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Greater than the sum of their
parts: an overview of the
AvrRps4 effector family
Katie N. Horton and Walter Gassmann*

Division of Plant Science and Technology, Bond Life Sciences Center, and Interdisciplinary Plant
Group, University of Missouri, Columbia, MO, United States
Phytopathogenic microbes use secreted effector proteins to increase their

virulence in planta. If these effectors or the results of their activity are detected

by the plant cell, the plant will mount an immune response which applies

evolutionary pressure by reducing growth and success of the pathogen.

Bacterial effector proteins in the AvrRps4 family (AvrRps4, HopK1, and XopO)

have commonly been used as tools to investigate plant immune components. At

the same time, the in planta functions of this family of effectors have yet to be

fully characterized. In this minireview we summarize current knowledge about

the AvrRps4 effector family with emphasis on properties of the proteins

themselves. We hypothesize that the HopK1 C-terminus and the AvrRps4 C-

terminus, though unrelated in sequence and structure, are broadly related in

functions that counteract plant defense responses.
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Introduction

Plants constantly interact with new challenges presented by their surroundings, and

perhaps one of the most relevant interactions for humanity is that between a plant and a

pest or pathogen attempting to benefit from the unique position of plants as primary

nutrient sources. In the case of microbial biotrophic pathogens, the association between

host and co-evolved pathogen is accompanied by intricate manipulation of the plant for the

pathogen’s benefit (Jones and Dangl, 2006; Ebert and Fields, 2020). Usually manipulation

involves secretion by the attacking pathogen of proteins called effectors into the plant cell

which, broadly, attempt to improve the attacker’s virulence and ultimate ecological success

by blocking plant recognition and resistance and/or by increasing availability of resources

the attacker needs (McCann and Guttman, 2008; Feng and Zhou, 2012; Kazan and Lyons,

2014; Wang et al., 2022). Successful pathogens cause diseased crops, reduced yield and, in

extreme cases, total crop loss. Identifying the in planta virulence targets, or the functions, of

these effectors is the first step along a pathway that leads to developing crops with greater

resistance to disease and eventually to greater food security. In this review, we take this first
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step by examining the well-known AvrRps4 effector family and

reviewing published information that may provide insight into the

in planta functions of each effector domain.

As the first isolated bacterial effector known to trigger resistance

through a Toll/Interleukin-1 Receptor - Nucleotide Binding -

Leucine Rich Repeat (TNL) resistance protein, AvrRps4 was used

widely among plant-microbe researchers as a tool for the discovery

and investigation of plant resistance components (Gassmann et al.,

1999). Though AvrRps4 has been invaluable to the field of

molecular plant-pathogen interactions, many facets of the

effector ’s viru lence and avirulence targets in planta

remain unknown.

The three members of the AvrRps4 effector family (AvrRps4,

HopK1, and XopO) are characterized by high N-terminal homology

to each other followed by a GGGKRVY motif. After secretion into a

plant cell via the type III secretion system (T3SS), all members of

the family are processed by an unknown protease(s) that cleaves the

N-terminus from the C-terminus between GG and GKRVY. This

occurs between G133 and G134 (G123 and 124 in XopO) and for

unknown reasons requires an arginine at position 112 (R112) (R111

in XopO) (Figure 1) (Roden et al., 2004; Sohn et al., 2009; Li et al.,

2014; Halane et al., 2018; Su et al., 2021; Nguyen et al., 2022).

AvrRps4 and XopO possess homologous AvrRps4-type N- and C-

termini (AvrRps4N and AvrRps4C), but HopK1 only shares N-

terminal homology with AvrRps4. HopK1 C-terminus (HopK1C)

instead shares homology with XopAK (Figure 1) and RipBQ, a
Frontiers in Plant Science 02
Ralstonia effector not discussed in this minireview due to limited

space and literature (Sabbagh et al., 2019). Although XopAK is not a

proper member of the AvrRps4 effector family due to lack of a

GGGKRVY motif or any homology to AvrRps4N, it is present in

multiple important bacterial crop pathogens, including those that

cause banana Xanthomonas wilt, maize bacterial leaf streak,

bacterial leaf streak of rice, and all currently known citrus canker

strains (Moreira et al., 2010; Studholme et al., 2010; Jalan et al.,

2011, 2013; Bart et al., 2012; Darrasse et al., 2013; Wichmann et al.,

2013; Gagnevin et al., 2014; Aritua et al., 2015). We believe its

inclusion will provide useful insights into the in planta function(s)

of HopK1C.

