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Organic farming methods, including the use of organic substrates, fertilizers,

pesticides, and biological control, are gaining popularity in controlled

environment agriculture (CEA) due to economic benefits and environmental

sustainability. However, despite several studies focusing on the preparation and

evaluation of liquid organic fertilizers, none have explored the compatibility of

these fertilizers with different hydroponic systems. Therefore, the objective of

this study was to evaluate lettuce production using a liquid organic fertilizer

under different hydroponic systems. Four distinct hydroponic methods were

selected: nutrient film technique (NFT), deep water culture (DWC) (liquid culture

systems), and Dutch bucket (DB), regular plastic container (RPC) (substrate-

based systems). ‘Green Butter’ lettuce was grown using a liquid organic fertilizer

(Espartan) for four weeks. Shoot growth parameters (e.g., shoot width, number of

leaves, leaf area, foliar chlorophyll content, fresh weight, and dry weight) and root

growth parameters (e.g., root length, fresh weight, and dry weight) were

measured. The growth difference of lettuce under the DB and RPC systems

was negligible, but the growth in RPC was 29% to 60% and 15% to 44% higher

than the NFT and DWC systems, respectively, for shoot width, number of leaves,

leaf area, shoot fresh weight and dry weight. Root parameters were nearly

identical for the NFT and DWC systems but significantly lower (21% to 94%)

than the substrate-based DB and RPC systems. Although lettuce grown in the

NFT system showed the least growth, its mineral content in the leaf tissue was

comparable or sometimes higher than that of substrate-based hydroponic

systems. In conclusion, the tested liquid organic fertilizer is suitable for

substrate-based hydroponic systems; however, further evaluation of different

liquid organic fertilizers, and crop species is required.
KEYWORDS

lettuce, liquid organic fertilizer, nutrient film technique, deep water culture, drip
irrigation, Dutch-bucket
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1 Introduction

The arable cropland is gradually decreasing throughout the

world (Lambin, 2012), and soil productivity is depleting due to

continuous cultivation over the years, soil pollution, acidification,

loss of soil biodiversity, and increasing salinity (Blum, 1997; Lal,

2015; Gomiero, 2016). Moreover, extreme climate conditions, such

as heat or cold waves, and storms, has significant impacts on crop

production (Parry, 2019). As a result, an alternative crop

production system needs to be adapted to ensure increasing food

demand. Controlled environment agriculture (CEA) is a modern

crop production approach, which can grow high quality and

quantity of crops throughout the year by manipulating the

ambient environmental parameters despite local geological and

climatic conditions (Gruda and Tanny, 2014; Gruda et al., 2019).

Moreover, hydroponic techniques under CEA facilities holds a

significant promise to increase overall agricultural production

using minimum resources, especially cultivation space and water

(Jones, 2016; Chowdhury et al., 2021). Recently, the United States

Department of Agriculture-National Organic Program (USDA-

NOP) declared soilless cultivation methods as an organic

production system from several aspects. Organic hydroponics is a

crop culture method based on organic agriculture concepts that use

organic substrate and organic nutrient solutions derived from plant

and animal sources, along with the biological pest controls

(Schmutz et al., 2014; Moncada et al., 2021).

Environmental conservation and sustainability are the main

concepts of organic farming. It is gaining popularity among the

consumers as excessive use of synthetic fertilizers and pesticides for

crop production causing potential health damage and diseases, and

growers are encouraged due to economic benefits and ecological

awareness (Kacira et al., 2017; Ahmed et al., 2021; Murakami et al.,

2021). Consumer demand for organically produced crops is

increasing worldwide. According to the Nutrition Business

Journal, 2022, U.S. sales of organic food products have increased

by $25.1 billion from 2010 to 2021 (ERS, 2023). Since organic food

began selling items in stores, sales of fresh vegetables and fruits have

dominated over other types of organic food. In 2021, the annual sale

of organic lettuce (Lactuca sativa L.) was about $276 million (NASS,

2021), as lettuce plays an important role in American diet and

nutrition (Mou, 2008, 2009; Kim et al., 2016). Generally, CEA

growers produce crops using water-soluble synthetic fertilizer and

inorganic media (i.e., rockwool or foam).

Most organic growers typically rely on organic fertilizers such as

compost manure, green manure, and bone meal for conventional

(soil-based) organic crop production (Hartz and Johnstone, 2006;

Gaskell and Smith, 2007). However, there are several limitations

associated with using solid-state organic fertilizers in soilless

cultivation systems. Nowadays, various liquid organic fertilizers

are commercially available, such as Pre-Empt, Espartan,

Bombardier, Caos, Tundamix, Rhyzo (Hort Americas, Fort

Worth, TX, USA), Tomato & Veg Formula (Neptune’s Harvest,

Gloucester, MA, USA), Grow Big (FoxFarm, Pendleton, SC, USA),

and Aqua Power (SaferGro, Ventura, CA, USA). These fertilizers

derive from natural plant extracts, fish emulsion, seaweed, molasses,
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yucca extract, humic acids, earthworm castings, kelp, fermented

sugar beet molasses, wheat barley, corn, animal bone, and blood. In

our previous study, three organic fertilizers were applied to lettuce

alongside a conventional fertility source standardized to 100 mg·L-1

N to assess the efficacy of each fertilizer type. A fulvic acid-based

liquid organic fertilizer (Espartan) outperformed other organic

fertility sources (i.e., food scrap, yard trimming, and home

compost, dairy manure). The study concluded that when

standardized to the same rate of N, liquid organic fertilizer may

not support yields equal to synthetic fertilizer (Floom, 2022).

