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Recently, a rapid advancement in using unmanned aerial vehicles (UAVs) for yield

prediction (YP) has led to many YP research findings. This study aims to visualize

the intellectual background, research progress, knowledge structure, and main

research frontiers of the entire YP domain for main cereal crops using VOSviewer

and a comprehensive literature review. To develop visualization networks of

UAVs related knowledge for YP of wheat, maize, rice, and soybean (WMRS) crops,

the original research articles published between January 2001 and August 2023

were retrieved from the web of science core collection (WOSCC) database.

Significant contributors have been observed to the growth of YP-related

research, including the most active countries, prolific publications, productive

writers and authors, the top contributing institutions, influential journals, papers,

and keywords. Furthermore, the study observed the primary contributions of YP

for WMRS crops using UAVs at the micro, meso, and macro levels and the degree

of collaboration and information sources for YP. Moreover, the policy assistance

from the People’s Republic of China, the United States of America, Germany, and

Australia considerably advances the knowledge of UAVs connected to YP of

WMRS crops, revealed under investigation of grants and collaborating nations.

Lastly, the findings of WMRS crops for YP are presented regarding the data type,

algorithms, results, and study location. The remote sensing community can

significantly benefit from this study by being able to discriminate between the

most critical sub-domains of the YP literature for WMRS crops utilizing UAVs and

to recommend new research frontiers for concentrating on the essential

directions for subsequent studies.
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1 Introduction
Wheat, maize, and rice were responsible for 30% of the world’s

crop production by the year 2020. Furthermore, when it came to the

exports of the commodities that were produced from cereal crops,

wheat, maize, and rice contributed 45%, 32%, and 9% respectively.

Simultaneously, soybean contributed 28% of oil production

(FAO, 2022). These crops are of keen importance to address the

food security issue. Hence, the global research developments can be

examined to update and for self-evaluation in fulfilling the current

food demands. By delving deeply into a particular study’s academic

history and knowledge structure, it is possible to identify the research

themes, knowledge base, research frontiers, and hotspots worldwide.

The extensive background of scientific investigations can be

categorized using a range of distinct specialties, including

institutions, collaborating authors, countries, co-occurring

keywords, publications, hot research topics, cited references, and

knowledge clusters. Leveraging the co-occurring keywords in articles

from databases to conduct a literature clustering helps to reveal the

knowledge structure and domains (Qian et al., 2019; Chen and

Liu, 2020). These maps can be represented as networks to create a

structure of these analyses known as bibliometric (or scientormetric)

analysis (Ahmed et al., 2021; Azam et al., 2021; Hussain et al., 2023).

Consequently, this review systematically interprets the intellectual

history of a research topic or scientific literature through this novel

approach. Moreover, it provides insight into new breakthroughs

relevant for researchers, business investors, engineers, and the

author or institutional collaboration knowledge structures and

emerging research topics. This review article focusses on the use of

UAVs in yield prediction (YP), and particularly with applications to

wheat, maize, rice and soybean (WMRS) cropping systems: given its

importance for food security at global scale.

Numerous approaches are being made for WMRS’s sustainable

production, protection, monitoring, and estimation, and one use is

UAVs. YP analysis has been increasingly popular as big data

technologies have advanced (Barnetson et al., 2020). Consulting

firms and policymakers frequently employ such models when

developing effective strategies (Astor et al., 2020). One of the

most critical challenges in agriculture is grain yield regarding

personal living standards and food security. The quantity of crop

produced in a certain year is referred as the yield (Fischer et al.,

2014). Several factors affect here, like genetic features, soil, weather,

cultivation, and a wide range of varietals crop yields. Remote

sensing (RS), a relatively new technique is expected to help

calculate rice yield, especially on a regional scale. With the

emergence of UAVs, a unique strategy for RS has been provided,

and high spatiotemporal resolution imaging on a regional scale is

now possible (Zheng et al., 2019). However, it wasn’t till 2000s that

the UAV technology took off in the agricultural sector, thanks to

ground-breaking innovations that made the technology more

accessible, user-friendly, and affordable. Examples of agricultural-

grade UAVs with sensors available in 2019 include the Matrice 100

(Dà-Jiang Innovations, Shenzhen, China) and MicaSense Red Edge

MX (Seattle, Washington) as well as the Pix4D Fields (Lausanne,

Switzerland) and hardware from Pix4D (Puget Systems, 2021)
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could be purchased for less than $30,000. In addition, using

UAVs' sensors has facilitated the collection of visual data, which

can now be analyzed through cloud-based computing services. This

advancement has decreased the requirement for costly image

processing software and hardware that formerly had to be present

on-site. Notably, Pix4D Fields, a software developed by Pix4D in

Lausanne, Switzerland, is an example of such cloud-based

computing services. Typically, the acquisition of UAVs-based

data involves several stages: the formulation of a mission plan,

the collection of imagery during the operation, the subsequent

stitching, processing, and extraction of the data, and ultimately, the

uploading of the resulting data output to precision agriculture

machines or for statistical analysis in the context of research.

Figure 1 demonstrates a conventional method for acquiring

quantifiable and actionable data from multispectral and

hyperspectral UAVs.

Additionally, satellites, manned airplanes, and handheld

sensors can all be used for RS (Melesse et al., 2007). However,

satellites’ drawbacks include lesser resolutions, cloud blockage,

scheduling, and location issues. Manned aircraft can cover large

areas, but the expense is overpriced. While handheld sensors are

highly accurate, they have far smaller coverage areas than aerial RS.

UAVs are appealing for agricultural applications due to their ability

to efficiently cover large areas, unaffected by cloud interference,

unrestricted by location or timing constraints, and reasonably cost-

effective (Muchiri and Kimathi, 2022). However, some

disadvantages of UAVs-based RS are data degradation due to

lighting conditions, data collection’s tendency to occur close to

solar noon, airspace restrictions, and poor weather grounding.

Regulations regarding the usage of UAVs vary greatly throughout

countries and often encompass limitations on velocity and

elevation, nocturnal operations, visual range, proximity to

airports, and densely populated regions. Additional issues to take

into account during secure flight operations include the presence of

other manned aircraft, prey birds, and disruptions in controller

communication that could result in out of control.

Crop improvement through genetics and plant breeding and the

use of precision technologies such as UAVs and remote sensors are

potential solutions to meet this demand (Yang et al., 2017). Such

technologies are vital for strategic management and can lead to

specific breeding decisions and ensure the maximum agricultural

outputs (Tilman et al., 2011). The technologies like UAVs in RS,

enable rapid collection of phenotypic data with an efficient and non-

destructive way for agronomists and plant breeders (Yang et al.,

2017). Examples include estimating leaf color (Graham et al., 2009),

lodging (Zhao et al., 2019), plant height (Han et al., 2018), stand

count (Zhao et al., 2018), canopy cover (Lee and Lee, 2011), fruit

count (Dorj et al., 2017) and flower count (Adamsen et al., 2000).

The spectral sensors can be used to calculate yield (Shanahan et al.,

2001), leaf area index (Boegh et al., 2013), leaf chlorophyll content,

indirect leaf nitrogen content, and plant biomass. Finally, thermal

sensors gather information to calculate canopy temperature,

stomatal conductance, plant water potential and water use

efficiency (Santesteban et al., 2017).

