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Agroclimatic variables may affect insect and plant phenology, with unpredictable

effects on pest populations and crop losses. Bactrocera oleae Rossi (Diptera:

Tephritidae) is a specific pest of Olea europaea plants that can cause annual

economic losses of more than one billion US dollars in the Mediterranean region.

In this study, we aimed at understanding the effect of olive tree phenology and other

agroclimatic variables on B. oleae infestation dynamics in the Umbria region (Central

Italy). Analyses were carried out on B. oleae infestation data collected in 79 olive

groves during a 7-year period (from 2015 to 2021). In July–August, B. oleae

infestation (1% attack) was negatively affected by altitude and spring mean daily

temperatures and positively by higher winter mean daily temperatures and olive tree

cumulative degree days. In September–October, infestation was negatively affected

by a positive soil water balance and high spring temperatures. High altitude and

cumulative plant degree days were related to delayed attacks. In contrast, high

winter and spring temperatures accelerated them. Our results could be helpful for

the development of predictive models and for increasing the reliability of decision

support systems currently used in olive orchards.
KEYWORDS

Bactrocera oleae, Diptera, insect monitoring, Oleaceae, oviposition, pest
management, Tephritidae
Introduction

Olea europaea L. is one of the oldest and most abundant tree crops in the Mediterranean

regions, where it is of essential socioeconomic and ecological importance (Michalopoulos

et al., 2020; Caselli and Petacchi, 2021). Approximately 95% of the global demand for olive oil

is satisfied by southern European countries, with Spain, Italy, and Greece being the main olive
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oil producers (Fraga et al., 2021). Given the importance of olive

cultivation, it is imperative to effectively manage pests that can cause

significant production losses. More than 255 species, including insect

pests, mites, nematodes, and pathogenic microorganisms, are

potentially harmful to O. europaea (Caselli and Petacchi, 2021).

Most of the yield loss is caused by the key pest Bactrocera oleae

(Rossi) (Diptera: Tephritidae). In addition, moths [e.g., Prays oleae

(Bernard)] contribute locally or occasionally to yield decline (Caselli

and Petacchi, 2021). Insects can also be pathogen vectors, such as

Philaenus spumarius L., the primary vector of Xylella fastidiosa subsp.

pauca, which is responsible for the olive quick decline syndrome

(Elbeaino et al., 2014; Sevarika et al., 2022). In a scenario of climate

change, the ability to predict the evolution of the cycle of pests and

plants, assessing the risks associated with their interaction, represents

a critical challenge for the implementation of a proper

control strategy.

Herbivorous insects, especially those with low thermal

thresholds, are highly sensitive to changes in climate (Deutsch

et al., 2008). Climate change may alter plant–pest phenological

events, such as flowering and leaf unfolding, insect overwintering,

and migration (Gordo and Sanz, 2005). Depending on the insect

species, higher mean daily temperatures and extreme climate

events, no longer sporadic, could cause the extension of suitable

geographical ranges for herbivores but also the disruption of the

synchronization of biological cycles among herbivores and their

natural enemies (Forrest, 2016; Bonsignore et al., 2020; Skendžić

et al., 2021), with an expected substantial increase in crop losses

(Deutsch et al., 2018). As a result, monitoring methods and pest

management programs must be reviewed and, if necessary, adapted

to the new climatic changes that are occurring. In recent decades,

pest control relied mainly on the use of broad-spectrum

insecticides, with negative effects related to the decline of natural

enemies, the occurrence of insecticide resistance in the target

population, environmental pollution, and human health (Damos

et al., 2015). Integrated pest management (IPM) is now commonly

adopted, foreseeing the combined use of synthetic insecticides with

more sustainable methods (Stetter and Lieb, 2000). The use of

successful prediction models can play a pivotal role within IPM, also

in combination with machine learning algorithms, used to manage

complex datasets (McQueen et al., 1995; Damos, 2015; Raza et al.,

2015; Benos et al., 2021; Caselli and Petacchi, 2021; Skendžić et al.,

2021). Degree day models are a conventional instrument for

predicting insect phenology (AliNiazee, 1979; Jones et al., 1991;

Song et al., 2003; Rebaudo and Rabhi, 2018; Barker et al., 2020).