Due to easy handling and availability of irrigation equipment,

CEA growers prefer to use liquid organic fertilizer instead of

substrate incorporated fertilizers. However, there are some major

differences regarding the nutrient ion availability between organic

and synthetic fertilizers. Generally, the nutrients of organic

fertilizers are in a complex state that need to be broken down by

microbes into their basic components before plants can absorb

them. For example, organic nitrogen converts to ammonium,

nitr i te , and final ly ni trate through the processes of

ammonification and nitrification in the presence of oxygen and

microorganisms (Gichana et al., 2018). Sometimes liquid organic

fertilizers contain a sufficient amount of microbes, or additional

microbial inoculants need to be added (Kacira et al., 2017). This

dissimilation process and availability of nutrient ions may also vary

based on the inoculated microbes and type of hydroponic system

(i.e., open or recirculating) and hydroponic methods (i.e., nutrient

film technique (NFT), deep water culture (DWC), aeroponics, ebb

and flow, or containerized drip systems) as the root zone

environment of each method differs. Growers typically prioritize

the management of nutrient levels across various production

systems, often facing limitations in crop yield and quality. Several

studies have been conducted to assess crop quantity, quality, and

production efficiency in different hydroponic systems (Pantanella

et al., 2012; Walters and Currey, 2015; Lennard and Ward, 2019;

Malik, 2021; Yang et al., 2022). In a study by Yang et al. (2022) a

comparison was made between the production differences of

‘Butterhead’ lettuce in NFT and DWC systems. They observed a

13% to 27% greater growth in the NFT system for various shoot

parameters, despite the use of synthetic fertilizer. In the substrate-

based hydroponic systems, plastic containers and Dutch or Bato

bucket are commonly used. Dutch bucket system has some

advantages compared to the regular plastic containers, such as a

Styrofoam lid to provide protection from light and debris. It also

reduces algae growth and buffers the substrate from temperature

changes. Moreover, nutrient solution usually leaches through the

holes underneath the regular plastic containers, but a certain

amount of nutrient solution is retained in the bucket or reservoir

of the Dutch bucket, which provides more consistent substrate

moisture than the regular plastic containers and influence the yield

(Raj et al., 2023; Yang et al., 2023). Raj et al (2023) mentioned that

the Dutch bucket system is typically used for high-wire crops, such

as tomato, cucumber, pepper, eggplant, and other vine crops.

However, he compared the production performance of lettuce

between the NFT and Dutch bucket systems. In this study, both

the Dutch bucket and regular plastic container were considered due
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https://doi.org/10.3389/fpls.2024.1401089
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chowdhury et al. 10.3389/fpls.2024.1401089
to insufficient published information about yield variation under

these systems.

Several studies were conducted to identify suitable liquid

organic fertilizer from different plant and animal wastes and to

evaluate their performance (Masarirambi et al., 2010; Treadwell

et al., 2011; Phibunwatthanawong and Riddech, 2019; Zandvakili

et al., 2019a; Nanik and Muslikan, 2021; Adekiya et al., 2022;

Siddiqui et al., 2022). Some studies were also performed to

compare plant growth using liquid organic fertilizers and

traditional synthetic fertilizers (Zandvakili et al., 2019b). They

also reported several limitations of liquid organic fertilizer usage

in hydroponic crop production systems, such as biofilm formation

in stock nutrient tanks, clogging of irrigation equipment, and quick

mineralization and leaching (Burnett and Stack, 2009; Burnett et al.,

2016; Shaik and Singh, 2022). Moreover, intensive research is

required to determine the compatibility of liquid organic

fertilizers for different hydroponic systems before its adoption in

crop production. Therefore, this study was aimed to determine a

compatible hydroponic system through lettuce cultivation using a

liquid organic fertilizer under controlled environment conditions

based on the growth performance, leaf tissue nutrients, and nutrient

solution analysis.
2 Materials and methods

2.1 Experimental site and plant
growing conditions

The current study was conducted in a Venlo-type

polycarbonate-covered greenhouse located at the Ohio State

University, Wooster, Ohio, USA (40.7750° N and 81.9231° W),

from February 24 to April 7, 2023. The greenhouse consisted of a

thermal shade screen and supplemental lighting system. The

ambient temperature was maintained using heater and

evaporative fan-pad cooling system. The temperature set point
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was 20°C for daytime and 18°C for nighttime, total photoperiod

was 16 hours, and supplemental lights were turned on and off when

photosynthetically active radiation (PAR) was ≤ 250 and ≥350

W·m-2, respectively. The ambient environmental parameters and

light conditions were automatically monitored and controlled by a

climate control system (SEED V2, Wadsworth Control Systems,

Arvada, CO, USA). However, an environmental data logger

(WatchDog mini-station 2000 series, Spectrum Technologies Inc.,

Aurora, IL, USA) was placed at the plant height for more accurate

temperature, humidity, and light intensity measurement. The

averaged measured temperature, humidity (day, night), and daily

average PAR per day are shown in Figure 1.
2.2 Experimental and analytical procedures

