to check if the means of all measured and calculated

tree parameters are statistically different between sites (p<0.05) using

the “stats.tukey_hsd”-function of the SciPy package. A principal

components analysis (PCA) was performed to identify the inter-

relationship between the different tree variables and also between

the calculated soil threshold k and the slope of the linear regression

between REW and daily sap flow together with selected site variables.

All variables were first standardized, setting the mean to zero and

standard deviation to one in order to bring all variables within the

same range.
FIGURE 3

Site mean relative tree water deficit (rel TWD) in relation to relative extractable water (REW) at each site. Each dot represents a day and its color
indicates the day of year (DOY 106–244). Solid line shows the exponential regression and vertical dashed line marks the threshold in REW (k), where
a TWD is predominant. k is the intersection with the x-axis of the tangent to the exponential regression with a fixed slope, as exemplified by the
dotted line in the upper left panel for BB (see also Materials and Methods). Function of exponential regression [f(x)], coefficient of determination (R²,
***: p<0.001) and the value for k are shown in each panel. Number of trees observed: 9 (BB), 9 (RO), 4 (HE), 2 (ME).
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3 Results

3.1 Meteorological conditions and
tree responses

The year 2022 was one of the driest years within the last 70 years

in terms of precipitation and soil moisture at all four sites (Figure 1;

Table 2). Especially at BB, only 65% of the average long-term annual

rainfall was recorded and the most intense soil drought since 1951.

The year 2018 was generally the driest at all sites, except inME, where

2011 was even drier. Exceptionally low rainfall was recorded between

May and August in HE (38% of the long term rainfall during these

months) and during July and Agust in ME (8.7%, Figure 1).

At site BB, especially from March to July rainfall was

exceptionally sparse, leading to a decrease in VSWC in the course

of the year (Figure 2). Growing season, i.e. radial growth, started

between April 15–20. The first substantial TWD in most trees

developed starting from June 2 and lasted until June 20, also leading

to a noticeable stagnation in stem radial change (SRC) and a

reduction in sap flow. A rainfall sum of 18 mm between June 19

and 20 recharged VSWC from 9.8% to 18.2% (from 21.1% to 74.1%

in REW, June 21), allowing for a recovery of stem water reserves

(TWD = 0) and leading to an almost instant onset of stem radial
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growth. Around July 10, again a substantial TWD developed in

most of the trees while VSWC kept decreasing. Again, sap flow was

strongly reduced and stem radius was actually decreasing over a

period of over a month until August 17, where 22 mm of rain

(August 13–18) recharged VSWC from 6.7% to 14.6% (from 1.8%

to 52.2% in REW). TWD was removed, sap flow reached rates as

before the drought period and stem radial growth recovered for a

brief period of time until August 30. The following rainfall of less

than 10 mm per day had almost no effect on VSWC but led to a

partial removal of TWD in some trees, but no substantial radial

growth was recorded onwards. Therefore, the average stem radial

growth over the growing season was only 55% (1.39 mm) of the

mean annual growth over the previous ten years (Table 3). Note

that two trees (BB03 and BB06) were less affected, removing TWD

much faster and showing higher growth rates, while at one tree

(BB01) TWD remained on a high level until the end of observation.

At RO, trees started to grow between April 12–15 (Figure 2). A

first short drought started on May 25, where most trees developed a

TWD and stagnated in radial growth. Sap flow was also noticeably

reduced. Strong rainfall on June 4 and 5 (33 mm) recovered VSWC

from 8.6% to 17.1% (form 15.7% to 72.5% in REW, June 6) and

consequently, also reduced TWD and increased sap flow and radial

growth. While VSWC started continuously dropping from July 1,

on July 10 a point was reached where all trees started to develop a

strong TWD and sap flow started to decrease. The following rainfall

events during July and August were not enough to recover VSWC

and fully recharge stem water reserves. TWD was reduced and sap

flow increased again during the end of August and through

September, but actual growth was terminated around July 10. The

average increment of 2022 correspondents to 76% of the average

increment over the previous ten years (Table 3).