However, physiologically based population modeling merges

information on insect development and crop phenology to

achieve more accurate predictions (Gutierrez et al., 2009; Rossini

et al., 2022). Since a precise indication of pest outbreaks is necessary

in an IPM context, machine learning has been applied in decision

support systems (Capalbo et al., 2017; Ip et al., 2018; Rossini et al.,

2022). A decision support system is a set of computer programs,

mathematical models, and heuristic information that operate

synergistically to improve decision-making (Nestel et al., 2019).

The olive fruit fly, B. oleae is an important pest of Olea spp. in

Europe, Asia, Africa, and North America (Varikou, 2022).

Bactrocera oleae is expected to expand due to global warming,
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thus colonizing areas at higher latitudes and altitudes (Petacchi

et al., 2015; Marchi et al., 2016). Furthermore, an increase in average

temperatures can affect the adult phenology in spring or can halt

egg development in summer, but, on the other side, it can prolong

the oviposition period in autumn, possibly resulting in increased

yield losses (Caselli and Petacchi, 2021). The economic damage of

B. oleae is estimated at more than one billion US dollars per year,

only in the Mediterranean region (Van Asch et al., 2015).

The larval stage is responsible for both qualitative and quantitative

damage due to its feeding activity within the olive mesocarp, leading to

a strong decline in oil quality and premature fruit drop (Gömez-

Caravaca et al., 2008). IPM programs against B. oleae are primarily

based on monitoring of adults, sampling of olives to evaluate active

infestation, and eventually pesticide treatments. In recent years,

understanding the population dynamics of B. oleae has become a

major focus of research on this pest. Since dimethoate use has been

banned due to its toxic effects (Commission Implementing Regulation

(EU), 2019/1090), alternative prevention-based control strategies are

now recommended. Olive orchard monitoring is required due to the

numerous factors that affect B. oleae infestations such as temperature,

weather conditions, geographical location, olive tree variety, and

management practices (Wang et al., 2009, 2013; Johnson et al., 2011;

Rizzo et al., 2012; Petacchi et al., 2015; Volpi et al., 2020). Moreover, the

olive variety can determine the fruit susceptibility to B. oleae attacks.

Preferences are based on factors such as the size and shape of the fruits

and their concentration of phenolic compounds (Varikou et al., 2022;

González-Fernández et al., 2023). Furthermore, the mineral element

content of the fruit may also influence female choice, making fruits that

contain higher amounts of K and Fe more susceptible to attacks

(Garantonakis et al., 2016). Concerning the use of digital tools, so

far, some predictive models, machine learning algorithms, and decision

support systems have been used for B. oleae monitoring and control

(Ordano et al., 2015; Petacchi et al., 2015; Marchi et al., 2016; Miranda

et al., 2019; Benhadi-Marıń et al., 2020; Volpi et al., 2020; González-

Fernández et al., 2023). However, proper calibration of these tools for

the Umbria region (Central Italy) is lacking. To fill the knowledge gap

about the effect of climate and environment on B. oleae in the Umbria

region, we analyzed the dynamics of B. oleae infestation over 7 years

(from 2015 to 2021) in 79 olive groves in total.
Material and methods

Bactrocera oleae infestation data

Analyses were conducted on B. oleae infestation data with the

collaboration of the Umbrian Olive Oil Producer Association

(O.P.O.O.) operating in the Umbria region (Central Italy). The

dataset accessed contains monitoring data collected from 2015 to

2021 by expert field technicians. Surveys included a total of 79 olive

orchards. Fruits were sampled weekly from the second half of July

(pit hardening) until harvest. Each sample consisted of 100 olives

randomly collected from different plants (one fruit per plant)

(Quaglia et al., 1982). The olives were visually inspected in the

laboratory with a stereomicroscope. Healthy olives were separated

from those with oviposition punctures (Daher et al., 2022). Fruits
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exhibiting oviposition punctures were dissected with a scalpel and