Phenotyping estimations rely significantly on the duration of

sensing, and as crops reach maturity, phenotyping assessments
frontiersin.org
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improve in accuracy. In most cases, the difference between the

terrain model and the surface model must be calculated to predict

crop height; this yields the so-called digital crop model (Han et al.,

2018). Low-resolution cameras (3 megapixels) cannot catch the fine

details of complex crop surfaces, hence only cameras with superior

resolution (>10 megapixels) should be utilized. Additionally, it has

been demonstrated that the “Scale Constraint” function of some

imaging processing software and ground control points improves

crop height estimates. Refraining from conducting sensing activities

on days with wind speeds over 1-10 kilometers per hour is advisable

(Sziroczak et al., 2022). This precaution is recommended due to the

propensity of wind to induce movement in plants and result in

image blur, hence diminishing the precision of crop

height estimation.
1.1 Background for yield assessment

Numerous parties rely on crop output and quality estimates,

including consultants, producers, academics, insurance agents,

commodities merchants, governments, and non-governmental

organizations (Rembold et al., 2013). This data helps to determine

how much crop insurance to purchase, how much to deliver, when

to harvest to maximize quality, how much space is needed for

storage, and how much money will be needed. Traditionally,

managers have relied on historical yield data and seasonal

variables to inform their yield and quality assessments for the

remaining season (Raun et al., 2001). In contrast, the ultimate

outcomes of crop production and the resulting quality are

characterized by a lack of predictability and often subject to

factors such as crop genetics, weather conditions, soil
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composition, proficiency, and choices made in crop management.

The assessment of crop production and quality through the

utilization of UAVs technologies commonly depends on data

acquired from color and spectral sensors. The utilization of UAVs

imagery, particularly in conjunction with machine learning (ML)

techniques, currently holds the capacity to enhance assessment

precision and potentially diminish or eradicate the need for

terrestrial surveys. The accurate estimation of crop yield and

quality is contingent upon the ability to effectively sense time, as

the accuracy of estimation tends to improve as the crop progresses

through its life cycle (Ballester et al., 2017; Zhou et al., 2017).

The green normalized difference vegetation index (GNDVI)

yielded more precise biomass estimations at the stages of anthesis

and full crop development than at earlier stages of development

(Ostos-Garrido et al., 2019). According to other studies, it has been

observed that the GNDVI yielded more accurate estimations of crop

production at the early stage (5 weeks) of a crop’s growth cycle

(Wahab et al., 2018). Consequently, great care must be taken in the

selection of factors (color component and saturation indices), as this

choice greatly influences the efficacy and precision of crop yield and

quality estimates using spectral reflectance obtained at peak sites.

However, environmental factors and crop water stress are likely

to hinder the performance reliability of spectral indices where

NDVI (Normalized Difference Vegetation Index) and RENDVI

(Red Edge Normalized Vegetation Difference Index), based on

physiological behavior measured in lab conditions rather than

actual meteorological variations under field environments for

predicting wheat production accurately (Hassan et al., 2019).

Consequently, forthcoming investigations will examine these

elements within stress-controlled experiments to cultivate further

understanding. Incorporating correction factors for quality and
FIGURE 1

Pictorial view of the application of the UAV for crop yield prediction.
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yield assessments may be seen as a potential approach to enhance

the accuracy of spectrum consumption measurements in indices.

The application of ML, namely artificial neural networks, to spectral

bands has demonstrated potential (Sarkar et al., 2018). For instance,

these protocols have successfully predicted the grain protein

content of rice (Oryza sativa) and the total soluble solids content

of grapes (Vitis). Relatively inexpensive color cameras have been

utilized to capture color characteristics, proving to be a dependable

method for generating accurate yield estimations (Kefauver et al.,

2017). This approach offers a feasible alternative to utilizing more

expensive sensors. However, previous investigations that have

employed color cameras have yielded unsatisfactory outcomes

(Bura et al., 2018). This could be attributed to the inadequate

development of yield estimation protocols, or the studies conducted

under unfavorable environmental conditions (Bura et al., 2018). In

conclusion, numerous studies have been undertaken to estimate

crop production (Zhou et al., 2017; Bura et al., 2018; Hassan et al.,

2019; Zheng et al., 2019). However, numerous studies have shown

the concerns regarding accuracy, reliability, and scalability for the

analysis of the UAVs data for different crop phonemics

based studies.
1.1.1 Accuracy
1.1.1.1 Sensor restrictions

The UAVs usually have thermal, multispectral, or hyperspectral

sensors (Fei et al., 2023). Even though these sensors can record

much information about crops, they might not be precise enough

for analyzing individual cereal crops, especially in environments

with varying lighting and weather conditions (Lee et al., 2010).

1.1.1.2 Weather and flight stability

Cloud cover, wind, and fluctuating sunlight are external

elements that might add inaccuracies into sensor data (Aasen

et al., 2018), impacting YP’s accuracy.

1.1.1.3 Data quality

UAVs gather information at different speeds and altitudes,

which could cause inconsistencies in the resolution and quality of

the data collected from the sensors (Pádua et al., 2017). YP and

analyses that rely on this ambiguity may be imperfect.

1.1.2 Reliability
UAVs express difficulty flying in unstable air and are vulnerable

to bad weather like wind, rain, and fog, which can delay data

collection and even equipment damage (Ubina and Cheng, 2022).

This unpredictability may make YP models less reliable (Müller

et al., 2016).

1.1.2.1 Data processing and integration

UAVs produce massive amounts of data that must be processed

correctly to conduct real-time analyses (Guimarães et al., 2020).

Because of inherent variances in data structure and format,

integrating UAV data with other data sources, including weather,

soil, and ground truth measures is not easy (Samaras et al., 2019).
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1.1.3 Scalability
1.1.3.1 Field coverage

UAVs have trouble collecting data at scale due to their short

flight times and short battery lives, which limits their capacity to

survey vast cereal crop fields in a single flight (Mohsan et al., 2023).

1.1.3.2 Data storage, integration and management

For analyses that span several growing seasons or include long-

term monitoring, it is necessary to have a robust infrastructure to

store and manage massive datasets acquired by UAVs (Nabwire

et al., 2021). When applied to new locations with varied soil types,

temperatures, and crop types, ML models built on data from one

field or area might not perform as well as when trained on data from

another (Benos et al., 2021). Hence, it limits the models’ ability to be

applied at various agricultural scales.

1.1.4 Addressing challenges
Diverse methods can be considered to overcome these

previously mentioned difficulties.

1.1.4.1 Sensor calibration and data fusion

The application of advanced filtering techniques and regularly

calibrating sensors can help to increase the quality of data (Concas

et al., 2021). A more complete picture of crop conditions and

improved yield projections can be achieved through data fusion and

integration (Ahmad et al., 2022), which involves combining data

from UAV with data from other sources (such as satellite imaging

and ground-based sensors).

1.1.4.2 Hybrid machine learning models

By integrating ML with more conventional statistical

approaches, scientists can create more robust models and

generalize to new datasets (Elavarasan et al., 2018).

1.1.4.3 Improved technology for UAV

Longer flight times and more automated flight controls are just

two examples of how UAV technology is constantly evolving to

better cover more ground and collect more data (Chaurasia and

Mohindru, 2021).

1.1.4.4 Data management solutions with cloud computing

Using the cloud to store and analyses data can solve scalability

problems and make data analysis more effective (Delgado et al.,

2019). The background reveals proof of adaptation of the multiple

approaches for YP in different cereal crops.

This study employs UAVs for YP and provides a bibliometric

analysis of existing research conducted at WMRS crops. The

WOSCC extracted pertinent scientific information published

between 2005 and 2023 in high caliber publications. VOSviewer

was used for co-occurrence, co-citation, and co-authorship

analyses. The following are the goals of the current study: (a) To

establish a knowledge structure for WMRS crops using UAVs for

the YP (b) To evaluate the use of ML, different sensors and

limitations for WMRS crops. (c) To identify the knowledge gaps
frontiersin.org
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and research frontiers for YP in WMRS crops employing UAVs.