At site HE, trees appear to have started growing in the first half

of April, but substantially accelerated in growth during the first

week of May (Figure 2). Over the course of the year, VSWC

continued to decrease and a TWD started to develop around June

1. This led to an instant stop in radial growth and sap flow
TABLE 2 The drought of 2022 compared to the long-term average
annual rainfall (1986–2015), the soil drought intensity (SDI) and
magnitude (SDM) recorded by the German drought monitor (1951–2022,
https://www.ufz.de/droughtmonitor, last access: 15 December 2023,
Zink et al., 2016).

% of rain SDI SDM

BB 65 1. 2. (2018)

RO 84 2. (2018) 5. (2018)

HE 86 3. (2018) 8. (2018)

ME 75 4. (2011) 10. (2011)
The number in brackets indicates the year that ranked first, i.e. being the driest year recorded.
TABLE 3 Average observed diameter at breast height (DBH), radial increment in 2022 estimated from dendrometer recordings (incr. 2022), mean tree
ring width of the ten years before 2022 (TR 2012–2021), relative basal area increment (rBAI), mean and maximum tree water deficit (mean TWD and
max. TWD), mean relative sapwood area (mean swa) and sap flow at the four sites.

DBH
[cm]

incr.
2022
[mm]

TR
2012-
2021
[mm]

rBAI [%] mean
TWD
[µm]

max.
TWD
[µm]

mean
swa [%]

mean
sap flow
[Kg day−1]

max. sap
flow

[Kg day−1]

BB 56.9 10
a 1.39 9

a 2.51 9
a 0.96 9

a 53 9
a 242 9

a 28.3 10
a 24.7 10

ab 55.5 10
ab

± 13.0 0.84 0.99 0.50 34.9 88.4 7.2 15.2 30.5

RO 38.9 9
b 2.87 9

b 3.78 9
b 2.92 9

b 105 9
b 537 9

b 47.3 10
b 40.8 10

b 91.5 10
b

± 4.9 0.45 0.67 0.58 39.6 159.6 4.9 14.9 27.6

HE 45.1 10
b 0.83 4

a 0.70 4
c 0.77 4

a 57 4
ab 205 4

a 25.7 10
a 17.9 10

a 39.7 10
a

± 7.3 0.50 0.27 0.38 34.3 72.7 7.9 20.2 35.0

ME 44.7 10
b 3.14 2

b 3.31 2
ab 2.83 2

b 54 2
ab 274 2

a 41.1 10
b 15.8 10

a 39.2 10
a

± 5.5 0.38 0.57 0.07 5.6 3.9 5.6 7.5 21.5
Superscript lowercase letters indicate groups that statistically differ from each other (p<0.05) and subscript numbers indicate the number of trees observed. The respective standard deviation is
given beneath (± SD).
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continuously decreased. Only tree HE01 continued to grow until

the second half of July when a TWD developed and growth started

to stagnate. Exceptionally heavy rainfall during September allowed

for a partial removal of TWD and an expansion in radius, but then

stayed at this level with no further growth. The average total annual

increment at HE was only 0.83 mm or 0.59 mm, if HE01 is

excluded. Tree ring widths over the previous ten years are

generally small, so it corresponds to 19% more growth or 16%

less growth, respectively (Table 3). Accounting for the bark tissue

included in the increment of 2022, it would be less.