This summary is intended to be used as a collection of

knowledge on the topic and to be viewed as a description of

possibilities to be explored further. We strive to consider the

preponderance of evidence available rather than focusing on any

singular result when we discuss these effectors below.
AvrRps4

The founding member of the family, the avrRps4 avirulence

gene from Pseudomonas syringae pv. pisi (Psp) str. 151, was

described in 1996 and was one of the first avirulence genes shown

to be present in all tested strains of a pathovar (Hinsch and

Staskawicz, 1996). In both Psp 151 and P. syringae pv.
A

B

FIGURE 1

Visual representations of AvrRps4 effector family homology. (A) Proportional amino acid sequence homology indicated by color and pattern.
AvrRps4N-type sequences are indicated in dark green, AvrRps4C-type sequences are indicated in light green, and HopK1C-type sequences are
indicated in light blue. NCBI accession numbers for proteins used in this comparison are listed on the left. Percentages between the termini indicate
% identity/% positives for each pair as predicted by NCBI’s blastp (Altschul et al., 1990). The ~50AA secretion signals (represented by dots) are
included in this comparison but the 12AA central homologous regions (represented by stripes) are not. (B) Protein structural homology with Met1
indicated by an arrow. Structural predictions were made with ColabFold and visualized using ChimeraX (Pettersen et al., 2021; Mirdita et al., 2022).
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phaseolicola str. 1448A, avrRps4 is located on a plasmid (Kim et al.,

1998; Joardar et al., 2005).

After secretion and subsequent processing inside the plant cell,

both AvrRps4 termini are largely nucleo-cytoplasmically localized

(Bhattacharjee et al., 2011; Heidrich et al., 2011; Sohn et al., 2012; Li

et al., 2014; Park et al., 2017; Halane et al., 2018). Interestingly, Li

et al., 2014 also reported N-terminus-dependent localization of

transgenically expressed AvrRps4 and HopK1 to the chloroplast.

Independently, in vitro import assays showed localization of HopK1

in chloroplasts (De Torres Zabala et al., 2015). More recent work

has shown that deliberate AvrRps4 mislocalization to the plasma

membrane by replacing the N-terminus does not prevent

processing, accumulation of the C-terminus in the nucleus, or

contribution to resistance (Halane et al., 2018). AvrRps4N (aa 1-

136) in particular has been used with varied success in the past as

part of the effector detector vector system (pEDV) for identification

of candidate effectors from other bacteria (Kim et al., 2023),

oomycetes (Sohn et al., 2007; Fabro et al., 2011; Kemen et al.,

2011; Badel et al., 2013; Upadhyaya et al., 2014), fungi (Sharma

et al., 2013; Zhang et al., 2020), insects (Navarro-Escalante et al.,

2020; Peng et al., 2023), and nematodes (Shi et al., 2018b, 2018a).

This, alongside the apparent similarities between N-terminal

secretion signals of type III secreted effector proteins and

chloroplast/mitochondrial transit peptides (Guttman et al., 2002)

indicate that while a portion of the cellular pool of AvrRps4 may be

targeted to the chloroplast for its virulence function, presence of

AvrRps4N is likely not the only factor leading to the observed

chloroplast localization.