observed under a stereomicroscope to assess the presence of

B. oleae. Alive eggs and larvae were considered for calculating the

active infestation index (calculated as in Delrio and Prota, 1977 and

Tsolakis et al., 2011).
Variables associated with Bactrocera
oleae infestation

Several environmental, morphometric, and weather variables

have been correlated, over time, to the olive fruit fly infestations,

such as precipitations, altitude, elevation, and distance from the water

(Torres-Villa et al., 2006; Volpi et al., 2020). Based on these studies,

we identified a set of candidate explanatory variables related to

weather (average daily air temperature, daily precipitation),

morphometric (altitude, slope, exposition), and environmental

(distance from lakes) parameters. Weather data used were obtained

from the regional monitoring network—Regional Hydrographic

Service (https://annali.regione.umbria.it/#). The monitoring

network consists of sensors that send data in real time to the

central station through radio links distributed throughout the

territory, which manages the peripherals and stores the data. Daily

observed data on air temperature and precipitation from 116

meteorological stations for the period 2014–2021 have been

accessed and processed. Data processing included mapping of

weather stations, time series charting and analysis, evaluation and

removal of records with missing values, and evaluation and removal

of records with outlier values. Weather data were georeferenced on

the respective sensors’ positions. The point data were then used to

interpolate and create weather surfaces. To create a surface of

predicted temperature values for the region using the sample data,

the Geostatistical Wizard in ArcGIS Pro was used (Apaydin et al.,

2004; Kim et al., 2010; Merbitz et al., 2012; Antal et al., 2021;

Katipoğlu, 2022). Geostatistical techniques quantify the spatial

autocorrelation among measured points and account for the spatial

configuration of the sample points around the prediction location.

The inverse distance weighted (IDW) method was used to create the

daily interpolated surfaces for the weather parameters over the 7-year

period. Themeteorological surfaces produced by the model were used

to calculate the daily maximum, minimum, and average air

temperature (°C) and daily precipitation (mm) for each monitoring

record at its specific position. Those parameters relevant to model

selection are reported in Table 1.

Calculation of agrometeorological variables
Weather data and weather surfaces have been used to calculate a

set of variables, aiming at the identification and description of climatic

drivers influencing B. oleae infestation. The agrometeorological

variables were selected according to the annual cycle of B. oleae

(Koveos, 2001) and based on available methodology (Volpi et al.,

2020). The bioclimatic variables identified (Table 1) refer to three

periods: 1) winter period, calculated for each year in the period

November (of the previous year)–February; 2) spring period,

calculated for each year in the period March–May; and 3) summer

period, calculated from the beginning of June to the day of the attack,
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or calculated in the 7 days prior to the day of the attack. Another

variable was chosen to consider the soil water balance and, therefore,

refers to the water status of the olive grove, calculated in the 30 days

before the day of the attack. The soil water balance was calculated as

proposed by Hargreaves and Samani (1985) and adopted in Volpi et al.

(2020). The cumulative degree days were calculated using the package

“TrenchR” in the R environment (R Core Team, 2022; Buckley et al.,

2023). Olive tree phenology was considered by calculating the

cumulative degree day from January, with a lower threshold of 5°C

[CDD (PLANT)] (Volpi et al., 2020). Other variables were originally

calculated and considered, the cumulative degree day with a lower

threshold of 8.99°C and an upper threshold of 30°C [CDD (INSECT)]

(according to thresholds in Crovetti et al., 1982; Gonçalves and Torres,

2011), or the cumulative precipitation (in mm) during summer

(RAIN) (Volpi et al., 2020), but they were not included in the model

selection because of high correlation (Spearman) with other variables

[e.g., CDD (INSECT) and CDD (PLANT)].

Morphometric data processing
The Euclidean distance from lakes or rivers and morphometric

parameters (e.g., altitude) were processed in ArcGIS Pro and then

extracted from the raster file for each monitoring record by using an

automation model built with Model Builder function (Bajjali, 2023).

Digital elevation models (DEMs) were obtained by TINITALY/01

(https://tinitaly.pi.ingv.it/), which is currently considered the most

accurate DEM covering the whole Italian territory (Tarquini et al.,

2007). TINITALY/01 is a DEM in triangular irregular network

format created for the entire Italian territory in the UTM 32 WGS

84 coordinate system (Tarquini et al., 2007). The whole TINITALY/

01 DEM was converted in grid format (10-m cell size) according to

a tiled structure composed of 193.50-km side square elements

(Mascandola et al., 2021). DEM coordinates were assigned as

WGS 1984 UTM Zone 32N (WKID 32632).
Statistical analysis

Bactrocera oleae infestation was evaluated as the occurrence of

active infestation at 1% threshold and as the Julian day of occurrence of
TABLE 1 List of all variables calculated and evaluated in the final models.

