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Sugarcane is a crucial crop for sugar and bioenergy production. Saccharose

content and total weight are the two main key commercial traits that compose

sugarcane’s yield. These traits are under complex genetic control and their

response patterns are influenced by the genotype-by-environment (G×E)

interaction. An efficient breeding of sugarcane demands an accurate

assessment of the genotype stability through multi-environment trials (METs),

where genotypes are tested/evaluated across different environments. However,

phenotyping all genotype-in-environment combinations is often impractical due

to cost and limited availability of propagation-materials. This study introduces the

sparse testing designs as a viable alternative, leveraging genomic information to

predict unobserved combinations through genomic prediction models. This

approach was applied to a dataset comprising 186 genotypes across six

environments (6×186=1,116 phenotypes). Our study employed three predictive

models, including environment, genotype, and genomic markers as main effects,

as well as the G×E to predict saccharose accumulation (SA) and tons of cane per

hectare (TCH). Calibration sets sizes varying between 72 (6.5%) to 186 (16.7%) of

the total number of phenotypes were composed to predict the remaining 930

(83.3%). Additionally, we explored the optimal number of common genotypes

across environments for G×E pattern prediction. Results demonstrate that

maximum accuracy for SA (r=0:611) and for TCH (r¼0:341) was achieved

using in training sets few (3) to no common (0) genotype across environments

maximizing the number of different genotypes that were tested only once.

Significantly, we show that reducing phenotypic records for model calibration

has minimal impact on predictive ability, with sets of 12 non-overlapped

genotypes per environment (72=12×6) being the most convenient cost-

benefit combination.
KEYWORDS

genomic selection GS, genomic prediction GP, sparse testing designs, optimization,
sugarcane breeding
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1 Introduction

The world faces an urgent challenge to provide nutritional

sustenance for a burgeoning 8 billion people (UNPF, 2023)

amidst threats to food security, climate change, and finite

resources (FAO, 2015; UNCCD, 2017, 2018). Bridging the gap

between food production and population growth necessitates

innovative agricultural solutions. Sugarcane emerges as a key

player in this scenario, serving dual purpose: i) as a primary sugar

source (a dietary staple), and ii) bioenergy feedstock production

(Goldemberg, 2008; Waclawovsky et al., 2010). The versatility of

sugarcane makes it an ideal crop for targeted breeding efforts to

enhance both yield (sugar and biofuel) (Hoang et al., 2015;

Mahadevaiah et al., 2021) and yield stability (Scortecci et al.,

2012). However, sugarcane breeding is challenged by long

breeding cycles, low genetic diversity, large genome size and

clonal propagation, limiting efficient genetic improvement and

yield potential (Souza et al., 2011; Hoang et al., 2015; Yadav et al.,

2020; Mahadevaiah et al, 2021).

In plant breeding, identifying superior cultivars for agricultural

demands remain critical. Sugarcane’s narrow genetic base, primarily

due to vegetative propagation, complicates breeding efforts (Roach,

1989; Raboin et al., 2008; Wei and Jackson, 2016). Multi-

environmental trials (METs) are essential in sugarcane breeding,

enabling the evaluation of genotype performance across

environments and identifying stable or specifically adapted

cultivars (Jackson and Hogarth, 1992; Abu-Ellail et al., 2020).

However, METs are resource-intensive, particularly for clonally

propagated crops, prompting the need for more efficient

trial designs.

Genome-wide molecular prediction (GWP), genomic selection

(GS) or simply genomic prediction (GP) has been transformative in

plant breeding, enhancing genetic gain rates over the past two

decades (Crossa et al., 2010, 2011, Jarquıń et al., 2014; Ferrão et al.,

2021; Voss-Fels et al., 2021; Mahadevaiah et al., 2021). GP uses

genome-wide molecular markers to estimate breeding values of

untested individuals (Meuwissen et al., 2001). By capturing the

genetic variation in the genome, GP enables the prediction of

complex traits that are otherwise challenging to assess using

conventional breeding tools (Yadav et al., 2020; Ferrão et al.,

2021). This approach facilitates early-stage breeding cycle

decisions, reducing the need for extensive field trials and

expediting cultivar development. In the context of sugarcane

breeding, GP has been used to predict several traits of interest

with moderate accuracy ranging from 0.2 to 0.45 (Deomano et al.,

2020; Mahadevaiah et al., 2021; Islam et al., 2022; Islam et al., 2023),

including both molecular and pedigree information (Deomano

et al., 2020; Hayes et al., 2021) and modeling non-additive effects

(Yadav et al., 2021). GP is particularly advantageous in predicting

performance of individuals in new and partially tested

environments through cross-validation (CV) schemes. This

practice ensures that the predictive ability of GP models extends

beyond the environments in which genotypes are bred, allowing

accurate selection of individuals with potential high performance

across a range of environmental and management conditions.

Empirical studies suggest that incorporating G×E in GP models
Frontiers in Plant Science 02
can streamline the breeding process, either by skipping certain

stages or by reducing the number of genotypes tested in fields,

thereby enhancing trial testing capacity (Crossa et al., 2017; Resende

et al., 2018; Jarquıń et al., 2020).