The article’s structure includes an introduction to WMRS crops and

their importance, publication collection, a description of the results

of the bibliometric analysis, review on WMRS crops, constraints

and prospects for future study, and contribution of the current

study for the scientific community.
2 Retrieval of publications’
information and outline for
bibliometric methods

2.1 Publications’ information retrieval from
web of science

The most reliable literature-indexing site is the Web of Science

(WOS), which includes scientific, social, health, and economic

information. Therefore, it is acknowledged that the global WOS is

the ideal source for gathering data for bibliometric analysis

(Chen and Liu, 2020). The pertinent information was gathered

from the WOS core collection (WOSCC) databases. Many

iterations were employed to find the best keyword search code to

download the most pertinent RS-related publications for YP in

WMRS crops utilizing UAVs. Table 1A shows a list of more specific

keyword codes that can be used to probe the WOS database

systematically. The most useful search keywords were as follows:

(“UAV” OR “multispectral” OR “hyperspectral” OR “RGB”)

(Topic) and (“yield prediction” OR “yield estimation”) (Topic)

and (“maize” OR “rice” OR “wheat” OR “soybean”). Be noted

that the published articles were examined for the presence of words

within their titles, abstracts, or keywords. All searched documents

were validated for relevant material, and manually irrelevant articles

were removed. The extraction process involved selecting solely

peer-reviewed, original research publications that were published

in the English language. The data acquiring period spanned from

January 1, 2000, to August 3, 2023 (Table 1B), and the relevant

scholarly material and the scope of inquiry were restricted to science

and technology.
2.2 Work flow for the study

An overall number of 226 original research publications were

retrieved using the methods described above. The entire document

and all referenced materials were saved as “Tab-delimited” as the

preferred file type. The schematic shows the actions performed to

carry out the investigation in Figure 2.
2.3 VOSviewer based bibliometric analysis

A map or network analysis and the visualization of scientific

literature are examples of more advanced bibliometric analysis

skills. Nees Jan van Eck and Ludo Waltman developed a robust

program called VOSviewer (Version 1.6.18) for investigating and
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visualizing bibliometric networks (Van Eck and Waltman, 2010).

It makes it possible to do analyses such as co-citation analysis,

cluster analysis, and bibliometric mapping, all of which highlight

the current research collaborations and patterns. The scientific

community relies heavily on VOSviewer to visualize and project

their data. The scientific community can learn more and get the

program at http://www.vosviewer.com.
TABLE 1 Selection of optimized keywords for WOS publications’
information, and VOSviewer values and parameters for bibliometric
examination for yield prediction in WMRS crops utilizing UAVs.

(A) Selection of optimized keywords for WOS
publications’ information

No. Searching code Results Quality

1 (“hyperspectral” OR “reflectance” AND
“wheat” AND “yield prediction”)

50,159 very
generic,
very rough,
highly
irrelevant

2 (“UAV” AND “wheat” AND “yield
prediction” OR “yield estimation”)

3,478 Very
rough,
highly
irrelevant

3 (“UAV” AND “wheat” AND
“yield prediction”)

75 yet
irrelevant,
Improved,

4 (“UAV” AND “wheat” AND “yield
prediction” OR “yield estimation”) (Topic)
and (“UAV” AND “wheat” AND “yield
prediction” OR “yield estimation”)

448 Very
generic and
moderately
irrelevant

5 (“UAV” AND “wheat” AND “yield
prediction” OR “yield estimation”) (Topic)

1907 Improved,
yet
irrelevant

6 (“UAV” OR “multispectral” OR
“hyperspectral” OR “RGB”) (Topic) and
(“yield prediction” OR “yield estimation”)
(Topic) and (“maize” OR “rice” OR
“wheat” OR “soybean”)

226 Highly
improved,
fully
relevant

(B) VOSviewer values and parameters for bibliometric
examination of advanced research

No. Parameters Definition

1 Time slicing 2001-01-01 to 2023-
08-03

2 Term source Abstract, keywords, title,
author, and
keywords plus

3 Node type Country, institution,
cited author, Author,
cited journal & keywords
cited reference.

4 Selection criteria Top 15%

5 Links Default

6 Visualization Cluster static and
combined network views
are displayed
fr
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As per the specified parameters, utilizing VOSviewer facilitated

the execution of co-citation analysis and keywords co-occurrence

analysis. These analyses generated networks visually representing

the co-citations seen among authors, documents, journals, and

keywords. Furthermore, these networks provided insights into

prominent study themes and emerging areas of investigation. In

conclusion, the relevant data and mapping networks were

thoroughly analyzed, and the results of the visualization inquiry

in the present research study were presented and discussed.
3 Interpretation and discussion of the
bibliometric results

3.1 Publications’ information analyses
retrieved from web of science

The distribution of citations and matching publications in the

domain of YP using RS in WMRS crops utilizing UAVs throughout

the years 2005-01-01 to 2023-08-03 is shown in Figure 3A. It can be

seen that over the first ten years (from 2005 to 2011), there was a

prominently gradual increase in the number of notable

publications. In 2012-2014 there was a decrease in publications.

However, from 2014 to onward, there is a continuous and gradual

increase in publications. In total, 44 research were published in

2022, which is the highest. Of the whole, 60.25% of the total
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publications are published from 2019-2022, 19.89% only in 2022,

while 2023 has contributed 10.52% so far. The concerns about the

research dramatically increased starting from 2019 to onward. This

can be related to shifting funding preferences or research priorities

during that time. The number of citations for publications remains

gradually growing, while it has shown a fall in 2023, which might be

due to the incompletion of this year. The highest citations (2291)

have been reported in 2022, reflecting the impact of the research in

this field. This upsurge could be attributed to developments in ML

and UAV technology, which facilitate the conduct of creative and

significant research.

The WOS based subject category area (Figure 3B) shows the

publication distribution in the top 10 scientific study areas. Where

“Remote Sensing” is leading than all others, having 39.04% (89

Articles) of total articles. While Agriculture, Imaging Science,

Photographic Technology, Geosciences Multidisciplinary,

Environmental Sciences, Agronomy and Plant Sciences share 89,

66, 60, 55, 43 and 38 publications, respectively. This diversity draws

attention to the research’s interdisciplinary nature. The more

influenced 15 authors for the YP in WMRS crops utilizing UAVs

are ranked in Figure 3C where Yang GJ ranked at top with the

maximum number of records in the acquired publications’ dataset.

Given their prominence, it appears that they have given this field of

study a lot of attention in their work.

Table 2A lists the top 15 journals in which the most articles

relevant to the research area of YP in WMRS crops utilizing
FIGURE 2

Outline for the data retrieval and VOS-viewer based bibliometric analysis.
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UAVs are published, along with the number of publications and

their percentage contribution. Table 2B lists the top 15 research

institutions for YP in WMRS crops utilizing UAVs. Supplementary

Tables S1, S2 indicate the 15 most important countries and prolific

writers with the most studies in the specified research subject,

respectively. Supplementary Table S3 shows the distribution of

the top fifteen funding agencies involved in relevant publications

collected from the WOS in YP research utilizing UAVs. This
Frontiers in Plant Science 07
systematic methodology provides insightful information and

enables researchers to narrow down areas of potential studies

for future.

3.2 Citations’ analyses

When a third author or document cites two or more authors

or documents simultaneously, this is called a co-citation link
B

C

A

FIGURE 3

(A) Illustrates the number of publications and citations, (B) Number of publications according to subject categories, (C) Number of records for
different authors.
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(Chang et al., 2015). VOSviewer uses three main types of co-citation

analyses to show how documents, writers who cite each other, and

journals are connected and how they map to each other. Co-citation

analysis is a good way to determine how many connections between

journals, authors, and papers. It builds a mapping framework and

tracks how scientific research areas change over time (Behrend and

Eulerich, 2019).

3.2.1 Co-citation analysis for documents
The documents or articles are the most important parts of the

knowledge repository or database in the area of predicting crop

yields using UAVs for WMRS crops. Reference co-citation analysis,

also called document co-citation analysis, is a good way to look at

how a study area has grown and changed over time (Liao et al.,

2018). After the scientometric study in VOS viewer was done, a

network for displaying cited documents was made (Figure 4). Every

node represents a reference or article cited, and the links between

the nodes demonstrate how the mentioned references and articles

relate to one another. Larger nodes represent more essential

documents, and documents often referenced by other documents

are close to each other. Figure 4 shows the most important works

completed in this field are (Zhou et al., 2017) (Haboudane et al.,

2004), and (Maimaitijiang et al., 2020).