Further, the AvrRps4 N-terminus appears to have a greater role

in virulence than exclusively as a signal peptide. Transgenic

expression of AvrRps4N alone in Arabidopsis thaliana

(Arabidopsis) Col-0 increased virulence of P. syringae pv. tomato

(Pto) strain DC3000 hopk1- (Halane et al., 2018). Furthermore,

AvrRps4N was necessary and sufficient to trigger a strong

hypersensitive response (HR) in resistant lettuce cultivars (Halane

et al., 2018; Su et al., 2021). When co-expressed in resistant lettuce

with AvrRps4C, this AvrRps4N-triggered HR phenotype was

reduced. In contrast, full avirulence in Arabidopsis Col-0 requires

the presence of both AvrRps4N and AvrRps4C (Halane et al., 2018).

These dual roles of AvrRps4N are the hallmarks of an effector:

benefiting the pathogen while being detrimental enough to some

plants that they have evolved to detect it. As for a virulence

function, reports directly examining the N-terminus suggest

AvrRps4N interacts with EDS1 (Bhattacharjee et al., 2011; Halane

et al., 2018), an important immune regulator for TNL proteins and

basal resistance (Dongus and Parker, 2021). Interaction with EDS1

has also been reported for the unrelated P. syringae pv. glycinea

effector AvrA1 when transiently expressed in N. benthamiana

(Wang et al., 2014). For both AvrRps4N and AvrA1 the

immediate functional effects of their interactions with EDS1 in

terms of virulence or avirulence have not been determined. Taken

together, these works highlight a need for greater understanding of

AvrRps4N functions.

Contrastingly, AvrRps4C functions are well understood. An

electronegative patch (Sohn et al., 2012) interacts with defense-

related WRKY transcription factors (Kim et al., 2024) and with the
Frontiers in Plant Science 03
C-terminal integrated WRKY decoy domain of resistance protein

RRS1 (Sarris et al., 2015; Mukhi et al., 2021; Kim et al., 2024),

providing a mechanism for earlier observations of AvrRps4-

dependent suppression of HR in tobacco (Fujikawa et al., 2006;

Cvetkovska and Vanlerberghe, 2012), pattern-triggered immunity

(PTI) in Arabidopsis, and enhancement of pathogen growth within

N. benthamiana (Sohn et al., 2009). Processing of AvrRps4 is not

necessary for AvrRps4C-specific triggering of HR in cultivars of

Brassica rapa (turnip) nor for resistance to be triggered in

Arabidopsis, but is necessary for its virulence function (Sohn

et al., 2009). Other work has shown that AvrRps4C directly

interacts with BRUTUS (BTS), an iron-sensing protein in the

nucleus, causing interference with the degradation of bHLH115

and ILR3 and, when not recognized, leading to increased levels of

apoplastic iron (Xing et al., 2021).
XopO

XopO was first described in 2004 from Xanthomonas

euvesicatoria pv. vesicatoria (Xev) str. 85-10 and is only known to

exist in this strain (formerly: Xanthomonas axonopodis pv.

vesicatoria and Xanthomonas campestris pv. vesicatoria) and

Xanthomonas oryzae pv. oryzicola (Xoc), neither of which appear

to be greatly affected by its deletion (Roden et al., 2004; Hajri et al.,

2009, 2012; Liao et al., 2020). Indeed, in multiple strains XopO was

found to be mutationally inactivated or to possess insertions or

deletions within the first 100 amino acids of the protein, suggesting

an evolutionary advantage in removing the effector from the

secretion repertoire (Wang et al., 2011, p. 20; Barak et al., 2016).

It is not known whether XopOC interacts with WRKY proteins

in the same manner as AvrRps4C, but we do know that XopOC does

not trigger HR in turnip as AvrRps4C does and likewise does not

appear to weaken the recognition of XopON in lettuce to the same

degree that AvrRps4C does for AvrRps4N (Sohn et al., 2009; Nguyen

et al., 2022). These amino acid polymorphisms and the differential

recognition between AvrRps4C and XopOC may be related to

functionality within specific plant hosts, and future functional

analyses of these effectors should take this into consideration.
HopK1

HopK1 (previously HopPtoK) was identified in 2002 from Pto

DC3000 (Petnicki-Ocwieja et al., 2002). HopK1 in its full length is

found almost exclusively within pathovars of P. syringae, although

not every pathovar or strain carries it. After AvrRps4, HopK1 is the

most well-researched bacterial effector protein in the AvrRps4 family.