2.2.1 Experimental design
Lettuce was cultivated in liquid culture and substrate-based

hydroponic cultivation systems using a liquid organic fertilizer. The

nutrient film technique (NFT), deep water culture (DWC), Dutch

bucket (DB) system, and regular plastic container (RPC) with drip

irrigation were considered under the liquid culture and substrate-

based hydroponic cultivation systems, respectively, as shown in

Figure 2. Each NFT system was equipped with four polyvinyl

chloride (PVC) channels, each measuring 122 cm in length and

13 cm in width, capable of holding 12 plants (Crop King, Lodi, OH,

USA). The size of each nutrient solution tank of the NFT system

was 100 liters. Only two channels from each NFT set were used in

this experiment. Each DWC tank had a capacity of 100 liters and

could accommodate 9 plants (Crop King, Lodi, OH, USA). A

305×254×230 mm (L×W×H) Dutch or Bato® bucket and

254 mm diameter regular plastic container (Crop King, Lodi, OH,

USA) were considered for the RPC and DB systems, respectively.

The DB and RPC were filled with the general purpose commercial

growing media (Pro-Mix-BX, Premier Tech, Rivière-du-Loup, QC,

CA). Four identical sets (replicates) of NFT and DWC system (Crop
FIGURE 1

The averaged day and nighttime temperature, relative humidity, and daily averaged photosynthetically active radiation (PAR) in the greenhouse used
to grow lettuce in four different hydroponic production systems.
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King, Lodi, OH, USA), and a total of 30 RPC and 30 DB were used

in this study. To have uniform dissolved oxygen (DO) conditions in

solution tanks, two aeration pumps (LA-80BN, Nitto Kohki Inc., 46

Chancellor Drive, Roselle, IL, USA), one for DWC and another for

NFT systems, were installed. The DO level of nutrient solution was

continuously monitored using a YSI® optical dissolved oxygen

probe (FDO 700IQ, YSI Bioanalytical Products, Yellow Springs,

OH, USA). The averaged DO level of the NFT and DWC tanks were

7.5 and 8.5 mg·L-1, respectively. It also helped to agitate nutrients

ions. As the drip irrigation is an open-type hydroponic system and

substrate helps to aerate plant roots, no aeration pump was installed

in the nutrient sump tank for the drip system. Based on the lettuce

growth and leachate condition, pots were irrigated with a flowrate of

150 mL·h-1. To prevent the evaporation of nutrient solution, each

tank was covered by lid and transplanting holes without plants on

the NFT and DWC systems were covered by plastic tape.

2.2.2 Liquid organic fertilizer
A commercial liquid organic fertilizer (Espartan, Hort

Americas, Fort Worth, TX, USA) formulated from organic matter

(33.50%) and fluvic acids (19%) was used. According to the

manufacturer, the fertilizer contained nitrogen at 2.70%,

phosphate (P2O5) at 3.03%, and soluble potash (K2O) at 2.60%

based on fertilizer label. The density was 1.19 g·cm-3 with pH from

5.8 to 5.9. A fresh nutrient solution was prepared based on
Frontiers in Plant Science 04
manufacturers recommendation by diluting the fertilizer to a

concentration of 1.58 mL·L-1. Then, the EC and pH (Easy Plus,

Mettler-Toledo, Columbus, OH, USA), non-purgeable organic

carbon (NPOC_organic carbon remaining in a sample after

purging the sample with gas) and total nitrogen (TOCLCSN,

Shimadzu, Kyoto, Japan), and individual nutrient ion (IC 600;

Thermo Fisher Scientific, Waltham, MA, USA) of the fresh

solution were measured. The EC and pH were 0.74 mS·cm-1, 6.84,

respectively. The concentrations of the NPOC, total nitrogen,

nitrite, nitrate, ammonium, phosphate, potassium, calcium,

magnesium, sulfate, sodium, chloride, and fluoride were 349.50,

72.36, 0.22, 3.34, 43.78, 21.80, 44.45, 17.00, 6.49, 32.93, 47.32, 66.72,

and 1.27 mg·L-1, respectively. As the recommended nitrogen level

for hydroponic lettuce is 100-150 mg·L-1 (Djidonou and Leskovar,

2019), 100 mg·L-1 nitrogen rate was used to prepare nutrient

solutions in this study. The nutrient level was maintained by

maintaining EC and pH at 1.3 mS·cm-1 and 5.8, respectively,

weekly in all systems throughout the study. As the pH level was

higher than the recommended pH level (5.8 to 6.0), sulfuric acid

(R8270000-10F, RICCA CHEMICAL, Arlington, TX, USA) was

used to lower the pH during nutrient replenishment. The target EC

(1.3 mS·cm-1) and pH (5.8) were checked and maintained every

week throughout this study using an EC meter (COM-100, HM

Digital Inc., Redondo Beach, CA, USA) and a pH meter (PH-200,

HM Digital Inc., Redondo Beach, CA, USA), respectively.
A B

DC

FIGURE 2

Schematic diagram of the used hydroponic systems: (A) nutrient film technique (NFT), (B) deep water culture (DWC), and (C) Dutch bucket (DB), and
(D) regular plastic container (RPC) with a drip system for cultivating Green Butter lettuce using Espartan liquid organic fertilizer.
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2.2.3 Seedling preparation, transplantation,
and sampling