3.2.2 Co-citation analysis for authors
The distribution of authors with more citations in a particular

field of study is also examined by the co-citation analysis for the

author, which is used to identify the most productive writers in that

subject. The co-citation analysis also makes the visualization of

associated writers’ subject areas and research interests feasible. The

visualization network that was produced after the author’s co-

citation analysis of the study into YP in WMRS crops using UAVs

is shown in Figure 5. The nodes represent authors, the connecting

lines between two nodes indicate their relationship regarding co-

citations. An author’s importance is increased when a node gets

larger because that particular author makes more citations.

Similarly, the distance between two successive nodes or writers

is inversely associated with the amount that one author is cited by

the other. The authors’ areas of interest will be more strongly

correlated with the size of the distance between the nodes. Author

co-authorship analysis confirms the extensive analysis of the

visualization network, which shows that most authors collaborate

to a very high degree. It offers vital insights into the organization
TABLE 2A The 15 best journals for publishing research on yield
prediction in WMRS crops utilizing UAVs.

No. Journals Records
%
of

total

1 REMOTE SENSING 46 20.354

2 FRONTIERS IN PLANT SCIENCE 15 6.637

3
COMPUTERS AND ELECTRONICS
IN AGRICULTURE 13 5.752

4 PRECISION AGRICULTURE 11 4.867

5
IEEE INTERNATIONAL SYMPOSIUM ON
GEOSCIENCE AND REMOTE
SENSING IGRASS 8 3.540

6 AGRICULTURE BASEL 7 3.097

7 AGRONOMY BASEL 7 3.097

8 PLANT METHODS 7 3.097

9 SENSORS 6 2.655

10
AGRICULTURAL AND
FOREST METEOROLOGY 5 2.212

11 BIOSYSTEMS ENGINEERING 5 2.212

12 DRONES 5 2.212

13 PROCEEDINGS OF SPIE 5 2.212

14 FIELD CROPS RESEARCH 4 1.770

15
ISPRS JOURNAL OF PHOTOGRAMMETRY
AND REMOTE SENSING 4 1.770
TABLE 2B The 15 best institutions for publishing research on yield
prediction in WMRS crops utilizing UAVs

No. Affiliations Records
%
of
total

1
BEIJING ACADEMY OF AGRICULTURE
FORESTRY SCIENCES BAAFS 19 8.407

2
MINISTRY OF AGRICULTURE
RURAL AFFAIRS 19 8.407

3
CHINESE ACADEMY OF
AGRICULTURAL SCIENCES 17 7.522

4 CHINA AGRICULTURE UNIVERSITY 12 5.310

5 CHINESE ACADEMY OF SCIENCES 12 5.310

6 INSTITUTE OF CROP SCIENCES CAAS 10 4.425

7 NANJING AGRICULTURAL UNIVERSITY 10 4.425

8 ZHEJIANG UNIVERSITY 9 3.982

9
UNITED STATES DEPARTMENT OF
AGRICULTURE USDA 8 3.540

10 WUHAN UNIVERSITY 8 3.540

11 UNIVERSITY OF MISSOURI COLUMBIA 7 3.097

(Continued)
TABLE 2B Continued

No. Affiliations Records
%
of
total

12 UNIVERSITY OF MISSOURI SYSTEM 7 2.097

13 UNIVERSITY OF NEBRASKA LINCOLN 6 2.655

14 UNIVERSITY OF NEBRASKA SYSTEM 6 2.655

15 EGYPTIAN KNOWLEDGE BANK EKB 5 2.212
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and movement of a research field, aiding researchers in

comprehending significant contributors, patterns, and possibilities

for collaboration.

The 15 best most co-cited authors are listed in Table 3A along

with their respective authors, counts of citations, years of citation

counts, and rankings based on the times their scientific literature
Frontiers in Plant Science 09
have been cited. According to the data, the aforementioned authors’

work made a significant contribution to the field of YP in WMRS

crops utilizing UAVs, making them significant participators to the

future growth of YP research. According to the findings, the authors

(Zhou et al., 2017), (Maimaitijiang et al., 2020), and (Yue et al.,

2019) were the most prolific in the research field,
FIGURE 4

The document co-citation network visualization map for research on yield prediction in WMRS crops utilizing UAVs.
FIGURE 5

The authors’ co-citation network visualization map for research on yield prediction in WMRS crops utilizing UAVs.
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3.2.3 Citations analysis for documents
Citation analysis for authors represents a bibliometric approach

employed to assess the impact and influence of an individual

author’s scholarly output within the academic and relevant

research field. This method entails comprehensive scrutiny of the

frequency with which an author’s publications have garnered

citations in the works of other researchers. Through the

examination of citation patterns, this analytical method provides
Frontiers in Plant Science 10
valuable insights into an author’s contributions to their field of

study, the level of recognition their research receives, and the extent

of their influence within the scholarly and academic community.

Figure 6 visualizes the articles with more than 20 citations from

different years. The size of nodes represents the highly cited

documents, like (Chlingaryan et al., 2018), (Zhou et al., 2017),

(Maes and Steppe, 2019), and (Shanahan et al., 2001) are most

prominent with superior size of nodes.
TABLE 3 The 15 best co-cited authors and top fifteen keywords for research on yield prediction in WMRS crops utilizing UAVs.

Table 3A The 15 best co-cited authors for publish-
ing research

Table 3B Top fifteen keywords in the domain of
yield prediction

Sr. No. Count Cited Authors Ranking Counts Keywords

1 68 ZHOU, X 1 110 Vegetation indices

2 63 MAIMAITIJIANG, M 2 84 UAV

3 63 YUE, JB 3 60 Wheat yield

4 59 JIN, XL 4 59 Yield estimation

5 50 BENDIG, J 5 46 Biomass estimation

6 49 HABOUDANE, D 6 44 Yield prediction

7 47 ARAUS, JL 7 43 Winter-wheat

8 46 TUCKER, CJ 8 43 Grain-yield

9 45 ZARCO-TEJADA, PJ 9 40 Remote sensing

10 45 PENUELAS, J 10 38 Leaf-area index

11 43 ROUSE, JW 11 27 Corn yield

12 41 HASSAN, MA 12 26 Machine learning

13 40 HUETE, AR 13 26 Chlorophyll content

14 39 RONDEAUX, G 14 25 Precision agriculture

15 39 BABAR, MA 15 25 Maize yield
FIGURE 6

Citations’ analysis of documents for yield prediction in WMRS crops utilizing UAVs.
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3.3 Keywords’ co-occurrence analysis

In a scholarly context, keywords serve as descriptors that elucidate

the precise subject matter or overarching category to which an article

pertains. Additionally, they encapsulate the primary information

summarized within research papers. In essence, keyword co-

occurrence analysis can be employed to discern prevailing focal

points and emerging research frontiers. The most rapidly increasing

citation rates for individual keywords indicate perennially popular

issues or promising avenues for future study. Figure 7 is a visual

representation of the VOSviewer keyword co-occurrence analysis

results. Nodes represent the keywords, and the size of the nodes

represents the frequency with which they occur together.