Variable Description Unit

TEMP
(NOV–FEB)

Average daily temperatures during the November–
February period

°C

TEMP
(MAR–MAY)

Average daily temperatures during the March–
May period

°C

TEMP (−7D) Average of mean air temperatures in the 7 days prior
to the monitoring day

°C

SWB Soil water balance in the 30 days prior to the
monitoring day

mm

CDD
(PLANT)

Cumulative degree day with a lower threshold of 5°C

DEM Altitude (above the sea level) m

LAKES Euclidean distance from lakes m
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the first attacks. Each dependent variable was analyzed in two different

periods, that is, July–August (i.e., early season) and September–October

(i.e., late season) of each year from 2015 to 2021. The initial explanatory

variables considered were DEM, LAKES, TEMP (MAR–MAY), TEMP

(NOV–FEB), CDD (PLANT), TEMP (−7D), and SWB (Table 1).

Considered orchards were monovarietal or mixed olive cultivars. To

evaluate the effect of cultivars, we have tested the effect of a four-level

categorical variable (cultivar, CV). Three levels were Leccino, Frantoio,

and Moraiolo varieties. A fourth level grouped mostly olive plantations

with mixed cultivars or with cultivars marginally represented in the

dataset (e.g., “Nostrale di Rigali”). Agronomic management has a

variable effect on B. oleae attacks (Gkisakis et al., 2018). A dummy

variable (management, MAN) was included to compare the two

management systems applied in olive orchards, i.e., IPM vs. organic.

However, neither CV nor MAN variables revealed a significant effect

on B. oleae occurrence of active infestation and Julian day of occurrence

of first attacks; hence, they were not retained in the final models (see

Supplementary Tables 1, 2 for statistical results). Similarly, the

Euclidean distance from the rivers was initially evaluated, but its

effect on B. oleae attacks was never significant. All variables were

standardized (mean-centered with a unit standard deviation) prior to

analysis. Attack probability was initially evaluated by means of

generalized mixed-effects models (with logit link and binomial

distribution) to account for dependent observations (multiple

observations on the same orchard across different years)

(Supplementary Tables 1, 2). The Julian day of occurrence of the

first attacks was evaluated by means of linear mixed-effects models

(Burnham and Anderson, 2002; Rondoni et al., 2012), excluding from

the final analysis the data from 2017, due to the limited number of

infestation outbreaks. For both types of models, the relevance of the

fixed and random structure was evaluated by means of the likelihood

ratio test (LRT) and Akaike information criteria (AIC) (Pinheiro and

Bates, 2006; Jacobs et al., 2022; Tidau et al., 2023). The best-fitted

models, i.e., retaining the minimum number of explanatory variables,

were selected using LRT (Burnham and Anderson, 2002; Ferracini

et al., 2023). The multicollinearity of variables was assessed through the

calculation of the variance inflation factor and revealed low (Zuur et al.,

2009). A residual plot was evaluated for each of the best-fitted models.

Data were analyzed and visualized using “MASS” (Venables and

Ripley, 2002), “nlme” (Pinheiro and Bates, 2006), “lme4” (Bates

et al., 2015), “ciTools” (Haman and Avery, 2020), “ggplot2”

(Wickham, 2016), and “ggeffects” (Lüdecke, 2018) packages in R

(version 4.2.2) (R Core Team, 2022).
Results

The best model to explain the probability of attack in July–August

retained five explanatory variables. Attack was negatively affected by

DEM and TEMP (MAR–MAY), but positively affected by TEMP

(NOV–FEB), CDD (PLANT), and SWB (the results of the best-fitted

generalized mixed-effect model are reported in Table 2; Figure 1).

Concerning the attacks in September–October, these were negatively

affected by the increase of SWB and TEMP (MAR–MAY) but

positively by TEMP (NOV–FEB) and TEMP (−7D) (Table 3;

Figure 1). Concerning the day of the first attacks (Table 4), the
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increase in CDD (PLANT), DEM, and SWB delayed the occurrence

of the attacks in the July–August period. On the contrary, an increase in

LAKES, TEMP (NOV–FEB), TEMP (MAR–MAY), and TEMP (−7D)

had a positive effect in anticipating the attacks. For the September–

October period, higher values of DEM and CDD (PLANT) delayed the

attacks, while an increase in TEMP (MAR–MAY) and TEMP (−7D)

anticipated the attacks by B. oleae (Table 5).
Discussion

This study represents the first attempt to understand B. oleae

population dynamics in Umbria (Central Italy) using a combination

of landscape and agroclimatic variables, which could be further

leveraged in studies related to larger territories with similar

geographical characteristics. The assessment of B. oleae infestation

was carried out over two crucial periods of the year, that is, in July–

August, during the fruit growth period, and in September–October,

during the preharvest period.