A commercial lettuce cultivar (Lactuca sativa L. var. Green

Butter; Salanova lettuce, Johnny’s Selected Seeds, Winslow, ME,

USA) was used for this experiment. Lettuce seeds were sown in the

2.5 cm square rockwool plugs (AO cubes, Grodan, Roermond, NL)

for the NFT and DWC systems, and in plug trays filled with

propagation media (Pro-Mix-BX, Premier Tech, QC, CA) for the

DB and RPC systems. Before seeding, the rockwool plugs were

submerged in water and allow them to soak for up to 24 hours for

moisture absorption and lowering the pH. After sowing the lettuce

seeds, the rockwool plugs were covered by coarse-grade vermiculite

(A-3, A.M. Leonard, Piqua, OH, USA). Rockwool cubes and plug

trays were kept in the greenhouse under the environmental condition

as described before. The rockwool cubes and planting tray were

watered regularly with a synthetic fertilizer solution (Hydro-Gro

Leafy; 4.3% N-9.3% P-35% K and Ca(NO3)2, Crop King, Lodi, OH,

USA) of EC and pH of 1.10 ± 0.10 mS·cm-1 and 5.80 ± 0.20,

respectively to get uniform seedlings for transplantation. After two

weeks of seeding, healthy seedlings with true leaves were transplanted

into the NFT, DWC, DB, and RPC systems. The physical

characteristics of the transplanted lettuce seedlings were

summarized in Table 1.

Sample (plant) collection was performed in two steps: 14 and 28

days after the transplanting seedlings. Four replication was applied,

and three lettuce plants were selected randomly and collected from

each set (replication) of cultivation systems (i.e., NFT, DWC, DB,

and RPC).

2.2.4 Measurement of growth data
Shoot parameters, (i.e., shoot width, number of leaves, leaf area,

relative foliar chlorophyll, fresh weight (FW) and dry weight (DW)

of shoot) and root parameters (i.e., root length, FW and DW of

root) were measured. Relative foliar chlorophyll values were

measured using a commercial chlorophyll meter (SPAD-502,

Minolta Corporation, Ltd., Osaka, JP). Three SPAD readings were

taken randomly from fully grown lettuce leaves, and the values were

averaged and recorded. Fresh weights were measured (ML3001T,

Mettler Toledo, Columbus, OH), then placed in a drying oven

(Heratherm OGS400, Thermo Fisher Scientific, Waltham, MA,

USA) at 68°C for two days, then weighed again until a constant

dry weight reached.

2.2.5 Measurement of leaf tissue nutrients
Lettuce leaf nutrient analysis was conducted at Ohio State

University’s Service, Testing, and Research (STAR) laboratory,
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Wooster, OH, USA. Total concentrations of plant essential

elements including phosphorus (P), potassium (K), calcium (Ca),

magnesium (Mg), sulphur (S), boron (B), iron (Fe), manganese (Mn),

copper (Cu), zinc (Zn), and molybdenum (Mo) were determined by

microwave digestion with HNO3 followed by inductively coupled

plasma (ICP) (5110 ICP-OES, Agilent Technologies, Santa Clara, CA,

USA) emission spectrometry according to Jones et al. (1991). Total

nitrogen in plant tissue samples was determined by the Dumas

method according to the Association of Official Analytical

Chemists (AOAC International, 1990).

2.2.6 Measurement of EC, pH, and nutrient ions
of leachate and nutrient solutions

The EC, pH, organic carbon, total nitrogen, and nutrient ions

(i.e., NH4
+, NO2

-, NO3
-, PO4

3-, K+, Ca2+, Mg2+, and SO4
2-) of each

replicate of the NFT and DWC systems were analyzed once a week

throughout the cultivation period using the same methods and

instruments mentioned as above section 2.2.2. Liquid samples were

taken before the EC and pH adjustments of the NFT and DWC

tanks. For analyzing the above mentioned parameters, leachate was

collected from the DB and RPC systems before the final harvest

(28 DAT).
2.3 Statistical analysis

Significance of differences between mean values were

determined by analysis of variance (ANOVA) using the Minitab

21.4.2.0 software (Minitab, State College, PA, USA). Means were

separated using Tukey’s multiple range test at the 5% significance

level (P ≤ 0.05) and two-sided confidence intervals. Some basic

statistical analysis was performed, and graphs were prepared using

MS Excel (ver. 2023, Microsoft Corporation, Redmond, WA, USA).
3 Results

A significant influence of hydroponic system, on lettuce growth

parameters along with the nutrient composition of edible tissue

were observed.
3.1 Effect of cultivation systems

Hydroponic systems had significant impacts (P ≤ 0.05) on

lettuce growth (i.e., shoot width, number of leaves, leaf area,
TABLE 1 Physical characteristics of Green Butter lettuce seedlings two weeks after sowing in either a rockwool or propagation mix substrate.