At ME, the onset of radial growth was between April 12–15 and

continued in a linear manner until an intense TWD developed

which ceased growth and reduced sap flow (Figure 2). VSWC

continuously decreased in the course of the year, only shortly

interrupted by 40 mm of rain between June 23–26, until a rainy

period in September recharged VSWC and allowed for a removal of

TWD around September 9. This led to a radial stem recovery but no

further growth. Mean total annual increment was 3.14 mm which is

only slightly less (95%) than the average annual increment over the

previous ten years (3.31 mm) of the two analyzed trees.
3.2 Effect of drying soils on tree water
deficit and sap flow

A decrease in soil moisture, expressed as the relative extractable

water (REW), below a certain value induced an exponential increase in

TWD, indicating a threshold in REW (and also VSWC) where TWD

persits. TWD in relation to REW is represented by an exponential

regression for all individual trees (not shown) and site mean TWD

(Figure 3). Coefficients of determination for individual trees (BB: 0.82 ±

0.10, RO: 0.90 ± 0.04, HE: 0.58 ± 0.20, ME: 0.95 ± 0.01, Supplementary

Tables S1–S4) and for site means (BB: 0.91, RO: 0.91, HE: 0.71, ME:

0.95) were very high and statistically significant (p<0.001). The

distribution of values and the shape of the exponential regressions

were highly similar within and also between sites, however, slightly
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shifted along the x-axis. This resulted in k-values that are within a small

range at one site but at different levels at different sites. Especially at RO,

k was statistically lower compared to BB and HE (p<0.05) and also ME

(p=0.128, Table 4). Coloring the data points by their day of year

revealed that dry days with low REW occurred mainly during the

second half of the vegetation period (orange and red dots) while during

the first period TWD stayed mainly close to zero (dark and bright

blue). This also illustrates that on some days early that year a TWDwas

avoided even below our estimated k, but later that year a REW above k

even led to a TWD, suggesting a slight shift of k during the year, i.e.

drought conditions that induce a TWD were already reached at higher

values for REW. Higher values of maximum daily VPD are more

frequent during the second half of the year (Figure 2) and are therefore

also associated with a higher TWD, but showed no clear relationship

(Supplementary Figure S2).

Relative sap flow per day started to decrease with drying soils

between 50 and 40% REW and can be described with a linear

regression (Figure 4). Coefficients of determination were relatively

high for each individual tree (BB: 0.66 ± 0.19, RO: 0.62 ± 0.12, HE:

0.69 ± 0.11, ME: 0.82 ± 0.17, Supplementary Tables S1–S4) and for site

mean sap flow (BB: 0.80, RO: 0.68, HE: 0.74, ME: 0.90), all highly

significant (p<0.001). We observed statistically significant differences

between the decrease in sap flow and decrease in REW (slope m of

linear regression), but not between the relative sap flow at threshold k

and at lowest occurred REW for all trees at all sites (Table 4). The daily

maximum VPD showed little effect on daily sap flow (Supplementary

Figure S3). For REW<0.5, relative sap flow decreased by 1.1 ± 0.2% in

RO to 2.0 ± 0.5% inME per 1% decrease in REW, suggesting a stronger

reduction in sap flow to soil drying at more oceanic/humid sites.
3.3 Inter-relationship of tree and
site variables

A PCA on a selection of eight tree variables (Table 5) shows that

maximum TWD, relative basal area increment (rBAI), relative
TABLE 4 Average threshold in REW where TWD persists (k), coefficient of determination (R2) for exponential regression between TWD and REW, slope
of linear regression between sap flow and REW (m), for REW<0.5, and respective coefficient of determination (R2), mean relative sap flow at threshold
k, mean relative sap flow at the 10% lowest REW, i.e. at maximum drought and mean relative sap flow at a relative TWD>0.9, i.e. maximum TWD.

k [%] R2

REW/
TWD

m [%] R2

REW/
sap flow

sap flow
at k [%]

sap flow at
max

drought [%]

sap flow at
max
TWD
[%]