Sparse testing, the strategic selection of a subset of genotypes for

evaluation in target environments, offers an innovative alternative

to field trials for the entire population This approach leverages

statistical techniques and predictive models, such as GP, to

extrapolate the performance of the entire population from a

selectively observed subset. Through model calibration and CV,

sparse testing enables prediction of unobserved genotype-in-

environment combinations. Consequently, it optimizes resource

allocation, allowing breeders to focus on the most promising

candidates from the target population of environments (TPEs).

This methodology not only accelerates the breeding cycle but also

the cost-effective identification of superior cultivars.

Sparse testing designs often mirror CV schemes CV1 and CV2

(Burgueño et al., 2012; Jarquıń et al., 2017), encompassing a broad

range of genotype-in-environment combinations. In the CV1

scenario, genotypes never tested at any environment are

predicted, while CV2 involves predicting already observed

genotypes in incomplete METs. This raises critical questions

about the optimal design of sparse testing in METs, such as the

balance between testing a few genotypes across multiple

environments versus many genotypes in fewer environments; and

the trade-off between prediction accuracy and selection intensity.

Empirical evidence from crops such as maize (Jarquıń et al., 2020;

Atanda et al., 2021; Montesinos-López et al., 2023), wheat (Crespo-

Herrera et al., 2021; Atanda et al., 2022) and soybean (Persa et al.,

2023) has provided insights into optimizing sparse testing designs.

Research by Jarquıń et al. (2020) and Crespo-Herrera et al. (2021)

revealed that GP models incorporating G×E can maintain robust

predictive ability even with reduced training sets. These studies

indicate that the highest recovery of predictive ability in scenarios

with either non-overlapping or completely overlapping genotypes

in training set combinations mostly depends on the species.

In this context, this study investigates the predictive ability of

different sparse-testing allocation designs in sugarcane breeding.

We simulated the allocation of finite breeding resources to optimize

the prediction of un-phenotyped genotypes in METs. For that, we

varied the number of overlapping genotypes and training set sizes,

similarly to the approaches of Jarquıń et al. (2020) and Crespo-

Herrera et al. (2021). We considered three allocation scenarios: i)

Non-Overlapping Genotypes (NOG), with a single observation per

genotype across environments, ii) Overlapping Genotypes (OG)

where all training genotypes are phenotyped across all

environments, resembling the CV1 scenario, and iii) a

combination of the NOG and OG schemes. To assess the

contribution of capturing G×E in METs, three models were fitted

for each sparse testing case: i) main effect of environment and

genotype (M1); ii) main effect of environment, genotype and

genomic markers (M2); and iii) main effect of environment,

genotype, genomic markers, and the interaction between genomic

markers and environment (M3). Our findings demonstrate effective

resource optimization strategies for METs in sugarcane breeding,

potentially increasing testing capacity by fivefold within a fixed
frontiersin.org
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target set of genotype-in-environment combinations or reducing

total phenotyping cost between 83% to 93%.
2 Materials and methods

2.1 Plant material and phenotyping

The dataset analyzed in this study comprises 220 genotypes

(Jaimes et al., 2024) from the diverse panel of Centro de

Investigación de la Caña de Azúcar, Cenicaña (Colombian

Sugarcane Research Center). This panel includes 98 genotypes

representing the phenotypic diversity of Cenicaña’s germplasm

bank, 58 genotypes selected for their resistance or susceptibility to

prevalent diseases and pests in Colombia, 33 genotypes

encompassing introductions and commercial varieties, and 31

wild species from Saccharum officinarum, S. spontaneum, S.

barberi, S. sinensi, and Erianthus spp. The genotypes were planted

across three locations in the Valle del rıó Cauca, Colombia: Balsora

(Mayaguez sugarcane mill) in 2016 (E1) and 2017 (E2), Taula Mejıá

(La Cabaña sugarcane mill) in 2018 (E3) and 2019 (E4), and

Porvenir (Manuelita sugarcane mill) in 2020 (E5) and 2021 (E6).

Genotypes were planted at each location under a randomized

incomplete block design. In Balsora and Taula Mejia 3

replications were planted, while in Porvenir, due to field

limitations, only 2 replications were considered. The experimental

unit at each location comprised a plot of 5 rows, each 5 meters long

and spaced 1.65 m apart. Commercial checks, genotypes S29, S64,

and S177, were replicated multiple times within each replicate-

block, resulting in a total of 717, 720, and 576 experimental units for

Balsora, Taula Mejia, and Porvenir, respectively.

Phenotypic data for sucrose accumulation (SA) and tons of cane

per hectare (TCH), were collected during harvest (13 months after

planting). SA was measured by shredding 10 stalks per experimental

unit to obtain the juice per sample (Larrahondo and Torres, 1989).

Then the sucrose content was quantified from the extracted juice

through a near infrared (NIR) spectrophotometer (Larrahondo and

Torres, 1989). For TCH, the measurement was taken after weighing

all stalks per experimental unit. Both SA and TCH measurements

were conducted for both plant cane and first ratoon at all locations.
2.2 Genotyping and quality control

DNA was extracted from each of the 220 genotypes following

Dellaporta et al. (1983) protocol. Sequencing was conducted using

both Genotyping-by-sequencing (GBS) and Restriction-site

Associated DNA sequencing (RADSeq) on a Hiseq2000 Illumina

System at a depth of 105X and 38X for GBS and RADSeq,

respectively. Quality control was performed using FastQC

(Andrews, 2010) and Trimmomatic (Bolger et al., 2014).