In Pto DC3000, the hopK1 gene is located on the chromosome and

is encoded in a 24 kb Tn6022-like element, but in other strains hopK1

may occur on a plasmid (Li et al., 2014; Peters et al., 2014). In the case

of Pto DAPP-PG 215, hopK1 is borne on p107, a small plasmid which

possesses two prophage regions and some precursors for coronatine

production in addition to the effector (Orfei et al., 2023).

Pto DC3000 hopk1- strains are significantly reduced in their ability

to grow and cause disease within plants. The full wild-type growth of
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the mutant in Arabidopsis Col-0 was not restored by simultaneous

transgenic expression of HopK1C but was restored by expression in the

same manner of the full-length protein. The N-terminus was also

necessary for reduction in reactive oxygen species (ROS) and callose

deposition, both indicators of PTI, indicating that HopK1N is

indispensable for effector virulence activities (Li et al., 2014).

Presence of HopK1 in an otherwise effectorless Pto DC3000 strain

did not contribute to nor inhibit growth compared to Pto DC3000 with

no effectors at all, nor did it reduce production of ROS in N.

benthamiana. Nevertheless, authors reported a moderate reduction

in “non-avirulence-related” cell death caused by other effectors when

HopK1 was present (Wei et al., 2018). Finally, expression of HopK1 did

not suppress flg22-mediated activation of FRK1-LUC, another PTI

indicator, in Arabidopsis protoplasts (He et al., 2006). Together, these

findings may indicate that HopK1N works synergistically with an

unknown Pto DC3000 effector(s) in order to counteract early PTI

events. This synergistic interaction resulting in reduced ROS and

callose may also be required for maximum effectiveness of HopK1,

as HopK1C has been shown to travel intercellularly up to one cell layer

away by using plasmodesmata as long as movement is not restricted by

excess callose deposition (Li et al., 2021; Iswanto et al., 2022).

When infiltrated into Arabidopsis Col-0 alongside AvrRps4C,

HopK1N fully complements the resistance response seen when

AvrRps4N and AvrRps4C are infiltrated together. The central

conserved portion of the N-terminus containing the positively

charged R112 is required for recognition in lettuce (Halane et al.,

2018; Su et al., 2021; Nguyen et al., 2022). However, processing is

not required for full pathogenicity (Li et al., 2014).

As mentioned above with AvrRps4, HopK1 was bioinformatically

predicted to localize to the chloroplast and was shown to localize to

the chloroplast stroma when inducibly expressed by transgenic

Arabidopsis, yet nucleo-cytoplasmically when expressed by A.

tumefaciens in a constitutive transient manner in N. benthamiana

(Li et al., 2014; De Torres Zabala et al., 2015).
XopAK

Perhaps representative of its presence in many Xanthomonas

species with different life histories, xopAK is variable in length and

number of accumulated mutations. For example, the gene showed

very few polymorphic sites among strains of X. axonopodis

manihotis (Bart et al., 2012; Trujillo et al., 2014) but is believed to

be inactivated in X. phaseoli pv. dieffenbachiae due to a frameshift

(Constantin et al., 2017) and is in some cases missing a significant

coding region that nearly halves the length of the protein (Fan et al.,

2022). Machine learning predicted the presence of a deaminase

catalytic domain at the C-terminus of XopAK and at least one

potential myristoylation or palmitoylation motif which could target

the effector to the plasma membrane (Teper et al., 2015; Barak et al.,

2016). This putative deaminase domain is well within the region of

homology with HopK1C and may therefore contribute to a more

thorough picture of the AvrRps4 family’s in planta functions.