Substrate Leaf
length (cm)

Leaf
width (cm)

Leaf
area (cm²)

Number
of leaves

Relative
chlorophyllz

Fresh
weight (g)

Rock wool 3.40 ± 0.35 1.70 ± 0.10 9.49 ± 3.92 4.60 ± 0.55 36.00 ± 0.55 1.22 ± 0.05

Propagation-mix 3.82 ± 0.15 1.68 ± 0.19 10.07 ± 0.06 5.00 ± 0.00 35.90 ± 0.55 1.30 ± 0.04
zRelative chlorophyll content as measured by a SPAD meter.
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SPAD, shoot FW and DW, root length, FW, and DW) and nutrients

accumulation (i.e., N, P, K, Ca, Mg, S, B, Fe, Mn, Cu, Zn, and Mo)

using liquid organic fertilizer harvested at two different times

(Table 2). Overall, the results indicate that the efficacy of the

liquid organic ferti l izer largely depends on the crop

cultivation methods.
3.2 Evaluation of growth performance

The growth and development of lettuce between the first and

second harvests for different hydroponic methods were illustrated

in Figure 3. Plant width, number of leaves, and leaf area of lettuce

grown in the RPC system were higher (ranging from 5% to 17%)

than in the DB system; however, the shoot fresh and dry weight of

the lettuce grown in the DB system were significantly higher (26%

and 23%, respectively) than in the RPC system. Lettuce grown

under the NFT system had the lowest growth performance. The

root parameters (length, FW, and DW) of lettuce grown in the

substrate-based systems (DB and RPC) increased in a similar

pattern; however, these parameters increased less under the DWC

and NFT systems. Although root length under the DWC system

increased slightly with time, they were still similar to the NFT

system. Lettuce grew significantly in the last 14 days; however,

the growth difference pattern among the hydroponic system at the

first and second harvests was almost similar, except the SPAD and

root length. The percent increase in shoot FW between the first and

second harvests for the NFT, DWC, DB, and RPC systems was 88%,

90%, 93%, and 91%, respectively. Although, the lettuce growth

performance under the DB and RPC were similar, RPC was 42% to

151% and 19% to 79% higher than the NFT and DWC systems,

respectively, for different shoot growth parameters (i.e., shoot
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width, number of leaves, leaf area, shoot FW and DW). However,

the SPAD values of the DWC and DB systems were similar, while

the NFT system showed an upward trend, and the RPC system

showed a downward trend. Figure 4 represents the shoot and root

conditions of lettuce grown in the considered hydroponic systems

after four weeks of transplantation. The visual observation of

representative plants from the final harvest supports the

quantitative data. While root DW in DWC was similar to DB and

RPC (Figure 3), the mass of roots portrayed in Figure 4 appears

much smaller. This suggests greater root density for the DWC as

compared to the DB or RPC. As the growth differences were

negligible between the RPC and DB systems, the substrate-based

hydroponic systems used in this trial could be considered better for

liquid organic fertilizer application.
3.3 Evaluation of leaf tissue nutrients

Lettuce grown in the NFT system exhibited significantly higher

levels of N compared to DWC at 14 DAT and DWC and RPC by 28

DAT. However, by 28 DAT foliar concentrations of P, K, Ca, B, Mn,

and Cu were more abundant in the RPC and DB systems compared

to the NFT and DWC systems. The DWC system demonstrated the

lowest nutrients accumulation for N, P, K, and Zn by 28 DAT. Most

foliar nutrient concentrations decreased over time, particularly in

the NFT system. The decrease in foliar nutrient concentrations

ranged from 5.7% (for Zn) to a maximum decrease of 84.7% (for

Mg), except for K and Mn, which increased by 18.0% and 6.3%,

respectively. On the contrary, the nutrient concentrations of lettuce

grown in the DWC system generally increased, except for N

(-38.19%), Ca (-5.95%), P (-24.67%), and Mg (-6.41%). The

nutrient differences of lettuce grown in the RPC and DB systems
TABLE 2 ANOVA test showing the effects of the cultivation system on growth variables and nutrients content of lettuce leaves at two different
harvesting time.

Growth
parameters

1st harvest 2nd harvest Nutrient
components

1st harvest 2nd harvest

F-value P-value F-value P-value F-value P-value F-value P-value

Shoot width 55.65 0.000 101.20 0.000 N 3.95 0.036 99.46 0.000

No. of leaves 28.45 0.000 18.99 0.000 P 58.45 0.000 179.65 0.000

SPAD 14.31 0.000 26.91 0.000 K 17.15 0.000 90.20 0.000

Leaf area 85.98 0.000 23.06 0.000 Ca 4.35 0.027 42.48 0.000

Shoot FW 99.28 0.000 146.00 0.000 Mg 9.94 0.001 16.39 0.000

Shoot DW 57.87 0.000 72.98 0.000 S 31.56 0.000 10.75 0.001

Root length 21.02 0.000 194.44 0.000 B 25.30 0.000 23.20 0.000

Root FW 73.18 0.000 80.75 0.000 Fe 4.08 0.033 2.96 0.075

Root DW 37.63 0.000 19.22 0.000 Mn 40.93 0.000 256.90 0.000

Cu 39.09 0.000 97.37 0.000

Zn 39.12 0.000 26.87 0.000

Mo 10.37 0.000 6.36 0.011
fr
Data points are significantly different according to Tukey’s test (P ≤ 0.05), where N = 3.
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were negligible, and like the NFT system, most nutrients decreased

over time. There was a significant decrease in the concentration of P

(22.2% to 56.2%), while K showed a significant increase (18.0% to

30.3%) across all hydroponic systems over time (Table 3).
3.4 Evaluation of EC, pH, and nutrient ions
of leachate and nutrient solutions