Subsequently, the cleaned data were aligned and mapped to the

CC 01–1940 monoploid reference genome (Trujillo-Montenegro

et al., 2021), utilizing Bowtie2–2.5 (Langmead and Salzberg, 2012)

with default parameters. Variant calling was conducted with

NGSEP 4.0.2 (Tello et al., 2019) by filtering out markers that
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failed to meet the following quality control criteria: a Minor

Allele Frequency (MAF) below 3%, Phred score below 30,

distance between markers below 5 bp, presence of more than 50%

of missing data, and an average depth below 5X, as well as markers

with more than one allelic version. Post quality control, a finalized

count of 22,324 single nucleotide polymorphism (SNP) markers

remained for analyses. The markers were coded based on the scaled

allele content with values ranging between 0 and 2 in steps of 0.2 {0,

0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, and 2}.
2.3 Phenotypic adjustment

The statistical model was independently applied to raw data at

each environment aiming to obtain the Best Linear Unbiased

Predictor (BLUP) values of the genotypes considering the three

checks assigned to each block as fixed effects for micro-

environmental control (Belamkar et al., 2018; Xavier et al., 2022)

using the linear predictor described in Equation 1.

yikl = m + Check + Li + rk + bl(r) + eikl

L

r
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e
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0
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1
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(1)

where yikl denotes the phenotypic record of the ith genotype in

the lth incomplete block within the kth replication, µ is the overall

mean, Check corresponds to the fixed effects of the checks, Li is the

random effect of the ith genotype, rk is the random effect of the kth

replication, bl(r) is the random nested effect of the lth incomplete

block within the kth replication and eikl is the corresponding error

term. These terms are considered as independently and identically

distributed outcomes, following a normal distribution with a

covariance structure based on the identity matrix I and scaled by

their corresponding variance component s2.
2.4 Allocation strategies

From the initial 220 genotypes, this study focused only on 186

Colombian cultivars. Thus, a total of 1,116 genotype-in-

environment combinations (or phenotypes) resulted from the

combination of the 186 Colombian genotypes observed at the six

different environments. In practical scenarios, budgetary

constraints imply that only a subset of these potential phenotypes

can be realistically observed in the field. Therefore, strategies are

essential in the allocation of genotypes across various environments.

The goal is to create a calibration set comprising phenotypic records

that maximize the accuracy of prediction models. This is key for

obtaining accurate estimates of the performance of genotypes that

are not observed in a set of environments. In this study, allocation

optimization was executed by classifying the genotypes into one of

the two following categories:

Non-overlapping Genotypes (Genotypes seen only in one

environment): In this category, genotypes are randomly assigned

to specific environments in such a way that they are unique and
frontiersin.org
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observed only once across environments. For the case of study, this

implies that each of the six environments would host 31 unique

genotypes (186/6 = 31), guaranteeing that all genotypes are assigned

to one environment only with no overlapping across environments.

Overlapping Genotypes (Genotypes seen in all the

environments): Some genotypes that exhibit consistent

performance across various environments or that are of particular

interest for research purposes can be allocated in all six

environments. This overlapping ensures that these genotypes are

evaluated under diverse conditions, assessing their adaptability and

stability across environments.

Let A and B represent, respectively, the number of non-

overlapping and overlapping genotypes, and T the number of

environments or trials. For a given ‘A/B’ design, the number of

required phenotypes is (A+B)×T, the number of unique genotypes

tested is A×T+B and the average number of replicates/phenotypes

per genotype is (A+B×T)/(A+B). Assuming a fixed budget for 186

plots and uniform plot costs in all the environments, two extreme

allocation strategies arise.

- Testing all the genotypes only once (31/0): In this scenario, 31

unique genotypes are assigned and phenotyped at each environment

(A=31). Hence, there is no overlapping of genotypes between

environments (B=0). The number of phenotypes is (31+0)×6=186,

the number of unique tested genotypes is 186 and the number of

phenotypes per genotype is (31+0×6)/(31+0)=1 phenotype/genotype.

- Testing same genotypes in all environments (0/31): Here, a

subset of 31 unique genotypes from the original set of 186 is

phenotyped in all the environments with no specific or non-

overlapping genotypes at each environment (A=0) and all the 31

being overlapped genotypes (B=31). The number of phenotypes is

still (0+31)×6=186 but the number of unique genotypes is reduced

to (0×6)+31=31, and the number of phenotypes per genotype is

increased to (0+31×6)/(0+31)=6 phenotypes/genotype.

In addition, we can construct mixed designs by adding one

overlapping genotype and removing one non-overlapping genotype

from each environment. For instance, the design 16/15 is composed of

16 non-overlapping genotypes per environment and 15 overlapping

genotypes phenotyped in the six environments. In this case, the

number of phenotypes remains the same (16+15)×6=186 but the

number of unique genotypes is 16×6+15=111 and the average

phenotypes per genotype is (16+15×6)/(16+15)=3.42.