BB 29.6 9
a 0.82 9 1.3 10

ab 0.66 10 43.5 9
a 17.1 10

a 16.2 9
a

± 3.6 0.10 0.4 0.19 10.4 12.9 13.0

RO 21.7 9
b 0.90 9 1.1 10

b 0.62 10 43.9 9
a 18.1 10

a 13.5 9
a

± 1.6 0.04 0.2 0.12 8.6 6.2 4.4

HE 27.3 4
a 0.58 4 1.6 9

ac 0.69 9 48.9 4
a 16.5 9

a 15.9 4
a

± 5.0 0.20 0.3 0.11 2.5 10.6 6.5

ME 27.5 2
ab 0.95 2 2.0 10

c 0.82 10 53.5 2
a 8.6 10

a 3.6 2
a

± 1.3 0.01 0.5 0.17 4.5 7.1 0.1
Superscript lowercase letters indicate groups that statistically differ from each other (p<0.05) and subscript numbers indicate the number of trees observed. The respective standard deviation is
given beneath (± SD).
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sapwood area (swa) and mean tree ring width from 2012 to 2021

(TR 2012–2021) are positively related with each other and mainly

loaded on axis 1, which explains about 52% of the variance. The

threshold k is also mainly loaded on axis 1 but negatively related to

the before mentioned tree variables. Axis 2 explains about 19% of

the variance and mainly represents DBH and mean sap flow, being

positively correlated. The slope of the linear regression between

daily sap flow and REW (m) is mainly loaded on axis 3 (12%

explained variance) and showing a slight positive relation to DBH, k

and TR 2012–2021.

Table 6 shows the PCA for the soil threshold k and the slope of

the regression between REW and mean daily sapflow m together

with five selected site variables. Axis 1 explains 55% of the variance

and encompasses in one direction mainly m, long-term annual

rainfall and depth of soil where 90% of fine-roots where found,

while the percentage of fine-roots encountered within the upper 25

cm is loaded in the opposite direction. The soil threshold k is mainly
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loaded on Axis 2 (25% of variance) together with the site basal area

and opposite to the site long-term rainfall. The number of stems per

hectare is mainly represented by Axis 3 (13% of variance) and

negatively related to k and m.
4 Discussion

4.1 Response of TWD to soil drying

The relative daily minimum tree water deficit (TWD) of

Douglas-fir shows a strong non-linear response to soil drying

(Figure 3). Interestingly, this non-linear response was within a

small range of relative soil water availability (REW) for all trees at

each site, indicating a site-specific threshold (k) in REW. Below this

threshold, the daily occurring TWD could not be removed

overnight anymore, but rather accumulated over time. Also,
FIGURE 4

Site mean relative sap flow in relation to relative extractable water (REW). Each dot represents a day and its color indicates the day of year (DOY
106–244). Solid line shows the linear regression for REW<0.5 and vertical dashed line marks the threshold in REW (k), where a TWD is predominant.
Function of linear regression [f(x)] and coefficient of determination (R², ***: p<0.001) are shown in each panel. Number of trees observed: 10 (BB), 10
(RO), 10 (HE), 10 (ME).
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Brinkmann et al. (2016) reported a threshold for four temperate tree

species (Fagus sylvatica, Picea abies, Acer pseudoplatanus L. and

Fraxinus excelsior L.) at Lägeren, Switzerland. Surprisingly, this

threshold was not different between species. In contrast to

Brinkmann et al. (2016), we used the daily minimum relative

TWD instead of the midday maximum TWD, as we wanted to

study when the daily occurring TWD due to transpiration and

following discharge of stem water reserves, cannot be recharged

overnight as a consequence of declining soil moisture. We also took

REW instead of VSWC in order to compare the different sites with

differing soil conditions. Especially at HE, the absolute VSWC level

was almost twice as high compared to the other sites and also

reversed in its moisture gradient (see Figure 2). The average soil

threshold k was lowest in RO (21.7%) and significantly higher at the

three other sites (27.3%–29.6%, Table 4). The results of a PCA

between the different tree variables suggest a negative relationship

between k and maximum TWD, relative basal area increment, as
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well as relative sapwood area (Table 5). The sapwood cross-

sectional area scales with the relative amount of stored water used

for daily transpiration (Goldstein et al., 1998; Phillips et al., 2003;