Our analysis reveals that olive orchards located at higher

altitude expected lower attacks during summer (July–August

period). In these sites, attacks are also delayed during the year

(July–August and September–October periods). Similarly, Helvaci

et al. (2018) reported that the infestation rate was inversely related

to both altitude and relative humidity in olive orchards of Northern

Cyprus. Furthermore, temperatures in winter and spring have a

strong effect on determining attacks and timing of infestation.

Average daily temperatures were approximately 7°C in

November–February, i.e., when B. oleae is mostly overwintering,

and determined an attack probability of approximately 50%

(averaged across years). Temperature increase in this period has a

positive effect in enhancing future attacks throughout the year, e.g.,

with an increase in the early season of ca. 35% probability of attacks

at 8.5°C average temperatures. Our analysis suggests that

temperatures also anticipate the timing of attacks during the early

season period of approximately 2 d per degree. Insects that

overwinter as pupa in soil have increased survival when

temperature increases above 1°C (Bale and Hayward, 2010).

Winter temperatures above 0°C gradually reduce the mortality of
TABLE 2 Coefficients and significance level for each explanatory
variable retained within the best fitted model (Generalized linear mixed-
effects model, binomial distribution) for the probability of occurrence of
the first active infestation (1% threshold) within the period July-August
of all years from 2015 to 2021.

Predictor Coefficient SE z-value P-value

(Intercept)
DEM
TEMP (NOV-FEB)
TEMP (MAR-MAY)
CDD (PLANT)
SWB

-0.348
-0.342
0.558
-0.505
0.864
0.416

0.510
0.144
0.216
0.205
0.117
0.116

-0.68
-2.38
2.59
-2.46
7.35
3.59

0.495
0.017
0.010
0.014
<0.001
<0.001
fro
Explanatory variables are described in Table 1 and were standardized before analysis [average
(SD) values: DEM = 349.7 (56.5) m, TEMP (NOV-FEB) = 6.8 (1.0) °C, TEMP (MAR-MAY) =
12.4 (0.9) °C, CDD (PLANT) = 2055.9 (275.4), SWB = 91.9 (221.3) mm].
Random effects: s2 (variance of residuals) = 3.29, t00 st (variance between sites) = 0.66, t00 year

(variance between years) = 1.67, ICC (intra-class correlation) = 0.41, N st (number of sites) =
79, N year (number of years) = 7, observations = 981, marginal R2 = 0.176, conditional R2 =
0.518, AIC = 971.97.
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B. oleae, which can successfully overwinter with large populations

(Hatherly et al., 2005; Wang et al., 2013; Petacchi et al., 2015;

Marchi et al., 2016). Similarly, Marchi et al. (2016) registered an

anticipation of B. oleae appearance in spring and higher infestation

rates of juvenile forms (i.e., eggs, first and second instar larvae alive

and dead) during the early season period (July to August) in years

characterized by mild winters. Helvaci et al. (2018) detected a

higher infestation rate as a consequence of higher winter

air temperatures.

The increase of the average temperatures in the March–May

period negatively affects attack probability but remarkably
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anticipates the occurrence of first attacks. Given the massive

influence of temperature on insects and the fact that higher

temperatures often lead to shorter life spans, the combination of a

mild winter and a hot spring could potentially be responsible for the

premature decline of overwintering adults (Preu et al., 2020),

possibly resulting in a lower attack probability. In non-irrigated

orchards, such as those investigated here, warmer spring

temperatures may also negatively affect pupal survival, whereas
TABLE 3 Coefficients and significance level for each explanatory
variable retained within the best fitted model (Generalized linear mixed-
effects model, binomial distribution) for the probability of occurrence of
the first active infestation (1% threshold) within the period September-
October of all years from 2015 to 2021.