Starting from the full non-overlapping design (31/0), nine

designs resulted after increasing the number of overlapping or

common genotypes (B) by four with respect to the previous

design, except for the first case where only three genotypes were

added to B. These designs are 31/0, 28/3, 24/7, 20/11, 16/15, 12/19,

8/23, 4/27, and 0/31. The set of phenotypes or genotype-in-

environment combinations observed in fields, (A+B)×T=186,

constitutes the calibration set for training models to predict the

phenotypes of the remaining unobserved genotype-in-environment

combinations (1,116-186=930 combinations). A visual

representation of the designs is shown in Figure 1.

To test the allocation of resources in terms of predictive ability,

not only regarding the proportion of non-overlapping and

overlapping genotypes, but also with respect to different budget

constraints, additional sample sizes were considered for composing
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training (168, 144, 120, 96, and 72 phenotypes). All calibration set

designs are shown in Table 1, where the columns in the middle

represent different designs (compositions) and the rows indicate the

different calibration sizes. Ten random partitions or replicates were

considered to evaluate the predictive ability of the different designs

(combination of set size and composition). To ensure a fair

comparison among sparse designs, the size of the prediction set

was fixed to 930 (83.3%) for all these. This entails that some

genotype-in-environment combinations were excluded from

consideration in rows 2 to 6, neither included in either the

calibration or the prediction set.
2.5 Predictive models

Three different GP models, based on random effects and

modeled via covariance structures, were calibrated and used to

predict the testing sets. The first model M1 is considered the base

model, and it assumes independent and identically distributed (IID)

outcomes among its components (Equation 2). The second model,

M2, leverages molecular marker information to determine

relationships between pairs of genotypes (Equation 3). While M1

and M2 are main effects models, the third model M3 introduces the

G×E term (Equation 4). The model’s performance was assessed

using the Pearson’s correlation between the observed and the

predicted values within each environment. The traits SA and

TCH were analyzed separately.

M1: Environment and genotype main effects.

yij = m + Ej + Li + eij
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e

0
BB@

1
CCA ∼ N

0

0

0

2
664

3
775,

ZEZ
0
Es 2

E 0 0

0 ZLZ
0
Ls 2

L 0

0 0 Is 2
e

2
664

3
775

0
BB@

1
CCA

(2)

where yij is the adjusted phenotypic observation of the target

trait in the jth environment (j=1, 2,…, 6) for the ith genotype (i=1, 2,

…, 186), µ is the overall mean, Ej is the random effect of the jth

environment, Li is the random effect of the ith genotype, and eij is
the corresponding error term. Ej, Li, and eij are assumed to be

independent and identically distributed outcomes from a normal

density. ZE (n×6) and ZL (n×186) are the design matrices

connecting phenotypes with environments and genotypes,

respectively, and I (n×n) is the identity matrix, with n being the

number of total observations (n=186×6). The variance component

for each term is denoted by s2. In this model, the genotypes are

assumed to be independent, and therefore, no information can be

borrowed from phenotyped individuals to their non-

phenotyped relatives.

M2: Environment, genotype, and genomic markers main effects.
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where all the terms in common with M1 have the same

meaning, gi is the genomic effect based on maker SNPs for the ith

genotype, and K (186×186) is the kinship matrix describing
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genomic similarities between pairs of individuals (VanRaden,

2008). Both Li and gi terms capture information about the

genotype but in the latter, genomic information is used to relate

phenotyped and non-phenotyped individuals. The genotype effect

Li is not removed from the model to account for model miss-

specification and imperfect information (genetic variability that

cannot be explained through SNP markers only).

M3: Environment, genotype, and genomic markers main effects,

and Genotype × Environment interaction.
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where all the terms in common with M2 remain the same, and

the added term gEij represents the effect of the interaction between

the jth environment and ith genotype (Jarquıń et al., 2014), ⊙ is the

element-wise multiplication or Hadamard product operation

between two matrices.
FIGURE 1

Graphical representation of sparse testing designs for a fixed budget and for a data set comprising 186 phenotypes and six environments. Each
subplot represents a different design. The design name, number of unique genotypes and average phenotypes per genotype are shown at the top of
each subplot. Rows and columns represent genotypes and environments, respectively. Blue color indicates that a genotype is observed in only one
environment, while orange color indicates overlapping genotypes observed in all the six environments. White color is used to represent phenotypes
not used in the calibration set and potentially forming the prediction set (155 phenotypes per environment or equivalently 930 phenotypes
across environments).
TABLE 1 Resource allocation designs.