Meinzer et al., 2004). However, reversible stem radius changes are

largely attributable to the inner bark (Zweifel et al., 2001), but both

the sapwood depth and inner bark thickness are correlated with the

leaf area (Gartner, 2002). Therefore, a larger relative sapwood area

due to a small DBH and a deep sapwood corresponds to a larger

inner bark thickness, allowing for larger reversible stem radius

changes and thereby a larger mean and maximum TWD, as

observed at RO. According to different studies on conifer species

(e.g. Sellin, 1996 and Galván et al., 2012), radial growth and BAI

scales with sapwood area, which our results also suggest. A large

growth rate and sapwood area like the trees in RO, could also be

linked to a better drought resistance, represented as a low soil

threshold k. For example, either by ensuring that the water potential

in the inner bark and cambium reaches a correspondingly low level,

which allows sufficient hydration of the cambium even with low

REW and thus also enables radial growth. Or by a higher radial

growth also being accompanied by a stronger root growth and thus

additional water sources can be easier accessed.

Site characteristics also might influence the threshold k, as trees

respond and adapt to their growing conditions. A high competition

between trees, represented by a high number of stems and basal area

(BA), appears to be positively related to k. However, one would

expect that a high competition leads to a more rapid depletion of

soil water reserves rather than affecting the threshold k (Belmonte

et al., 2022). In contrast, the long-term annual precipitation is

negatively related to k, meaning that at drier sites, the trees tend to

experience drought already at higher levels of soil water potential,

represented as relative extractable water (REW) available. A deeper

rooting depth also appears to be weakly related to the threshold k.

This would be reasonable, as deeper rooting also provides a larger

water reservoir accessible. While the upper soil layer is already very

dry, a persistent TWD can still be prevented by shifting water

uptake to deeper soil layers, as e.g. reported by Brinkmann et al.

(2019) for different temperate tree species. However, the volumetric

soil water content from 20 and 40 (60) cm depth tends to decrease

with increasing soil depth, with the exception of HE.

Even if the response of the individual trees within a site was very

homogeneous, there were a few trees that deviated from this. In BB,

two individuals, especially BB03, showed significantly more growth,

partly due to a faster reduction of TWD and a slightly lower

threshold k (Figure 2; Supplementary Table S1). Likewise in HE,

one tree (HE01) grew significantly more than the other three

studied trees and had the lowest value for k. It could be that these

trees have a larger water reservoir available to them due to

topographical or geological features, such as local depressions and

faults which trap water, but this is pure speculation without more

detailed investigations of the underground conditions.

Using REW at 40 cm (60 cm at BB) soil depth resulted in almost

the same values for k, except at HE, where VSWC at 40 cm soil

depth was generally higher than at 20 cm. Here, the calculated

average threshold for a TWD was 34.3% at 40 cm soil depth,

compared to 27.3% at 20 cm. Sites HE and RO are characterized by

a clay layer starting at around 50 cm soil depth. While the terrain at
TABLE 5 Principal components analysis (PCA) of eight selected
tree variables.

Variables Axis 1 Axis 2 Axis 3

(0.525) (0.189) (0.125)

DBH -0.177 0.709 0.258

max. TWD 0.403 0.083 0.010

k -0.387 0.140 0.211

m -0.123 -0.269 0.880

mean sap flow 0.348 0.460 -0.002

rBAI 0.438 -0.229 0.128

swa 0.421 -0.173 0.177

TR 2012–2021 0.390 0.323 0.259
Given are the loadings of each variable along the three most important axes. The eigenvalues
are indicated in brackets and quantify the amount of variance captured. Numbers in bold
indicate a close relationship of that variable to the respective axis. Variables that show high
loadings along the same axis and the same direction are positively correlated with each other
and negatively if in opposite direction.
TABLE 6 Principal components analysis (PCA) of k, m and five selected
site variables.