Table 3B presents a ranking of the top fifteen keywords in the

domain of YP in WMRS crops utilizing UAVs. These keywords

have been ordered based on their occurrence frequency. The

keywords demonstrating the most pronounced co-occurrence

frequencies, along with their respective counts, include Vegetation

indices (110 occurrences), UAV (84 occurrences), Wheat yield (60

occurrences), and Yield estimation (59 occurrences). Citation

frequency analysis offers a concise insight into the prevalence of

frequently employed keywords within a specified timeframe. This

analysis allows for the temporal depiction of these terms, drawing

attention to the time frame in which they were employed and

referenced most frequently.
Frontiers in Plant Science 11
3.4 Co-authorship analysis

Cooperative analysis represents a multifaceted approach that

delves into various tiers of investigation, spanning from the broad

macro scale to the intricate micro level. Its objective is to unveil the

intricate distribution patterns characterizing the collaborative

dynamics within scientific research. In this specific context, the

formidable tool of choice is VOSviewer, a sophisticated

visualization software adept at illuminating the intricate web of

collaborative relationships among institutions, countries/regions,

and authors operating in the specialized domain of YP in WMRS

crops utilizing UAVs. The calculation of the depth of collaborative

involvement utilizes both fractional and full counting approaches,

where full counting assigns equal weight to each participant.

Within the analytical framework of literature studies, two

distinctive counting methodologies come into play: fractional and

full counting. In the full counting mode, each contributor is endowed

with an equal weight of 1, which is symmetrically distributed in

quantifying the depth of their collaborative involvement. VOSviewer,

as the computational engine, undertakes the intricate task of

computing scores that gauge the interrelationships among

knowledge units. Employing the precision of the association

strength algorithm, it harmonizes and standardizes the raw data.

The result concludes in creating an enlightening visualization map of

the literature, encompassing distance-based and graph-based
FIGURE 7

Keywords’ co-occurrence analysis for yield prediction in WMRS crops utilizing UAVs.
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representations, thereby offering a comprehensive insight into the

complex web of scholarly interactions.

3.4.1 Co-authorship analysis for authors
The quantification of an author’s productivity within a specific

domain is a pivotal metric in assessing their impact within that

particular field. The analysis of author collaboration serves as a

valuable tool for investigating YP in WMRS crops utilizing UAVs

and the associated social networks of cooperation. In Figure 8A, the

study presents the author collaboration network within the domain

of yield predictionYP in WMRS crops utilizing UAVs, focusing on

authors who have contributed for at least two articles.

As depicted in Figure 8A, the collaboration landscape in this

field exhibits a persistent spirit of cooperation and manifests a

small-world effect. It is evident that each academic group maintains

the capacity to engage in direct or indirect collaboration with other

scientific research teams, illustrating the continuous transmission of

information within the network. Notably, within specific clusters,

the trajectory of YP inWMRS crops utilizing UAVs is influenced by

high-impact authors, such as Yang Guijun, Li Zhenhai, Feng

Haikuan, Chen Zhen, Xiao Yonggui and several others (Figure 8A).
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3.4.2 Co- authorship analysis for
regions/countries

Figure 8B visually represents international cooperation among

countries and regions over time, incorporating dynamic elements. In

this visualization, the size and color of nodes correspond to the

volume of research documents produced and the average publication

year within each respective country or region. Furthermore, the

thickness of the connecting lines between nodes indicates the level

of collaboration between these entities, with thicker links representing

more significant cooperation. By analyzing Figure 8B, it is evident

that China and the United States are the leading countries in

deploying UAVs for YP in WMRS crops. Countries such as

Germany, Australia, Spain, Japan, Saudi Arabia and Canada have

also actively engaged in this field of research.

It is worth highlighting that China, owing to its remarkable

research productivity, has forged robust collaborative ties with

Unites States for YP in WMRS crops utilizing UAVs. Looking

ahead, both the China and United States are poised to emerge as

principal players in the field of RS. Progress in advancing RS for YP

in these two nations is of global significance, given the far-reaching

benefits it brings. The advancements and collaboration between
B

C

D

A

FIGURE 8

(A) Co-authorship analysis of authors, (B) Co-authorship analysis of regions/countries, (C) Co-authorship analysis of institutions, and (D) Coupling
analysis of institutions for yield prediction in WMRS crops utilizing UAVs.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1401246
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mustafa et al. 10.3389/fpls.2024.1401246
China and the United States, the two greatest developed and

emerging nations in the world, significantly impact the Asia-

Pacific region and the global scene. Motivated by same goals

including guaranteeing food security and reducing the impact of

sustainable crop production, both countries have agreed to make

use of crop production innovations.

3.4.3 Co-authorship analysis for institutions
The examination of institutional cooperation yields valuable

insights into organizations and groups that make significant

contributions within a particular field. This analysis serves as a

foundational step towards fostering enhanced future collaboration

for organizations with 3 documents as co-authorship. To effectively

depict the distribution of organizations and their collaborative

relationships, this study employs VOSviewer, a visualization tool,

to represent the network of institutional collaboration within the

domain of RS for YP in WMRS crops utilizing UAVs, as presented

in Figure 8C.

Each node’s size in the below illustration represents the total

number of scholarly articles published by that institution. The

thickness of the connecting lines represents the degree of

collaboration between universities. Nodes sharing the same color

signify a higher level of cooperation than nodes with distinct colors.

This analysis reveals notable collaborative connections among

universities and colleges. For instance, the Chinese Academy of

Sciences with China Agriculture University, and Nanjing

Agricultural University with Zhejiang University exhibit a

pronounced cooperative association, as evidenced by their

placement within the red and green clusters. Additionally, in this

study, we observe a strong collaborative relationship between King

Saud University and the University of Sadat within the red cluster.

Several other clusters have also merged around productive

institutions, thereby contributing to forming a diversified and

expansive cooperation network within the landscape of RS for YP

in WMRS crops utilizing UAVs.

3.4.4 Coupling analysis for organizations
Organizations’ coupling analysis is a sophisticated bibliometric

method used to examine the interconnections and relationships

between different organizations or institutions within the context of

scientific research and publication activities. It primarily focuses on

quantifying and understanding the collaborative patterns and

knowledge exchange dynamics among these entities, often in the

context of specific research fields or disciplines. The insights gained

from organizational coupling analysis can inform policymakers,

funding agencies, and researchers about the structure and dynamics

of collaborative networks in specific research domains. This

information is valuable for fostering interdisciplinary collaboration,

optimizing research investments, and advancing scientific progress by

promoting effective knowledge exchange among organizations. The

organizations with a minimum 3 documents together are illustrated

in Figure 8D, Chinese Academy, Nanjing Agricultural University,

China Agricultural University, and Beijing Academy of Agriculture

and Forestry Sciences are more prominent in respective clusters and

have shown a prominent connection in connecting lines and node
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size. By highlighting collaborative networks and influencing choices

on research investments and interdisciplinary collaboration, the

results of this analysis can direct researchers, politicians, and

funding agencies.
4 Recent studies on WMRS crops for
UAV-based yield prediction

In agricultural research, precise early YP is paramount for

individual farmers and the broader agricultural sector. UAVs have

demonstrated commendable efficacy in enhancing YP accuracy

through the utilization of various data sources (Hassan et al., 2019;

Zheng et al., 2019; Kumar et al., 2023). For instance, such accuracy

has been achieved by harnessing metrics such as RGB-derived plant

height and canopy cover (Chu et al., 2016), VIs (Gracia-Romero et al.,

2017), and multispectral imagery (Kyratzis et al., 2017; Zheng et al.,

2019; Su et al., 2023). It is worth noting that the temporal dimension

plays a pivotal role in optimizing YPs, with multitemporal VIs,

including those accumulated throughout the crop’s growing season,

exhibiting superior performance compared to single measurements

(Zhou et al., 2017).The investigations conducted using UAVs for YP

have predominantly adjusted on experimental fields characterized by

substantial variations in final yield due to factors such as nitrogen

levels (Zhou et al., 2017), phosphorous concentrations (Gracia-

Romero et al., 2017), or irrigation practices (Vega et al., 2015).