#
Calibration

Designs #
Prediction

#
Unused

186 (16.7%) 31/0 28/3 24/7 20/11 16/15 12/19 8/23 4/27 0/31 930 (83.3%) 0 (0.0%)

168 (15.1%) 28/0 24/4 20/8 16/12 12/16 8/20 4/24 0/28 930 (83.3%) 18 (10%)

144 (12.9%) 24/0 20/4 16/8 12/12 8/16 4/20 0/24 930 (83.3%) 42 (23%)

120 (10.8%) 20/0 16/4 12/8 8/12 4/16 0/20 930 (83.3%) 66 (35%)

96 (8.6%) 16/0 12/4 8/8 4/12 0/16 930 (83.3%) 90 (48%)

72 (6.5%) 12/0 8/4 4/8 0/12 930 (83.3%) 114 (61%)
fr
The first column indicates the size of the calibration set across environments (relative size with respect to the total potential number of combinations). The last two columns show, the size of the
prediction set (constant) and the number (and proportion) of phenotypes discarded from the calibration set. All the designs in the same row share a common calibration set size while the designs
in the same column share a common number of non-overlapping genotypes.
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2.6 Cross validation and
performance metrics

In the context of plant breeding, particularly in the GP domain,

the evaluation of models often involves the use of CV schemes

(Jarquin et al., 2021). One widely used method is the K-fold CV,

which helps to assess the performance of predictive models. K-fold

CV involves splitting the dataset into K subsets or folds. The process

then iterates K times, each time using one of the K subsets as the

prediction set while the remaining K-1 subsets are used for

calibrating the predictive models. This approach provides a

robust way to assess the model’s performance. It returns

predicted values for all the datapoints in a fold without any of

them being present in the calibration set.

The process of partitioning the dataset into folds is not trivial

and might include some constraints. In this study, we included

features of two common CV schemes: CV2 and CV1. In the basic

CV scheme, known as CV2, the dataset is randomly partitioned

without any specific constraints. This means that the model may

predict the phenotype of genotypes that have been observed in other

environments. While this approach is informative, it doesn’t

guarantee that the model will predict unseen genotypes, as some

genotypes may appear in both the calibration and the prediction

sets due to random partitioning. In CV1, a specific constraint is

applied: all phenotypes of the same genotype must be placed in the

same fold. This ensures that when evaluating the model, none of the

observations of a genotype in any environment are present in the

calibration set. This constraint guarantees that the models will

predict an unseen genotype, as all observations of that genotype

are in the prediction test.

The allocation designs constitute the spectrum between CV2

and CV1, with 31/0 being the most extreme case that could occur on

a CV2 assignment, and 0/31 being the CV1 scheme. The higher the

number of overlapping genotypes, the closer to the CV1 scheme. All

the designs, except those with 0 non-overlapping genotypes, are

CV2-like schemes. In the context of predictive modeling, the CV1

scheme poses a greater challenge, especially for models that do not

incorporate genomic information and treat genotypes as

independent entities. This challenge arises because the calibration
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set does not provide any useful insights during the model training

process for predicting a specific, new, and unseen genotype.

To evaluate the performance of predictive models in this study,

the Pearson’s correlation and the Mean Squared Error MSE were

used to measure the association between the adjusted phenotypes

and the predicted values. These were computed for each

environment or trial, reflecting how well the models performed

when predicting the genotypes in specific environmental

conditions. Averaged correlations and MSE values from the 10

replications or partitions were obtained.

To further interpret the results of models’ performance, we

computed the percentage of variance explained by each term in the

different fitted models after conducting a full dataset analysis (i.e.,

with no missing values).
2.7 Software

Genomic prediction analyses were computed in the R

environment (R Development Core Team, 2023) and the models

were fitted using the BGLR package (Pérez and De Los Campos,

2014). All models were fitted using 12,000 Markov Chain Monte

Carlo iterations, incorporating a burn-in phase for the initial 2,000

iterations and a thinning factor of 5.
3 Results

3.1 Variance components

The percentage of variance explained by each term for SA and

TCH is shown in Table 2. For both traits, the environmental

component captured the largest proportion of variability.

However, there are significant differences between traits, with

46%-48% of the total variance explained for SA while 80%-82%

for TCH. Examining the decomposition of the genetic variance, we

found that for SA the variance explained by genotype in model 1

(56.2% of the within-environments variance) is higher than the sum

of the variance explained by genotype and genomic markers (12.9%
TABLE 2 Across and within environments percentage of explained variability by each model term for each trait.

Trait Model Across-environments variance (%) Within-environments variance (%)

vE vL vg vgE vR vL vg vgE vR

SA L+E 46.7 29.9 23.3 56.2 43.8

L+E+G 48.1 6.7 17.9 27.3 12.9 34.5 52.6

L+E+G+GE 47.7 6.2 18.0 15.4 12.7 11.9 34.4 29.5 24.2

TCH L+E 82.2 6.2 11.6 34.9 65.1

L+E+G 81.3 4.3 2.3 12.1 23.0 12.1 64.9

L+E+G+GE 80.7 4.0 2.1 4.5 8.7 20.9 10.8 23.5 44.8
f

The first set of columns on the left side depict the percentage for all model terms: main effect of environments (vE), main effect of Genotype (vL), main effect of genomic markers (vg) and the
interaction between genomic markers and environments (vgE), as well as the residual or unexplained variability (vR). The second set of columns on the right side depict the within-environment
variance, i.e., the relative contribution of each term without considering the variance explained by the main effect of the environments.
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+34.5%=47.4%) in model 2. A similar pattern was observed for

TCH (34.9% in model 1 and 23.0%+12.1%=35.1% in model 2).