Variables Axis 1 Axis 2 Axis 3

(0.554) (0.251) (0.131)

k 0.076 0.651 -0.372

m 0.402 0.053 -0.457

lt. rainfall 0.415 -0.412 -0.015

BA 0.385 0.447 -0.027

stems per ha 0.210 0.348 0.799

FR<25 cm -0.502 0.024 -0.111

FR depth 0.464 -0.286 0.012
Given are the loadings of each variable along the three most important axes. The eigenvalues
are indicated in brackets and quantify the amount of variance captured. Numbers in bold
indicate a close relationship of that variable to the respective axis. Variables that show high
loadings along the same axis and the same direction are positively correlated with each other
and negatively if in opposite direction.
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RO is inclined and therefore well drained, HE is rather flat and

watterlogging may appear, which was observed in December 2023.

According to Kutschera and Lichtenegger (2002), the depth of

growth of the roots is greatly reduced on very wet, waterlogged

soils and such sites are therefore not so suitable for Douglas-fir

trees. Waterlogging induces damage to the fine root system of

Douglas-fir (Lavender and Hermann, 2014) and reduces P-uptake

by mycorrhiza (Gadgil, 1972). Rout and Sahoo (2015) found that

under waterlogged and acidic soil conditions, iron may be taken up

excessively leading to damages of vital cellular constituents in

plants. This root damage reduces water uptake efficiency and may

increase the threshold k.

According to a study from Warren et al. (2005), water extraction

shifts to deeper layers during prolonged summer droughts. However,

daily water uptake from the entire 2 m profile was strongly dependent

on the water potential at 20 cm, suggesting that fine roots in the

topsoil may play an important role in regulating water uptake

through hydraulic effects on stomatal conductivity. A systematic

error in VSWC’s measurements can be ruled out, as measurements

were taken at five different locations with five separate data loggers at

each site, and the measured values at all five locations deviated only

slightly from each other (standard deviation of VSWC at 20 cm soil

depth between positions per site; BB: 4.4%, RO: 3.0%, HE: 1.7%, ME:

3.0%). Defining a different gradient for the tangent (e.g. -2 or -4,

instead of -3) in order to determine k does not significantly change

the results, at least as long as the value is within a reasonable range.

Less subjective would be a segmented or piecewise linear regression

(Pilgrim, 2021), which we also tested for comparison at a later stage.

We determined the intercept with the x-axis of the steep segment of

the linear regression as the threshold in REW, which resulted in the

following k values for the four sites (BB, RO, HE and ME): 31%, 19%,

33% and 24%. These values are very similar to the values determined

using the tangent with the fixed slope, whereby in RO the threshold k

is possibly further underestimated and in HE overestimated. For BB

and ME, however, this method could be more accurate.
4.2 Responses of sap flow to soil drying

The relative daily sap flow of Douglas-fir shows a strong linear

decrease in response to drying soils below 50% REW. Relative daily

sap flow decreased between 1.1–2.0% per 1% decrease in REW,

while being significantly lower at RO than at HE or ME, where m

was largest. A stronger decrease in relative daily sap flow could

mean that a high daily sap flow can be maintained until lower values

of REW until stomata start to close due to soil drought conditions.

At HE and ME, a notable decrease in daily sap flow starts around

40% REW, while at BB and RO, already at around 50% (Figure 4).

However, this decrease in sap flow (m) appears to shift in RO

during the year. During the first half of the year (DOY<180) sap

flow starts to decrease at around 50%, leading to a lower decrease in

sap flow per decrease in REW, while later on a notable decrease in

sap flow starts at around 40% REW and being much steeper (m =

1.7, see Supplementary Figure S3).

The decrease in daily sap flow m is mainly represented by axis 3

in our PCA, which only explains 12.5% of the variance and is poorly
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linked to the other selected tree variables (Table 5). Site variables

like long-term precipitation and rooting depth seem to be closer

related to m (Table 6). Trees at more continental/drier sites might

be adapted to longer dry periods and therefore start to conserve

water already at higher levels of REW, while at more oceanic/humid

sites, trees only rarely experience extended periods of drought. A

deeper rooting and therefore probably a better access to water

resources should allow for maintaining a high daily sap flow at

REW levels below 50% and resulting in a steeper decrease in sap

flow below this. The relative amount offine roots encountered in the

upper soil layer (soil depth<25 cm), however, was negatively related

to m and might be a result of its inverse relation to rooting depth.