However, it remains imperative to scrutinize the efficacy of these

methods within the context of precision agriculture conditions, where

variations are predominantly driven by edaphic and microclimatic

factors and are comparatively less extreme. Furthermore, it is crucial

to acknowledge that prevailing UAV-based YP studies have primarily

revolved around developing empirical regression models. While these

models serve the purpose of extrapolating yield estimates to

encompass entire fields, it is imperative to recognize their inherent

limitation – regression coefficients derived from one year’s data may

not be transferrable to subsequent years at the same location, nor to

different locations within the same year (Rembold et al., 2013).An

alternative approach in this domain involves the estimation of yield

based on crop growth models. For instance, the GRAMI growth

model was successfully applied to rice YP using UAVs GRAMI

growth model utilizing UAV-derived data (Kim et al., 2017).

Nevertheless, it remains evident that substantial research endeavors

are indispensable to delineate the optimal sensor configurations,

flight timing, and refinement of crop growth models to harness

UAVs information most effectively and reliably for YP purposes.

Numerous studies conducted since 2020 are shown in Table 4 as a

summary for YP in WMRS crops utilizing UAVs.
4.1 Utilization of machine learning
techniques and factors influencing
yield prediction

Various methodologies and techniques have been employed in

previous findings for YP. Table 4 provides details of the ML
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TABLE 4 Brief summary of the studies conducted for yield prediction in WMRS crops utilizing UAVs.

Crop Data type Algorithmic/
Mathematical
expressions

Methodology Accuracy Country References

Rice MS VIs, A MSMA R2 = 0.75, RRMSE= 0.15 China (Su et al., 2023)

Maize MS, R VIs OM, DSF 95.75% Nepal (Sapkota and
Paudyal, 2023)

Rice MS, WD LD MMDL RMSE= 0.86, RMSPE=14, R2 = 0.65 Japan (Mia et al., 2023)

Wheat MS VIs, RE, SA LASSO-R R2 = 0.73 Norway (Shafiee et al., 2023)

Wheat 3-D PC LAI GF R2 = 0.63 China (Yang et al., 2023)

Maize MS VIs GL, SVM, RF 88-89% Lithuania (Kavaliauskas
et al., 2023)

Maize MS VIs LR, KNN, RF,
SVR, DNN

R2 = 0.71, RMSE = 1.08 Mg/ha USA (Kumar et al., 2023)

Wheat RGB, HS-NIR SR, Th, Tx ELM R2 = 0.74 China (Ma et al., 2023)

Wheat MS VIs RR R2 = 0.651 Spain (Gracia-Romero
et al., 2023)

Rice HSI ID LR R2 = 0.858 and RMSPE = 7.52% Japan (Kurihara
et al., 2023)

Wheat SR ND-RE PLSR R2 = 0.81 Germany (Prey et al., 2023)

Rice MS VIs, TIs RF R2 = 0.795, RMSE = 0.298, RRMSE = 0.072 China (Longfei
et al., 2023)

Maize RGB, MS ID RF R2 = 0.859, RMSE = 1086.412 kg/ha, RMSE
= 13.1%

China (Liu et al., 2023)

Maize MS, SR VIs ANN, DT, REPT,
RF, SVM

R = 0.58 Brazil (Baio et al., 2022)

Wheat MS CIs PLSR R2 = 0.81, RMSE = 1248.48, NRMSE
= 21.77%,

China (Wang et al., 2022a)

Wheat RGB, MS VIs SVM, RF, PLSR,
RR, MLR

R2 = 0.85 Germany (Prey et al., 2022)

Rice MS VIs, TIs RF RMSE = 0.94 t/ha, RRMSE = 9.37% China (Zheng et al., 2022)

Maize MS VIs PCA, LR, R R2 = 0.61 Peru (Saravia et al., 2022)

Wheat MS VIs MLR, SMLR, PLSR R2 = 0.61, RMSE = 7.48 kg yield/kg N, MAE
= 6.05 kg yield/kg N

China (Liu et al., 2022)

Rice SAR images Ku band WCM 92.7% China (Wang
et al., 2022b)

Wheat MS VIs RF R2 = 0.8516, RMSE = 0.0744 kg/m2 China (Tian et al., 2022)

Wheat SR, HSI VIs PLSR, ANN RMSE = 599.63 kg/ha, NRMSE = 9.82% China (Feng et al., 2022)

Rice MS VIs TCT 83% China (Luo et al., 2022)

Wheat RGB, TIR, MS VIs SVM, DNN, RR,
RF, EL

R2 = 0.692 China (Fei et al., 2023)

Rice MS VIs XGB R2 = 0.83 Japan (Bascon et al., 2022)

Maize RGB, MS, SR DF RF, DCN, RF,
DCN, SVM

RRMSE = 17.22% China (Yu et al., 2023)

Wheat TIR, MS VIs, WIs NN, RF R2 = 0.78, RRMSE = 684.1 kg/ha China (Shen et al., 2022)

Wheat OP SEL YOLOX-m 87.93% China (Zhaosheng
et al., 2022)

Wheat HSI FFLR PLSR 86.58% USA (Costa et al., 2022)

(Continued)
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TABLE 4 Continued

Crop Data type Algorithmic/
Mathematical
expressions

Methodology Accuracy Country References

Maize MS SIs, TIs RF R2 = 0.93 China (Yang et al., 2022)

Maize MS 3D-CNN, 2D-CNN XGB RMSE: 8.7–9.3% USA (Bellis et al., 2022)

Maize MS, DI SIs, TIs TCM R² = 0.82, RMSE = 38.53 g/m², RRMSE
= 29.19%

China (Meiyan
et al., 2022)

Wheat MS VIs GPR, SVR, RFR R2 = 0.88, RMSE = 49.18 g/m2 China (Bian et al., 2022)

Soybean MS VIs gSW, BMT R2 = 0.98 Brazil (Tavares
et al., 2022)

Soybean MS OMI LASSO, PCA, 76% USA (Zhou et al., 2022)

Wheat HSI SIs, FS SVM, GP, LRR, RF R2 = 0.78 China (Li et al., 2022)

Wheat T, MS VIs, DF, NRCT ENR, EWF R2 = 0.729, RMSE = 0.831 t/ha China (Fei et al., 2021b)

Rice RGB VIs RF R2 = 0.80 China (Ge et al., 2021)

Soybean MS SBs, VIs RF, SVM, LR RMSE = 8.23, MAE = 6.65 Brazil (Teodoro
et al., 2021)

Maize MS VIs DNN RMSE = 1.07 t/ha, R2 = 0.73, RRMSE =
7.60% t/ha

Australia (Danilevicz
et al., 2021)

Maize MS VIs EM R2 = 0.97 USA (Sunoj et al., 2021)

Rice HSI SIs, TIs MLR R2 = 0.80, RMSE = 0.421 Mg/ha China (Wang
et al., 2021b)

Wheat MS, 3D point
cloud, SR,

VIs MTLR, SVM,
GPR, ANN

R2 = 0.88; RMSE = 11.8 g/m2 Australia (Roy Choudhury
et al., 2021)

Rice MS VIs MLR R2 = 0.95 Greece (Perros et al., 2021)

Wheat MS WIs, VIs LRM R2 = 0.87 Canada (Song et al., 2021)

Rice MS VIs, FIs MLR R2 = 0.869, RMSE = 396.02 kg/ha,
MAPE= 3.98%

China (Wang et al., 2021a)

Wheat RGB CIs SVM RMSE = 32.18 g/m2, R2 = 0.93 China (Zeng et al., 2021)

Wheat MS VIs RF, SVM, GP, RR R2 = 0.628 China (Fei et al., 2021a)

Rice MS VIs SMA, BMM 91.9% China (Yuan et al., 2021)

Wheat TI TeIs, WIs CRT RMSE = 16.7 g/m2, R2 = 0.78, Australia (Das et al., 2021)

Wheat MS VIs MLR R2 = 0.807, RMSE = 781.59 kg/ha China (Han et al., 2021)

Rice MS VIs NN 92.9% China (Duan et al., 2021)