The same liquid organic fertilizer diluted to a concentration of

100 mg·L-1 N was supplied to the hydroponic systems (NFT, DWC,

RPC, and DB) throughout the experiment. However, leachate EC,

pH, and nutrient ions exhibited variations by 28 DAT (Table 4).

The EC of the liquid culture hydroponic systems (NFT and DWC)

were significantly lower (around 40%) than the substrate-based

hydroponic system (RPC and DB), while the pH varied from 5.74 to

6.39. Higher ion concentrations were observed in the leachate of

RPC and DB systems compared to the NFT and DWC systems. The

TN and NH4
+ levels were similar among all systems, but an

opposite condition was observed between the NFT, DWC, and

RPC, DB systems for NO2
- and NO3

- ions. A higher concentration

of NO2
- ion was detected in the NFT (88.91 mg·L-1) and DWC (113

mg·L-1) systems, where a negligible concentration (1-3 mg·L-1) was
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found in the RPC and DB systems. An inverse condition was

observed for the NO3
- ion. The PO4

3-, Ca2+, Mg2+, and NPOC

levels were significantly higher in the leachate of RPC and DB

systems compared to the NFT and DWC systems, while no

significant difference was observed for the K+ and SO4
2- ions. In

general, the detected ion concentrations of the NFT and DWC

(liquid culture hydroponic system) were similar, and the same

scenario applied to the RPC and DB systems (substrate-based

hydroponic system).
4 Discussion

Leafy greens typically grow faster in liquid culture systems (i.e.,

NFT, DWC, ebb and flow, or aeroponics) as the roots receive a

steady supply of essential nutrients in oxygenated water (Majid

et al., 2021). However, nutrient supply might be less consistent

when liquid organic fertilizer is used in a hydroponic system, as

nutrients are released slowly from organic fertilizers over a period of

time (Phibunwatthanawong and Riddech, 2019). The application of

liquid organic fertilizer for hydroponic leafy green production is a

relatively new approach, and the plant response to liquid organic

fertilizer, particularly when grown in liquid culture systems, has not
FIGURE 3

Interaction plots between nutrient film technique (NFT), deep water culture (DWC), Dutch bucket (DB), and regular plastic container (RPC)
hydroponic systems and harvesting time (14 and 28 DAT) for different shoot parameters (shoot width, number of leaf, leaf area, SPAD, shoot FW and
DW) and root parameters (root length, root FW and DW) of ‘Green Butter’ lettuce. Data points with different letters are significantly different
according to Tukey’s test (P ≤ 0.05).
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been fully explored. Over the last few years, most studies have

compared the yield of leafy greens cultivated in substrate-based

hydroponic systems using liquid organic fertilizers and synthetic

fertilizers. For example, Shaik et al. (2022) evaluated six different

liquid organic fertilizers for butterhead lettuce cultivation, and the

NPK ratio of one of those fertilizers (AgroThrive 3-3-2) closely

matched that of the fertilizer (Espartan 2.7-3-2.6) used in this study.

They reported similar lettuce growth; for example, the number of

leaves varied from 28 to 40 in their study, while we observed 31-45

leaves in our hydroponic systems. The leaf area ranged from 1500 to

2500 cm² in their study, whereas we found a maximum of around

1300 cm² leaf area. During leaf area measurement, we removed the

curled head of the lettuce; otherwise, this parameter may have been

similar as well. The fresh and dry weight of lettuce in our study

varied from 30 to 90 and 1.5 to 3.5 g per plant, respectively,

compared to their reported values of 80 to 150 and 8 to 12 g per

plant. Variation in nutrient composition and interaction with

substrate might be a reason for this weight difference. Solid

matter and percentage of water in the leaves are another

indications of growth evaluation. The leaf water percentage varied

from 95% to 96%, mirroring the results reported by Sublett et al.

(2018). Additionally, Lei and Engeseth (2021) compared the growth

characteristics, functional qualities, and texture of hydroponically

grown lettuce with soil-grown lettuce using synthetic fertilizer.

Plant width, fresh and dry weight of hydroponically grown lettuce

in their study were 21.67 cm, 45.21 g, and 6.72 g, respectively, which

are similar to the results of this study. Based on the above

discussion, it can be justified that the growth of lettuce was

comparable to other studies with high-yield results, especially

under a substrate-based hydroponic systems. Although a
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continuous upward growth pattern with respect of time was

observed for the considered plant growth parameters with the

exception of SPAD values. A downward trend over time was

observed, especially among lettuce grown under the RPC system.