While the relative root number generally decreased with increasing

soil depth at BB, RO and HE, the distribution offine roots was more

evenly along the soil profile at ME, where rooting depth was also

deepest (Supplementary Figure S1).

Other studies mainly compared the daily sap flow with the

volumetric soil water content (VSWC) instead of the REW, so we

also determined the linear decrease in sap flow due to soil drying

expressed as VSWC (Supplementary Figure S2; Supplementary

Table S5). At all four sites, relative daily sap flow decreased by an

average of 5.66% (SD: ± 1.58%) per 1% decrease in VSWC, with no

statistically significant difference between sites.

A comparison with other tree species and locations reveals a

broad spectrum, with sap flow decreasing by 3.9–14.1% per percent

decrease in soil moisture: Slow decreases were reported in Tyrol,

Austria with 5.2% for Pinus sylvestris, 4.3% for Picea abies and 4.0%

for Larix decidua (Leo et al., 2014). Hölscher et al. (2005) examined

trees in Germany at two different locations and measured a reduction

in sap flow of 3.9% for Fagus sylvatica on the first site, and on the

second site the reduction was 9.3% for Carpinus betulus L., 10.9% for

Tilia cordataMill. and even 11.3% for Acer pseudoplatanus. A strong

reduction was measured in the semiarid northwestern China with

14.1% for Picea crassifolia Kom (Chang et al., 2014).

This general linear decrease over a certain range of VSWC

probably reflects a linear reduction in stomatal conductance due to

closing stomata to conserve water and to avoid critically low water

potentials that would put a tree at risk of hydraulic failure (Schulze

and Hall, 1982). Only at very low REW (bottom right in each panel

of Figure 4), the relative reduction in daily sap flow looks to be

exponential, which might reflect a complete closure of stomata close

to the permanent wilting point or even the occurrence of embolized

vessels, sharply decreasing water conductance through the xylem.

Brinkmann et al. (2016) reported a decrease of 33% for Picea

abies, however, for maximum midday sap flow, and a maximum

reduction by 92% in response to decreasing soil moisture.

Trees at all four sites maintained on average almost half of their

relative daily sap flow (45.4%, SD ±8.7%) at their individual

threshold k where TWD could not be eliminated anymore. Even

during maximum soil drought, and correspondingly maximum

TWD, still on average 15.0% (SD ±9.9%) and 14.1% (SD ±9.1%),

of relative daily sap flow was maintained, respectively (Table 4).

This shows how water potentials in the canopy can reach much

lower values than in the bark. Maintenance of leaves and

reproduction in the canopy is clearly prioritized over secondary

growth. This linear reduction of sap flow and the maintenance of
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sap flow at k and maximum drought seem to be species-specific, at

least in the temperate zones of Central Europe, but also subject to a

certain adaptation along precipitation gradients within a species,

such as for Douglas-fir.

The mean and maximum absolute water consumption ranged

from 15.8 to 40.8 and 39.2 to 91.5 kg day−1, respectively, and is

similar to that reported by others for Douglas-fir (Fritschen et al.,

1973; Granier, 1987) and other temperate tree species (Wullschleger

et al., 1998; Hölscher et al., 2005). Except from ME, the mean and

maximum daily water consumption was positively scaled with the

relative sapwood area (swa, Table 3).
4.3 Soil drought causes early
growth cessation

For most Douglas-fir trees in 2022, the growing season was

effectively already over by mid-July (June in HE) as a consequence

of a persistent TWD caused by soil drought. Based on our own

experience and the limited literature we found about the end of the

growing season for Douglas-fir in Central Europe (Miller et al.,

2022), radial growth normally lasts until September or even October

if temperatures and moisture availability are favorable. The “zero

growth concept” posits that stem radial growth, governed by turgor

and water potential conditions in the cambium (Lockhart, 1965;