Wheat MS GAI RA R2 = 0.82 Germany (Bukowiecki
et al., 2021)

Maize MS VIs MLR, DT R = 0.86, RMSE = 0.32 South
Africa

(Chivasa
et al., 2021)

Maize HSI TI, SI CNN 75.50% China (Yang et al., 2021b)

Wheat MSI VIs SFS, LASSO-R, SVR 90% Norway (Shafiee et al., 2021)

Wheat RGB, MS VIs DSF, OMI R2 = 0.70 USA (Bhandari
et al., 2021)

Maize MS VIs EKF R2 = 0.855, RMSE = 692.8kg/ha China (Peng et al., 2021)

Soybean MS VIs CNN, DNN, RNN RMSE = 391 kg/ha USA (Zhou et al., 2021a)

Wheat DI, HSI VIs, TIs PLSR, SVM R2 = 0.87, RMSE = 119.76 g/m2 China (Fu et al., 2021)

Wheat HSI VIs RF RMSE = 985.83 (kg/ha) China (Yang et al., 2021a)

(Continued)
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approaches applied in recent studies. The RF technique is widely

employed in the domain of YP in WMRS crops, as it is a commonly

utilized method in technical approaches. The studies have used

numerous techniques, i.e. SVM, KNN, PCA, LR, MLR, MMDL, RR,

ANN, PLSR DCN, etc. SVM can be used with statistical techniques

like ANOVA to estimate agricultural yield (Li et al., 2018). In wheat

crop SVM manifested R2 = 0.93 using RGB images acquired by

UAVs (Wang et al., 2021a). Another study established the R2 = 0.87

for wheat crops through MS images by UAVs calculating WIs and

VIs using the LRM technique (Song et al., 2021). The MLR showed

R2 = 0.81 for wheat crop (Han et al., 2021) and R2 = 0.95 for rice

crop through MS images (Perros et al., 2021). Accordingly, different

ML techniques have shown interesting results using raw image data

acquired using UAVs (Table 4). The details of the abbreviations is

given in Table 5.

The authors give similar importance to each factor for inclusion

into the ML model (Zhang et al., 2019; Mustafa et al., 2022b). Osco
Frontiers in Plant Science 16
et al. (2020) consider the significance of several elements like

meteorological conditions, geographic location, and radiometric

calibration. Each location’s meteorological variables (daily

daylight hours, daily solar radiation, daily temperature sum, and

daily wind speed) were employed, along with field-specific rainfall

data. They found that the number of neural layers and the learning

rate of an ANN affect the prediction. As a result, the prediction

model performs worse when too many or too few parameters are

added (Adisa et al., 2019). The conclusion highlights the

significance of neural networks in creating prediction models. On

the other hand, by including irrelevant features to the model, its

complexity may increase, leading to a drop in prediction accuracy

concerning time complexity and irrelevant results (Kanning et al.,

2018). The study Eugenio et al. (2020) indicates that the UAV is the

most effective method for gathering image data from the location.

They performed their experiment accounting for distinct weather

scenarios. Overall performance shows the accuracy of the model,
TABLE 4 Continued

Crop Data type Algorithmic/
Mathematical
expressions

Methodology Accuracy Country References

Maize MS VIs LMvR R2 = 0.62 Nigeria (Adewopo
et al., 2020)

Soybean HSI VIs, DN PLSR R2 = 0.79, China (Li et al., 2021)

Maize MS VIs RF R = 0.78,
MAE = 853.11kg/ha

Brazil (Ramos et al., 2020)

Wheat RGB VIs PSO R2 = 0.63, RMSE = 1.16 t/ha, MAE = 0.96 t/
ha, NRMSE = 21.9%

China (Yue et al., 2021)

Maize RGB 3D-PC, OMI LR R2 = 0.94 France (Gilliot et al., 2021)

Rice RGB, MS VIs, SI RF R2 = 0.85,
RRMSE = 3.56%

China (Wan et al., 2020)

Wheat MS, SR VIs LR, RF, ANN RMSE = 1.07% Japan (Zhou et al., 2021b)

Maize RGB VIs BP, ExLM, SVM, RF MAEs = 0.925 g/hundred grain weight China (Guo et al., 2020)

Wheat RGB DSF LEER R2 = 0.73 Nepal (Panday
et al., 2020)

Wheat RGB LAI SCE RRMSE = 15.2% Canada (Song et al., 2020)

Maize RGB, MS VIs LM, GA R = 0.97, RMSE = 0.425 t/ha, MAE = 0.249
t/ha

Mexico (Garcıá-Martıńez
et al., 2020)

Soybean RGB, MS PC RF, XGB 91.36% USA (Herrero-Huerta
et al., 2020)

Wheat MS VIs LR, MLR, SMLR,
PLSR, ANN, RF

R2 = 0.78, RRMSE = 0.1030. China (Fu et al., 2020)

Maize HSI VIs PLSR RMSE = 2.07 ton/ha, R2 = 0.73, Israel (Herrmann
et al., 2020)

Soybean HSI, Th, Tx VIs PLSR, RFR,
SVR, DNN

R2 = 0.720, RMSE= 15.9% USA (Maimaitijiang
et al., 2020)

Wheat HSI SIs PLSR, ANN, RF R2 = 0.77, NRMSE = 10.63%, RMSE =
648.90 kg/ha

China (Tao et al., 2020)

Wheat RGB VIs PCA, R2 = 0.67 Italy (Marino and
Alvino, 2020)

Maize RGB, MS VIs NRM 85-94% China (Zhang et al., 2020)
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TABLE 5 List of abbreviations for acronyms used in the manuscript.

Acronyms Abbreviations Acronyms Abbreviations

3D-PD 3D-point cloud MSMA Member spectral
mixture analysis

A Abundance MTLR Multitarget
linear regression

ANN Artificial
Neural Network

ND-RE Normalized
difference red edge

BMM Bilinear
mixing model

NN Neural network

BMT Box-M test NRCT Normalized relative
canopy
temperature

BP Backpropagation
neural
network model

NRM Nonlinear
regression models

CIs Color indices NRMSE Normalized root-
mean-square error

CNN Convolutional
neural network

OMI Orthomosaic
images

CRT Classification and
regression tree

OP Orthophotos

DCN Deep
convolutional
network

PC Point clouds

DF Data fusion PCA Principal
component analysis

DI Digital images PLS Partial least squares

DN Digital numbers PLSR Partial least
squares regression

DNN Deep
Neural Network

PSO Particle
swarm
optimization,

DSF Digital surface model R Pearson
correlation
coefficient

DT Decision Tree R2 Co-efficient
of determination

EKF Ensemble
Kalman Filter

RA Regression analysis

ELM Ensemble
learning model

RE Red-edge

EM Exponential models REPT REPTree
Decision Tree

ENR Elastic net regression RF Random forest

EWF Entropy
weight fusion

RFR Random
forest regression

ExLM Extreme
learning machine

RMSE Root mean
square error

FFLR Function on function
linear regression

RMSPE Root mean square
percentage error

(Continued)
F
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TABLE 5 Continued

Acronyms Abbreviations Acronyms Abbreviations

FIs Fluorescence Indices RNN Recurrent
neural network

FS Feature selection RR Ridge regression

GA Garson’s Algorithm RRMSE Relative root mean
square error

GAI Green area index SA Sun angles

GB Gradient boost SBs Spectral bands

GF Gap fraction SCE Shuffled
Complex Evolution

GL Generalized linear SI Spectral
information

GP Gaussian process SEL Squeeze-and-
Excitation Layer

GPR Gaussian
process regression

SFS Sequential
forward selection

gSW Generalized
Shapiro–Wilk

SIs Spectral Indices

HSI Hyperspectral
imaging

SMLR Stepwise MLR

HS-NIR Hyperspectral
Near infrared

SR Spectral reflectance

ID Index development SVM Support
vector machine

KNN k-Nearest Neighbor SVR Support
vector regression

LAI Leaf area Index TCM Tridimensional
concept mode

LASSO-R Least absolute
shrinkage and
selection
operator regression

TCT Tasseled
cap transformation

LD Layer depths TeIs Temperature
Indices

LEER Linear, exponential
and
empirical regression

Th Thermal

LM Levenberg–Marquart TI Thermal imaging

LMvR Linear
multivariate
regression

TxI Texture
Information

LR Linear Regression TIR Thermal infrared

LRM Linear
regression model

TIs Texture Indices

LRR Linear
ridge regression

Tx Texture

MAE Mean absolute Error VIs Vegetation Indices

MAPE Mean absolute
percentage error

WCM water-cloud model

(Continued)
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although this study has indicated that the inclusion of either an

excessive number or a small number of factors causes data sparsity.