Conversely, the variance explained by the interaction between

genomic markers and environment is orthogonal to the other

components, explaining the variability that cannot be captured by

the main effects, thus reducing the residual variance.
3.2 Phenotypic correlation
between environments

The phenotypic correlation values between environments for

both SA and TCH traits are shown in Figure 2. A wide range of

positive correlations was found between environments, with no

high correlation values between environments sharing locations

except in the case of SA in Balsora environments (r=0.822).

Correlation values for Balsora environments with other locations

were higher than those between Taula and Porvenir for SA. For

TCH, we found lower correlations, with the maximum values

observed between Taula 2019 and Porvenir environments

(r=0.621 and r=0.588 for 2020 and 2021, respectively).

Figure 3 presents the accuracy achieved at each environment, as

well as the overall mean accuracy andMSE values. The original values

used to compute the means, as well as the values for scenarios with

reduced calibration set are presented in Supplementary Table S1. The

accuracy was generally higher when predicting SA compared to TCH

for models M2 and M3 (M1 returned low results due to the lack of

information to connect calibration and testing sets). As a general

trend, the accuracy decreases as the number of overlapping genotypes

increases. However, within the SA trait, the maximum accuracy was

attained at the ‘28/3’ allocation design. Furthermore, a local optimum

was identified at the ‘12/19’ allocation design, indicating that specific

combinations of overlapping and non-overlapping genotypes can

lead to improved predictive performance.

Regarding the models used in the study, it was found that M3,

which accounts for G×E, generally outperformed the other models,

but there were not significant differences with respect to M2, as

stated in Supplementary Table S2. Additionally, as expected, the
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base model M1 consistently showed the lowest predictive accuracy

across all scenarios, with the performance gap widening as the

number of overlapping genotypes increased. Notably, the study

consistently achieved the best predictions in specific environments,

namely E1 (Balsora 2016), E2 (Balsora 2017), and E4 (Taula 2019),

as can be noted in Supplementary Table S1. Figure 4 shows the

average accuracy obtained across all calibration sizes and designs. In

alignment with the results from Figure 3, we found that accuracy

tends to decline as the number of non-overlapping genotypes

decreases. This trend holds true for all models and designs for

TCH, with a few exceptions for SA, specifically ‘12/19’, ‘8/20’, and

‘8/12’ for models M2 and M3.

In contrast to the impact of decreasing the number of non-

overlapping genotypes, reducing the calibration size (i.e., the

number of plots) by allocating a lower number of overlapping

genotypes appears to have a minimal effect on accuracy, as shown in

the main diagonals (i=j) of Figure 4. Remarkably, in models M2 and

M3, the accuracy for the ‘12/0’ design surpasses that of all other

designs within the ‘12/B’ family, except for the one with the larger

calibration size and, therefore, number of overlapping genotypes

(‘12/19’). This suggests that similar accuracy levels could be

achieved by either decreasing the calibration size and using fewer

overlapping genotypes or by maintaining the calibration size while

evaluating more non-overlapping genotypes.
4 Discussion

The application of genomic prediction has found practical utility

in sugarcane breeding. Recent studies have indicated moderate

predictive ability for complex traits, including yield, fiber and sugar

content, with great potential of increasing genetic gain (Deomano

et al., 2020; Hayes et al., 2021; Yadav et al., 2021). Despite this, there is

a need to find a balance between increasing genetic gain and reducing

resource allocation in sugarcane breeding. Given fixed financial

resources, it is often challenging to determine how to allocate a

predetermined number of genotypes for evaluation in targeted

environments. To address this, optimization of resources in METs
FIGURE 2

Phenotypic correlation between environments. The lower and upper triangular matrices represent, respectively, SA and TCH traits.
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FIGURE 4

Average accuracy for all designs and calibration sizes. Each subplot represents the accuracy obtained by each combination of model and trait. Each
grid within a subplot represents the accuracy for a specific design and calibration size, with yellow, green and blue colors representing high, medium
and low accuracy values, respectively. Grids in the same row share the calibration size while grids in the same column share a common number of
non-overlapping genotypes. The specific designs are presented below the columns.
FIGURE 3

Average accuracy of models. Due to the increasing number of combinations, only the results for the allocation designs with the largest calibration
set size (186) are shown for SA (left) and TCH (right). The x-axis represents the allocation designs, and the y-axis represents the accuracy measured
as the Pearson’s correlation (top panels) and Mean Squared Error (bottom panels) between predicted and observed values. Color denotes models.
Dotted lines represent one specific environment. Solid lines and highlighted points represent the average accuracy across six environments.
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has become a routine practice. Among the strategies employed, the

sparse testing allocation scheme with genomic prediction has been

promising. This approach could identify the minimal number of

candidate genotypes required for evaluation in METs and strategize

their distribution in replicated or unreplicated field designs to achieve

maximum genetic gains. In this study, we explored different sparse

testing designs to determine the optimal calibration size and the

trade-off threshold between prediction accuracy and selection

intensity in sugarcane breeding.