Predictor Coefficient SE z-value P-value

(Intercept)
TEMP (NOV-FEB)
TEMP (MAR-MAY)
TEMP (-7D)
SWB

0.91
0.570
-0.653
0.523
-0.514

0.566
0.270
0.313
0.201
0.125

1.61
2.11
-2.09
2.61
-4.13

0.108
0.035
0.037
0.009
<0.001
Explanatory variables are described in Table 1 and were standardized before analysis [average
(SD) values: TEMP (NOV-FEB) = 6.6 (1.0) °C, TEMP (MAR-MAY) = 12.5 (0.99) °C, TEMP
(-7D) = 22.6 (1.2) °C, SWB = 225.5 (264.7) mm].
Random effects: s2 = 3.29, t00 st = 0.52, t00 year = 1.94, ICC = 0.43, N st = 75, N year = 7,
observations = 763, marginal R2 = 0.137, conditional R2 = 0.506, AIC = 798.18.
TABLE 4 Coefficients and significance level for each explanatory
variable retained within the best fitted model (Linear mixed-effects
model) for Julian day of the occurrence of the first active infestation (1%
threshold) within the period July-August in the period 2015 to 2021.

Predictor Coefficient SE z-value P-value

(Intercept)
DEM
LAKES
TEMP (NOV-FEB)
TEMP (MAR-MAY)
CDD (PLANT)
TEMP (-7D)
SWB

223.53
0.403
-0.59
-1.852
-5.733
15.835
-7.821
0.584

0.808
0.157
0.187
0.266
0.296
0.269
0.364
0.177

276.54
2.56
-3.16
-6.97
-19.36
58.92
-21.46
3.31

<0.001
0.012
0.002
<0.001
<0.001
<0.001
<0.001
0.001
fro
Because of the low infestation events, 2017 was excluded from the analysis.
Explanatory variables are described in Table 1 and were standardized before analysis [average
(SD) values: DEM = 345.9 (54.0) m, LAKES = 8463.0 (5991.0) m, TEMP (NOV-FEB) = 7.0
(0.9) °C, TEMP (MAR-MAY) = 12.2 (1.0) °C, CDD (PLANT) = 2022.4 (261.7), TEMP (-7D) =
21.9 (1.9) °C, SWB = 152.5 (244.8) mm].
Random effects: s2 = 2.19, t00 year = 3.77, N year = 6, observations = 139, marginal R2 = 0.932,
conditional R2 = 0.975, AIC = 544.76.
FIGURE 1

Relationships between infestation probability or Julian day of occurrence of Bactrocera oleae and some of the variables retained in the best-fitted
models of Tables 2–5. Curves represent the model estimate (solid line) and 95% confidence intervals (shaded area). For each plot, the variables not
represented were set to their average value on the original scale (reported in the caption of Tables 2–5). Tick symbols represent the distribution of
the original data. Explanatory variables are described in Table 1.
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irrigation may prevent pupal desiccation (reviewed by Yokoyama,

2015). In addition, during spring, most of the newly emerged B.

oleae adults disperse from olive orchards, where fruits are not

available, to seek flowers and nectar for survival (Paredes et al.,

2023). During these migratory flights, newly hatched adults can also

encounter abandoned olive groves, where they can find fruits from

the previous year to oviposit. In this scenario, the reduced

infestation found in the surveyed olive groves might be due to the

higher spring temperatures followed by an increased frequency and

distance of migratory flights (Economopoulos et al., 1978;

Mazomenos et al., 2002; Ragaglini et al., 2007; Skouras et al.,

2007; Marchini et al., 2017; Ortega et al., 2022). The part of the

population that did not migrate, on the other hand, may have been

responsible for the early attacks recorded.

More hypotheses could be drawn for the observed negative

effect of increased spring temperatures on attacks and could, for

example, consider the modification of the chemical and physical

factors involved in the susceptibility of olives to B. oleae (Tognetti

et al., 2006; Malheiro et al., 2015).

The accumulation of degree days relevant to the olive

phenology positively determined B. oleae attacks but only for the

July–August period, confirming the results of previous studies

conducted in other Italian regions (Marchi et al., 2016; Volpi

et al., 2020).

Notably, higher temperatures in the 7-day period before the

monitoring day increase the attack probability only in the late

season and anticipate the occurrence of attacks in both early and

late seasons. Other variables rather than temperature may affect the

interactions between olive fruit fly and its host, such as soil water

content and irrigation type. For example, we detected that an

increase in the soil water content increases the attack probability

by B. oleae. A low water level can lead to loss of plant turgor and

premature fruit drop. Conversely, adequate water supply improves

fruit turgidity, which elicits higher B. oleae attacks on fruits (Marchi

et al., 2016). Irrigation practice was not considered within the model

selection because in Central Italy productive olive plantations are

not irrigated. Vicinity to lakes is known to increase the attack

probability by B. oleae because of the peculiar microclimate caused

by lakes (Gutierrez et al., 2009). However, in our analysis, proximity

to lakes was of marginal importance and never affected the
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probability of attacks. An explanation is that a possible variability

in the attacks in orchards gradually distant from lakes could have

been captured by other variables considered (e.g., winter and

spring temperatures).