The main problem this study highlighted is that they employ

constant weather conditions for every season. Because of this, a

realistic strategy is required, considering the various weather-

related influencing factors throughout the year. Peng et al. (2019)

has mentioned that ML technology is typically used in precision

agriculture to leverage the vast amounts of collected data. ML can

estimate certain crop growth rate-related metrics, identify and

differentiate objects in photos, and even detect diseases. To take

advantage of the data, ML techniques such as CNN, ANN,

regression modeling, RF, and deep learning have been employed

(Islam et al., 2018). The use of ML has grown dramatically in recent

years, partly because deep learning is developing at a rapid pace

(Guo et al., 2019; Mustafa et al., 2022a, 2022; Hussain et al., 2023;

Mustafa et al., 2024).
4.2 Emerging trends and the current
research landscape in the domain of yield
prediction in WMRS crops utilizing UAVs

Some of this study’s most substantial implications are

as follows:
Fron
• Regarding YP in WMRS crops utilizing UAVs research,

Zhou X, Maimaitijiang M, Yue JB, Jin XL, Bendig J,

Haboudane D, and other writers are the most productive

at the micro level. Researchers like Shanahan et al. (2001);

Chlingaryan et al. (2018); Maes and Steppe (2019); Zheng

et al. (2019), and others have been referenced extensively in

YP for WMRS crops utilizing UAVs.

• Beijing Academy of Agriculture Forestry Science, Ministry

of Agriculture Rural Affairs, Chinese Academy of

Agricultural Sciences and China Agriculture University

are the most dynamic and productive research for YP in

WMRS crops utilizing UAVs at the meso scale.

• China, the United States, Germany, Australia, Canada, Spain,

and Brazil are the most active and productive contributors to

YP in WMRS crops using UAVs at the macro level.

Compared to the other countries on the list, China and the

United States presumably have more publications because

their governments provide more extensive financial support

policies to the scientific community.
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• The National Natural Science Fund of China, the National

Key Research and Development Program of China, the

National Science Foundation, the Fundamental Research

Funds for The Central Universities, and others have

provided the bulk of the funding for YP in WMRS crops

using UAVs.

• Precision Agriculture, Computers and Electronics in

Agriculture, Remote Sensing, and Frontiers in Plant

Science supported the main journals most.

• Although promising progress has been made in predicting

crop yields with WMRS employing UAVs, more definitive

results are urgently needed.
These findings provide important insight into the state of

research and development in YP in WMRS crops using UAVs,

and they highlight the most recent advancements in the field.
5 Constraints and prospects for
the future

Despite the extensive research performed on YP of WMRS

crops using RS, a definitive technique or technological

configuration can still be universally applied. Due to variations in

ML approaches, the selected or retrieved specific features such as

vegetation indices, color, and spectral properties exhibit fluctuations

(Zheng et al., 2019; Baio et al., 2022). Table 4 displays the suitability

and chaos of several algorithms. As a result, the primary future

vision is to concentrate on certain methodology that can be

generalized for accurate quantification and YP.

Examining complex interactions among many environmental

conditions will enable more precise and real-time crop YPs (Jung

et al., 2021; Mia et al., 2023). A more thorough dataset for enhancing

prediction models can be produced by establishing data standards

protocols and encouraging data exchange between farmers and

researchers; collaboration can result in more accurate insights and

forecasts (Wolfert et al., 2017). Additionally, efforts to make UAVs

technology less expensive and sophisticated will enhance its use,

which will be advantageous to small-scale farmers. While incentives

and subsidies provided by the government may be helpful. Crop YP

and agriculture management benefit from deep and ML. These new

algorithms can more effectively analyze complicated environmental

interactions and massive datasets than older methods, resulting in

more accurate and real-time yield estimates. Deep learning

algorithms can identify complex data patterns for better predictions

and insights (Maimaitijiang et al., 2020; Bellis et al., 2022; Mia et al.,

2023; Yu et al., 2023).

Additionally, improvements in sensor technology (hyperspectral

and LiDAR sensors) can offer even more precise and detailed

information, enabling crop health and yield potential (Maes and

Steppe, 2019). Also, it will be necessary to push for simplified laws

that balance safety issues and the potential advantages of UAVs

technology in agriculture. This may encourage a broader uptake of

UAVs (McCarthy et al., 2023). Most significantly, maximizing the
TABLE 5 Continued

Acronyms Abbreviations Acronyms Abbreviations

MLR Multiple
linear regression

WD Weather data

MMDL Multimodal
deep learning

WIs Water indices

MS Multispectral XGBoost Extreme
gradient boost
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effectiveness of UAVs solutions for certain crops and areas,

customized sensors and data analysis methods can give farmers

and researchers more pertinent information.
6 Contribution of the study for the
scientific community

An in-depth scientometric analysis of academic literature from

2001 to 2023 highlights research trends, boundaries and

institutional relationships. The study identifies critical gaps, such

as reliance on English-language articles and the need for

transferable culture-specific features between sensors and

algorithms. It proposes standardized data protocols for

consistency and comparability, advanced hybrid models

combining multiple machine learning (ML) algorithms and

remote sensing (RS) techniques, and real-time monitoring

systems using machine learning and deep learning to gain

immediate insights. In addition, it recommends integrating

advanced sensors such as hyperspectral and LiDAR with UAVs,

promoting collaboration and data sharing between stakeholders,

and advocating balanced government incentives and regulations for

UAVs. These contributions aim to mitigate current limitations,

ensure more accurate, reliable and widely applicable yield forecasts,

and ultimately improve global agricultural productivity.
7 Conclusion

This study conducted a scientometric analysis of the academic

literature pertaining to the use of unmanned aerial vehicles (UAVs)

for yield prediction (YP) in Wheat, Maize, Rice, and Soybean

(WMRS) crops. The retrieval of research published between 2001

and 2023 was conducted using co-citation, co-authorship, and co-

occurrence analysis of phrases, utilizing the Web of Science (WOS)

database. Research frontiers, trending issues, authors, innovative

knowledge systems, and institutional relationships were all taken

into account. Although the results of the present study’s graphical

analysis of related papers are outstanding, the study has many

shortcomings. Since the databases that make up the WOS core

collection only include English-language articles, the resulting

reference footprint is limited. Although remote sensing can

predict yields with high accuracy, more research is needed,

focusing on identifying transferable crop-specific traits across

sensors and algorithms. This would make it possible to estimate

yields more precisely and consistently, enhancing crop

management techniques, reducing financial losses, and guarantee

food security. Thus, research must concentrate on extracting

quantitative knowledge on various crop stages utilizing various

data types to construct comprehensive decision support systems.

These advancements in remote sensing and YP have the potential to

increase agricultural productivity across the globe significantly.

Moreover, application of the advanced hybrid models, data

protocols and feature selection are appealing indicators in

conjunction with ML and RS for WMRS crops’ yield estimation.

Government incentives for farmers, real time monitoring using ML
Frontiers in Plant Science 19
and deep learning, hyperspectral and Lidar sensors, and UAV

regulations can enhance the YP investigations.
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