One of the most notable trends is that CV1-like schemes (‘0/B’)

pose significant challenges for M1. This phenomenon could be

attributed to the fact that the predicted value of a genotype in each

environment depends on the information of that exact genotype in

other environments, which is not available in CV1 scenarios. By

borrowing information from related genotypes through genomic

information, M2 and M3 can extract patterns from the phenotypes

of related genotypes and therefore, have a reasonable performance on

CV1 scenarios. Similar results have been reported in a previous study

by Atanda et al. (2022), where genomic and pedigree relationship

between individuals can track segregating Quantitative Trait Loci, thus,

explaining a large proportion of the genetic variance in a population.

On the other extreme, for the CV2-like schemes (‘A/0’) there were

no notable differences in the predictive abilities of the models, even

though they showed high predictive power (Figure 4). This is because

the environmental effects are confounded with the genotype effect such

that a single observation of a genotype in an environment is enough to

predict its performance in other environments. Therefore, predictive

ability strongly depends on the phenotypic information of tested

individuals. The incorporation of genomic information explained a

low genomic variance (SA: 17.9%, and TCH: 2.3%) inM2 (Table 2) and

the model accounting for genotype by environment interaction in M3

captured a small information from related genotypes evaluated in

correlated environments (SA: 15.4%, and TCH: 4.5%). This result

implies a high correlation between the environments, given the

observed small genotype differentiation across them. Other studies

have also reported high genetic correlation between environments in

sugarcane breeding programs (Deomano et al., 2020). As such, there is

a need to redefine the target population of environments to avoid

resource wastage during METs. These environments can be classified

using important environmental factors and consolidated into mega-

environments for efficient resource allocation (Resende et al., 2021).

The best accuracy is consistently obtained in scenarios with

high ‘A’ value. The larger the number of different genotypes

observed at least once, the higher the performance achieved. This

suggests that G×E is small and, therefore, phenotyping a genotype

in one environment provides useful insights for its prediction in the

remaining environments. However, this might seem contradictory

to the findings in Table 2, where a significant portion of the Within-

environment variance was attributed to the G×E effect. It is crucial

to interpret those results with caution because, while all the 1,116

available phenotypes were used to calibrate the model that estimates

the variance components, the predictive models were trained using

a maximum of 186 phenotypes.

Moreover, the slight gain in accuracy obtained by M3, which

accounts for G×E, occurs in the scenarios with more non-

overlapping genotypes. These findings indicate a potential cost
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saving opportunity can be achieved by allocating the genotypes to

non-overlapping environments, that is, observing each genotype

once across environment. This could decrease the cost of METs

significantly in sugarcane breeding, as overlapping genotypes in

some environments showed no gains in genomic prediction. This

result is similar to the findings of Jarquıń et al. (2020) in maize

where marginal gains were observed even when overlapping

genotypes were increased significantly. The plausible explanation

is either the environments share strong environmental similarly or

the traits exhibit low response to genotype-by-environment

interaction. In that sense, Balsora, Taula and Porvenir locations

are characterized by having the same soil taxonomy with soils from

vertisol, inceptisol and mollisol orders, which have a fine, dry, and

soils from deep to moderately deep (Carbonell et al., 2001), making

them locations with similar behavior. However, even though the

locations (E1 to E6) have similar soil profiles, Taula (E3 and E4) and

Porvenir (E5 and E6) also share a lower drainage capacity when

compared with Balsora (E1 and E2), affecting the performance of

the planted varieties, impacting positively the correlations of SA and

TCH among locations.

The breeding program at Cenicaña involves making decisions

after 12 years of selection based on the phenotypic information

collected during the early stages of selection (three stages). The

METs provide information of genotype adaptability to the target

population of environments of Colombia (CENICAÑA (Centro de

Investigación de la Caña de Azúcar de Colombia), 1995). It is

becoming important to integrate the allocation of phenotypes in

plant breeding programs to optimize limited resources and increase

genetic gain. Given the availability of genomic information during

the breeding process, this can be leveraged to either evaluate more

genotypes by increasing selection intensity or maximize the genetic

gains with a fixed plot unit cost in sparse testing. As such, findings

from this study in the case of sugar cane indicated that a cost saving

opportunity could be achieved by overlapping a small number of

genotypes in all environments while allocating the remaining

genotypes to different environments. In addition, the use of a

genomic prediction model that incorporates G×E (M3) allowed to

capture genetic information among related genotypes in other

environments to improve predictive ability.

The assumption of independence between genotypes held in

M1 leads to biased models that perform poorly in comparison with

the models that integrate genomic information to connect these.

However, there is a clear trend to decrease accuracy with decreasing

calibration set sizes. While the best accuracy is obtained with the full

calibration set, there are designs with reduced calibration sizes that

equal or even overpass the equivalent designs with larger calibration

sizes. This is found especially in SA trait. Therefore, we can obtain

similar accuracy values by reducing the budget or keeping the same

budget but increasing the number of unique genotypes evaluated by

increasing the number of non-overlapping genotypes. This is

similar to what has been obtained in maize, wheat, and soybean

sparse testing allocation designs (Jarquıń et al., 2020; Crespo-

Herrera et al., 2021; Persa et al., 2023) but the difference we

observed in sugarcane is that increasing the number of

overlapping genotypes did not resulted in an increased predictive

ability. This might also be due to the reduced training set sizes of
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our dataset compared with these studies. Interestingly, there are