Like HopK1, XopAK had no significant effect on flg22-triggered

activation of FRK1 in Arabidopsis protoplasts (He et al., 2006;

Popov et al., 2016). Unlike hopK1, deletion of xopAK from Xoc
Frontiers in Plant Science 04
caused no visible changes in disease symptoms on its host (rice)

(Liao et al., 2020).
Discussion

The AvrRps4-type N-terminus is a metaphorical black box for

researchers of this family. Its proposed functional region is very

small, only about 37 aa long (Su et al., 2021), yet it provokes a strong

HR from lettuce (Halane et al., 2018; Su et al., 2021), interacts with a

major TNL resistance hub (EDS1) (Bhattacharjee et al., 2011;

Halane et al., 2018), and appears more important for the growth

of Pto DC3000 than HopK1C alone (Li et al., 2014; Halane et al.,

2018), but we still know almost nothing about its function.

Intriguingly, using AvrRps4N similarly to pEDV for delivery of

the full-length unrelated effector XopQ into N. benthamiana cells

resulted in a weaker response by the plant than when XopQ was

delivered by the AvrRpt2 signal peptide (Gantner et al., 2018).

Authors did not test further but hypothesized that this weakness

could be the result of differences in stability or translocated amount

of protein. While this may be the case, it is also possible that

AvrRps4N interaction with EDS1 interferes with the EDS1-

mediated recognition of XopQ (Adlung et al., 2016), but more

study is needed.

We also do not yet know how detrimental simply possessing an

endogenous avrRps4N might be for bacteria themselves. xopO and

xopAK both naturally occur within the genome of Xev 85-10, but

the same is not true for avrRps4 and hopK1, which to date have

never been found to naturally co-occur. There are no examples of a

strain possessing multiple members of the AvrRps4 effector family

(sensu stricto), multiple copies of a single member, the avrRps4-type

C-terminus without an attached N-terminus, or even a single copy

of the avrRps4-type N-terminus without an attached C-terminus of

any type. It is tempting to conclude from this that AvrRps4N may be

detrimental to the bacterium over evolutionary time, and we look

forward to any future work examining AvrRps4N more thoroughly.

Neither HopK1C nor XopAK cause any significant effect on

flg22-triggered FRK1 activation (He et al., 2006; Popov et al., 2016),

an early PTI response, yet HopK1 has still been shown to block or

reduce HR and PTI (Jamir et al., 2004; Li et al., 2014; Gimenez-

Ibanez et al., 2018; Wei et al., 2018). This reduction appears to be

related to the action of HopK1N and to be essential for the full

virulence of HopK1C, yet its homologue XopAK occurs in many

more species of Xanthomonas without the N-terminus-bearing

XopO than it does with it. In fact, their co-occurrence is limited

to the only two known pathovars possessing XopO: Xev and Xoc.

This raises the question whether XopAK benefits from another

effector with redundant function when XopO is not present, or if

polymorphisms between the homologues render them dissimilar

enough that a ‘helper’ effector is not necessary for XopAK. In the

latter case, addition of XopO may have presented an opportunity

for range expansion by the effector and the pathogen alike.

As summarized in this review, the presence of xopO and xopAK

within the same strains of Xanthomonas, hopK1 association with

transposable elements (Peters et al., 2014; Orfei et al., 2023), and

avrRps4 and hopK1’s occasional location on plasmids (Kim et al.,
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1998; Chang et al., 2005; Orfei et al., 2023) seem to indicate that our

modern chimeric effectors may have been formed in a

Xanthomonas melting pot and then shared with bacteria

inhabiting a similar niche, such as Pseudomonas, via horizontal

gene transfer (HGT). HGT has been implicated in the evolution of

Pseudomonas (Kim et al., 1998; Rohmer et al., 2004; Dillon et al.,

2019) and Xanthomonas (Merda et al., 2017; Ruh et al., 2017; Chen

et al., 2018) pathogenicity in the past, though not specifically for the

AvrRps4 effector family. The rapidity and therefore the agricultural

implications of these transfers could be uncovered with

examination of the evolutionary history of the family.

As the 30th anniversary of the discovery and cloning of avrRps4

approaches, we hope investigators will revisit the last 3 decades of

AvrRps4 research and open questions with renewed interest, paving

the way for (at least)! 3 more decades of insightful molecular plant-

pathogen interactions research.
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