Usually, light intensity, photoperiod, temperature, salinity, harvest

time, and growth conditions affect SPAD values (Limantara et al.,

2015; Xu and Mou, 2015; Cho et al., 2020). However, the selection

of comparatively young leaves during the SPAD measurement at

the second harvest time might be the reason for these reduced

SPAD values. Theoretically, plant growth should not differ if all key

environmental variables and cultivation methods are the same

(Walters and Currey, 2015). In this study, the growth difference

between liquid culture systems (i.e., NFT and DWC) and substrate-

based drip systems (DB and RPC) was significant, but it varied

closely between the NFT and DWC or DB and RPC. For example,

growth variation in liquid culture systems was observed as the

amount of root mass submerged in nutrient solution differs between

NFT and DWC systems, leading to variations in nutrient and water

uptake. In NFT, plant root tips contact a thin film of nutrient

solution within plastic gutters, whereas in DWC, roots are fully

submerged in nutrient solution throughout the growth process.

Additionally, while NFT can provide oxygen to crops by exposing

root tips to the air, an extra air pump has to be installed in DWC to

maintain dissolved oxygen levels (Riggio et al., 2019; Yang

et al., 2024).

Minerals in plants serve essential functions in both structural

and physiological aspects. Factors influencing the growth

performance of lettuce also impact its mineral composition.

Despite significant variations in mineral accumulation observed

due to hydroponic systems, the mineral contents were found to be
A B DC

FIGURE 4

Growth comparison of representative Green Butter lettuce plants from each hydroponic system: (A) nutrient film technique (NFT), (B) deep water
culture (DWC), and (C) Dutch bucket (DB), and (D) regular plastic container (RPC) harvested 28 days after transplantation.
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similar to those reported in other research studies. For instance,

Ezziddine et al. (2021) demonstrated how aquacultural sludge can

serve as an organic fertilizer for hydroponic lettuce production, and

the determined mineral composition aligns with the concentrations

identified in this study. Similarly, Ahmed et al. (2021) reported a

comparable mineral composition in lettuce grown using organic

fertilizer derived from fish waste, noting that mineral content may

vary with nutrient solution composition. Zandvakili et al. (2019b)

observed that synthetic fertilizer contributes to high concentrations

of N, K, Mg, and Fe in lettuce, while organic fertilizer leads to

increased phosphorus accumulation. The macro- and micro-

nutrient accumulation may vary with cultivars. Hartz et al. (2007)

summarized optimal ranges of lettuce leaf minerals at different

growth stages, such as early heading and preharvest, from various

sources, which correspond to the first and second harvests of this

study (Table 3).

Generally, leachate (from substrate-based culture) or nutrient

solution (from liquid culture) is analyzed to determine the nutrient

condition of the plant root zone (Altland, 2021; Yang et al., 2024).

In organic cultivation, several studies have shown how microbial

activities influence the root zoon environment and accelerate plant

growth through mineralization (Niemiera and Wright, 1986; Lang

and Elliott, 1997; Ruiz and Salas Sanjuan, 2022; Li et al., 2023; Wang

et al., 2023). In this study, the initial EC level was 1.3 mS·cm-1, and

the EC of the nutrient solution and leachate increased to around

1.45 and 2.4 mS·cm-1, respectively. The increase in EC occurred as

nutrients mineralized from the organic fertilizers over time through

microbial activity, which is influenced by several factors, such as

growing media, temperature, moisture content, C/N ratio, oxygen

supply, and pH (Niemiera and Wright, 1987; Alsanius and Jung,
TABLE 4 Electrical conductivity (EC), pH, total nitrogen (TN), nutrient
ion, and non-purgeable organic carbon (NPOC) analysis of the nutrient
solution of liquid culture hydroponic (NFT, DWC) and leachate from the
substrate-based hydroponic (DB, RPC) systems at 28 days
after transplanting.

Parameter NFT DWC RPC DB P-value

EC (mS·cm-1) 1.37 b 1.29 b 2.46 a 2.23 a 0.000

pH 7.00 bc 6.79 b 5.48 c 6.39 a 0.000

TN (mg·L-1) 61.25 a 64.02 a 66.83 a 64.60 a 0.913

NH4
+ (mg·L-1) 11.50 ab 10.70 ab 8.43 c 12.34 a 0.011

NO2
- (mg·L-1) 17.01 b 29.73 a 0.36 c 0.86 c 0.000

NO3
- (mg·L-1) 0.73 b 0.73 b 116.60 a 25.10 b 0.000

PO4
3- (mg·L-1) 56.03 c 49.71 c 99.25 b 129.89 a 0.000

K+ (mg·L-1) 61.63 ab 71.48 ab 74.59 b 136.23 a 0.012

Ca2+ (mg·L-1) 50.70 b 48.98 b 181.05 a 146.81 a 0.000

Mg2+ (mg·L-1) 11.67 b 12.75 b 39.33 a 35.39 a 0.000

SO4
2- (mg·L-1) 177.13 ab 181.91 b 295.68 ab 372.38 a 0.026

NPOC
(mg·L-1) 68.73 c 68.49 c 89.53 b 99.68 a

0.000
f

Data points with different letters are significantly different according to Tukey’s test (P ≤0.05),
where N = 3.
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2019; Sradnick and Feller, 2020; Meeboon et al., 2022). Floom