Steppe et al., 2006), becomes nearly impossible during prolonged

TWD periods (spanning several days) with a bias of 1–5% (Zweifel

et al., 2016). This cut in half of the growing season resulted in

significantly less radial growth in BB and RO compared to the

average growth of the previous ten years (Table 3). Growth was only

slightly reduced in ME, while interestingly in HE, growth was

around the previous average if accounting for bark tissue

included in the total SRC of 2022. In addition, the mean value in

HE is based on only 4 trees, one of which showed significantly more

growth. Without tree HE01, the mean annual increment would be

only 0.59 mm, i.e. approx. 84% of the mean annual ring width.

Particularly in RO, a TWD of 52–321 μm persisted at the end of

observation (October 20) and through winter, for some trees even

until the start of the growing season 2023, although VSWC (REW)

recovered well above k in November and December (data not

shown). This might reflect how newly built cells by the cambium

around July 10, still turgescent at this time, dehydrated in the course

of the following TWD, while cell walls matured and stiffened, which

normally take several days (e.g. 7–17 days for Norway spruce,

Anfodillo et al., 2012). This would result in an apparent TWD in the

bark, although cells are turgescent, but due to cell maturation in a

partly dehydrated state, the previous maximum radial extension

cannot be reached by rehydration alone.

Plants are known for their phenotypic plasticity and

adaptability to their environment (DeWitt and Scheiner, 2004)

and also Douglas-fir can adapt to drought (Martinez-Meier et al.,

2009). Therefore, we hypothesized that the trees at the driest site BB

are the most tolerant to drought and at ME the most sensitive, based

on the mean annual precipitation received at the site. However, in

terms of the threshold k, our data show only a weak link to the long-

term site precipitation (Table 6) and k does not differ significantly
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between the most continental/driest (BB) and the most oceanic/

humid site (ME).

The reduction in sap flow due to increasing soil drought follows

the gradient in humidity, being significantly stronger at the most

oceanic/humid site ME. Here, the start of the decrease is shifted to

about 40% REW and also heaviest reduced at maximum drought and

maximum TWD. Granier (1987) even reports that transpiration of

Douglas-fir at a site close to Nancy with oceanic character started to

reduce sap flow at a REW of as low as 30%. As mentioned before, this

could be interpreted as an adaptation to the low frequency of

extended drought periods at sites with an oceanic character,

allowing for a lower safety margin. At continental sites, on the

contrary, droughts are usually more frequent and longer, making it

more important to conserve water under drying soils. This would

suggest a plastic adaptation of the trees to drier conditions, however,

the gradient we studied across Germany is rather small and a study

on a larger gradient across Europe would be more revealing. In

addition, there may also be seasonal differences within a site, as could

be observed in RO, where the decrease in relative sap flow later in the

year was more similar to that at more oceanic sites.

Contrary to our expectations, the reduction in increment

compared to the tree ring widths of the previous 10 years was

strongest in BB with 55%, while in ME, the most oceanic site, the

reduction in increment was only slight and in HE the increment in

2022 was even higher. However, as mentioned before, taking in

mind that tree ring widths are not 1:1 comparable to dendrometer

measurements, as the later also includes bark tissue, and that the

mean increment for HE was skewed by one individual.

An important characteristic of Douglas-fir in connection with

the expected climate changes is its greater tolerance to summer

drought and faster recovery from drought years than other species

in a variety of locations and under different climatic conditions

(Vitali et al., 2017; Miller et al., 2023). However, the increasing

dehydration of the soil and summer drought is also increasingly

affecting Douglas-fir trees and may also make it more susceptible to

existing and future pests. This could jeopardize the future viability

of Douglas-fir as a replacement for Norway spruce. Our study so far

is based on only one year, which was also exceptionally dry, but

presumably representative for future years. The following years will

show whether the trees are able to compensate for the drought stress

in 2022, and remain vital, or whether they will even still struggle

with legacy effects of the summer drought of 2018.
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