Collectively, our results support a potential application of IPM

control strategies leveraging predictive models in the future

implementation of decision support systems. The main bottleneck

of this application is the evaluation of false negatives that can

underestimate the infestation rates in olive orchards (Volpi et al.,

2020). For these reasons, different interpolation methods must be

tested before choosing the best-fit model for a specific geographic and

climatic area (Petacchi et al., 2015). In the case of B. oleae, adequate

monitoring networks are needed to implement a proper program, as

insect distribution is affected by environmental and landscape factors

(Thies et al., 2003; Krasnov et al., 2019). Despite the difficulties of

precision agriculture strategy for pest control, there are previous

studies confirming the successful implementation of digital tools

(Miranda et al., 2019). Sciarretta et al. (2019) reported a substantial

reduction in the number and volume of pesticide applications, for the

control of the Mediterranean fruit fly (medfly), Ceratitis capitata

(Wiedermann), in areas managed with a dedicated decision support

system and electronic monitoring traps. Given the close relationship

between insect development and temperature, further studies on the

impact of temperature variations on the spatial and temporal

distribution of B. oleae populations are urgently needed. In addition

to air temperature, the emergence of B. oleae can be affected by soil

temperature and moisture. For example, low soil temperature and

high soil moisture due to rain can increase B. oleae pupal mortality

(Neuenschwander et al., 1981; Wang et al., 2013). Conversely, low soil

humidity may be responsible for pupal desiccation, drastically

reducing adult emergence in the spring (Wang et al., 2013;

Yokoyama, 2015). The use of specific sensors to measure soil

parameters would be necessary to further elucidate the effect of soil

temperature and moisture on the overwintering population of

B. oleae.

Moreover, traditional control methods (i.e., cover and bait

sprays) based on conventional insecticides could become

inefficient if the olive fruit fly continues to increase its resistance

(Skouras et al., 2007; Pereira-Castro et al., 2015; Marchi et al., 2016).

Alternative approaches, by combining powder dust or kaolin with

propolis, exhibited an interesting and concrete possibility to reduce

fruit infestations by B. oleae (Daher et al., 2022). An integration of

different olive fruit fly management methods is recommended,

including the use of chemical, biotechnical, and biological control

(Lantero et al., 2023). The complexity of the landscape surrounding

olive groves has been shown to reduce the abundance of B. oleae

and other insect pests (Ortega et al., 2018; Villa et al., 2020). In

addition, a more complex environment has been found to enhance

the effectiveness of biocontrol agents (Boccaccio and Petacchi, 2009;

Ortega et al., 2018). Therefore, agricultural spatial planning should

consider the impact of landscape complexity on insect

development. Our analysis allowed the identification of key

environmental variables influencing the probability and timing of

B. oleae attacks that could be used in distribution modeling at the

regional scale, or even in more complex modeling methods, based

on machine learning algorithms. Further analyses should also
TABLE 5 Coefficients and significance level for each explanatory
variable retained within the best fitted model (Linear mixed-effects
model) for Julian day of the occurrence of the first active infestation (1%
threshold) within the period September-October in the period 2015
to 2021.

Predictor Coefficient SE z-value P-value

(Intercept)
DEM
TEMP (MAR-MAY)
CDD (PLANT)
TEMP (-7D)

254.17
1.437
-2.64
7.374
-6.425

1.311
0.527
1.055
0.884
0.803

193.84
2.72
-2.5
8.35
-8.00

<0.001
0.007
0.014
<0.001
<0.001
Because of the low infestation events, 2017 was excluded from the analysis.
Explanatory variables are described in Table 1 and were standardized before analysis [average
(SD) values: DEM = 347.4 (52.6) m, TEMP (MAR-MAY) = 12.4 (1.0) °C, CDD (PLANT) =
2624.8 (295.5), TEMP (-7D) = 22.6 (1.3) °C].
Random effects: s2 = 34.94, t00 year = 8.4, N year = 6, observations = 135, marginal R2 = 0.541,
conditional R2 = 0.630, AIC = 875.55.
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evaluate the effect of landscape complexity and composition on

olive fruit fly infestations occurring in Central Italy.
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