(2022) explained how microbial activities are affected by growing

media and cultivation time. Shinohara et al. (2011) also reported

that inoculum addition is necessary to accelerate the nitrification

process of liquid organic fertilizer. In this study, overall lettuce yield

was significantly lower in the liquid culture systems (NFT and

DWC) compared to substrate-based systems (DB and RPC), as

shown in Figure 4. One of the reasons for this lower growth may be

the improper microbial activity. Since microbes perform well in

soilless substrate (Niemiera and Wright, 1986; Carlile and Wilson,

1991; Grunert et al., 2016; Floom et al., 2023) compared to liquid

media, this may have led to comparatively high concentrations of

nutrient ions in the leachate from substrate-based hydroponic (DB

and RPC) systems. The high nitrite (NO2
-) levels in the NFT and

DWC systems (Table 4) also indicate the absence of proper

inoculum or limited microbial activities, whereas the nitrate

(NO3
-) level was high in the DB and RPC systems, as the order of

microbial oxidation of ammonia via nitrite to nitrate is sequential

(Amoo and Babalola, 2017; Ayiti and Babalola, 2022). Since the sum

of ammonium, nitrite, and nitrate ions was not equal to the total

nitrogen, the slow nutrient mineralization or denitrification process

might be responsible for this. The concentrations of P, K, Ca, and

Mg ions were also higher in the DB and RPC systems due to the

microbial activities. The high concentration of S ions in all

hydroponic systems resulted from the addition of sulfuric acid

during pH adjustment. Additionally, low root growth under the

NFT and DWC systems needs further investigation as plants

received high dissolved oxygen level and differences in mineral

composition between systems is limited.

The pH of the plant root zone is greatly influenced by the root

media (substrate) and affects nutrient availability for plant uptake

(Whipker et al., 2001). For example, sphagnum peat moss and pine

bark are acidic components that lower root medium pH. On the

other hand, vermiculite and hardwood bark are alkaline

components that raise root medium pH (Kipp et al., 2000;

Sonneveld and Voogt, 2009). In this study, a lower pH was

observed in the substrate-based culture (DB and RPC) systems

compared to the liquid culture (NFT and DWC) systems despite

weekly pH adjustments. As peat-based mixture was used as a root

media in the DB and PRC systems, this reflects the pH buffering

capability in substrate-based culture systems due to cation exchange

at the root zone (Sonneveld and Voogt, 2009). Without the

buffering ability in the root zone liquid culture systems are

subject to greater fluctuations of pH in the rootzone, and

therefore fluctuations in nutrient availability. Reduced levels of

calcium and phosphate in the nutrient solution of NFT and

DWC could also be an indication of precipitation that can occur

at higher pH ranges (De Rooij et al., 1984). Therefore, in addition to

nutrient content, issues related to nutrient availability may have

reduced plant growth in liquid culture systems.

The application of liquid organic fertilizers in hydroponic

systems holds significant future potential, driven by sustainability

goals, technological advancements, market demand, and ongoing

research. As research progresses, formulations of liquid organic

fertilizers can be optimized to meet the specific needs of different
Frontiers in Plant Science 10
crops, enhancing growth and yield, while also addressing current

limitations, such as biofilm formation, improper nutrient

mineralization, and microbial activity management. Innovations

in bio-based additives and microbial inoculants could further

enhance the efficacy of these fertilizers. Although, the initial cost

of liquid organic fertilizers might be higher, the long-term benefits,

such as improved plant health, higher yields, and premium pricing

for organic produce, can make them economically viable.
5 Conclusions

The current study investigated the compatibility of liquid

organic fertilizer with different hydroponic systems using lettuce

as the model crop. The evaluation of lettuce growth performance,

mineral composition, and nutrient solution analysis identified the

most suitable hydroponic system for organic lettuce production.

Notably, substrate-based hydroponic systems (i.e., DB and RPC)

demonstrated superior performance in terms of growth parameters

and mineral composition. The growth difference of lettuce between

the DB and RPC systems was minimal. However, growth in the RPC

system was significantly higher, with increases ranging from 29% to

60% compared to the NFT system and 15% to 44% compared to the

DWC system, in terms of shoot width, number of leaves, leaf area,

shoot fresh weight, and dry weight. Root parameters were nearly

identical for the NFT and DWC systems but were significantly

lower (21% to 94%) compared to the substrate-based DB and RPC

systems. Despite the high growth and mineral composition, the

substrate-based hydroponic system leached more nutrients,

indicating a need for optimization. This study provides empirical

evidence supporting the potential use of liquid organic fertilizer in

controlled environment agriculture and the importance of selection

of proper soilless cultivation methods for food production. We also

suggest substrate-based hydroponic systems are a better option for

screening liquid organic fertilizers for future use. In the future, it is

necessary to evaluate different liquid organic fertilizers, crops, and

inoculum effects to develop recommendations for organic

production in controlled environment agriculture.
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