major differences in the average accuracy between traits. In the

optimum scenarios, ‘31/0’ and ‘28/3’, the accuracy values for SA are

0.603 and 0.611, while for TCH are 0.341 and 0.332. SA is a more

heritable trait with an extended genetic control while TCH trait is

highly dependent on environmental conditions, specifically

precipitation. Moreover, these differences might be caused by the

phenotyping procedures.
5 Conclusions

In this study, we investigated the potential of genomic prediction

for sparse testing resource allocation in sugarcane METs. It involved

the utilization of different ratios of NOG/OG sugarcane clones and

genome-based models, including G×E, to capture more genetic

variability other than the main genomic effects. The obtained results

indicated that genomic prediction models that incorporated G×E had

the highest predictive response compared to other models in all

allocation design scenarios. However, the advantage of the genomic

model with G×E decreased with increasing NOG where highest

predictive values were obtained. While this study focused on

maximizing the genetic gain with a fixed cost per phenotype in

sparse testing, the results showed that reducing the sample size of

the genotypes assigned to environments (NOG) decreased the accuracy

of genomic prediction. The trend decreased further with increasing

overlapping genotypes evaluated across environments. This indicates

that very few overlapping genotypes are needed across environments.

This was attributed to a high environmental effect on the traits and

moderate phenotypic correlation between environments. Generally, the

results from this study showed that models including G×E can reduce

resource allocation for phenotyping by up to 83% or increase the

testing capacity by fivefold for multi-environmental trials in sugarcane.

Therefore, sparse testing with genomic prediction is a promising

strategy for maximizing genetic with fixed phenotyping cost in a

breeding program. Premised on large environmental variance for the

traits, we recommend the use of environmental factors to define TPEs

to avoid investing limited resources in correlated environments without

corresponding increase in genetic gain.
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Campos, G., et al. (2017). Genomic selection in plant breeding: methods, models, and
perspectives. Trends Plant Sci. 22, 961–975. doi: 10.1016/j.tplants.2017.08.011

Dellaporta, S. L., Wood, J., and Hicks, J. B. (1983). A plant DNA minipreparation:
Version II. Plant Mol. Biol. Rep. 1, 19–21. doi: 10.1007/BF02712670

Deomano, E., Jackson, P., Wei, X., Aitken, K., Kota, R., and Perez-Rodriguez, P.
(2020). Genomic prediction of sugar content and cane yield in sugar cane clones in
different stages of selection in a breeding program, with and without pedigree
information. Mol. Breed. 40, 38. doi: 10.1007/s11032–020-01120–0

FAO (2015). Climate change and food security: risk and responses (Rome, Italy: Food
and Agriculture Organization of the United Nations), 122.

FAO (2018). The Future of Food and Agriculture: Alternative Pathways to 2050
(Rome, Italy: Food and Agriculture Organization of the United Nations), 228.

Ferrão, L. F. V., Amadeu, R. R., Benevenuto, J., de Bem Oliveira, I., and Munoz, P. R.
(2021). Genomic selection in an outcrossing autotetraploid fruit crop: lessons from
blueberry breeding. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.676326

Goldemberg, J. (2008). The Brazilian biofuels industry. Biotechnol. Biofuels 1, 6.
doi: 10.1186/1754-6834-1-6

Hayes, B. J., Wei, X., Joyce, P., Atkin, F., Deomano, E., Yue, J., et al. (2021). Accuracy
of genomic prediction of complex traits in sugarcane. Theor. Appl. Genet. 134, 1455–
1462. doi: 10.1007/s00122–021-03782–6

Hoang, N. V., Furtado, A., Botha, F. C., Simmons, B. A., and Henry, R. J. (2015).
Potential for genetic improvement of sugarcane as a source of biomass for biofuels.
Front. Bioeng Biotechnol. 3. doi: 10.3389/fbioe.2015.00182

Islam, M. S., Corak, K., McCord, P., Hulse-Kemp, A. M., and Lipka, A. E. (2023). A
first look at the ability to use genomic prediction for improving the ratooning ability of
sugarcane. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1205999

Islam, M. S., McCord, P., Read, Q. D., Qin, L., Lipka, A. E., Sushma, S., et al. (2022).
Accuracy of genomic prediction of yield and sugar traits in saccharum spp. Hybrids.
Agric. 12, 1436. doi: 10.3390/agriculture12091436

Jackson, P. A., and Hogarth, D. M. (1992). Genotype x environment interactions in
sugarcane, 1. Patterns of response across sites and crop-years in north Queensland.
Aust. J. Agric. Res. 43, 1447–1459. doi: 10.1071/AR9921447

Jaimes, H., Londono, A., Saavedra-Diaz, C., Trujillo-Montenegro, J. N., López-
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Jarquıń, D., Lemes da Silva, C., Gaynor, R. C., Poland, J., Fritz, A., Howard, R., et al.
(2017). Increasing genomic-enabled prediction accuracy by modeling genotype ×
Environment interactions in kansas wheat. Plant Genome 10. doi: 10.3835/
plantgenome2016.12.0130

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9, 357. doi: 10.1038/nmeth.1923

Larrahondo, A., and Torres, A. (1989). Evaluación y determinación del azúcar
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