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QLD, Australia, 4Center for Crop Science, The Queensland Alliance for Agriculture and Food
Innovation, The University of Queensland, Brisbane, QLD, Australia, 5Sugar Research Australia,
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Sugarcane smut and Pachymetra root rots are two serious diseases of sugarcane,

with susceptible infected crops losing over 30% of yield. A heritable component

to both diseases has been demonstrated, suggesting selection could improve

disease resistance. Genomic selection could accelerate gains even further,

enabling early selection of resistant seedlings for breeding and clonal

propagation. In this study we evaluated four types of algorithms for genomic

predictions of clonal performance for disease resistance. These algorithms were:

Genomic best linear unbiased prediction (GBLUP), including extensions to model

dominance and epistasis, Bayesian methods including BayesC and BayesR,

Machine learning methods including random forest, multilayer perceptron

(MLP), modified convolutional neural network (CNN) and attention networks

designed to capture epistasis across the genome-wide markers. Simple hybrid

methods, that first used BayesR/GWAS to identify a subset of 1000 markers with

moderate to large marginal additive effects, then used attention networks to

derive predictions from these effects and their interactions, were also developed

and evaluated. The hypothesis for this approach was that using a subset of

markers more likely to have an effect would enable better estimation of

interaction effects than when there were an extremely large number

of possible interactions, especially with our limited data set size. To evaluate

themethods, we applied both random five-fold cross-validation and a structured

PCA based cross-validation that separated 4702 sugarcane clones (that had

disease phenotypes and genotyped for 26k genome wide SNP markers) by

genomic relationship. The Bayesian methods (BayesR and BayesC) gave the

highest accuracy of prediction, followed closely by hybrid methods with

attention networks. The hybrid methods with attention networks gave the

lowest variation in accuracy of prediction across validation folds (and lowest
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MSE), which may be a criteria worth considering in practical breeding programs.

This suggests that hybrid methods incorporating the attention mechanism could

be useful for genomic prediction of clonal performance, particularly where non-

additive effects may be important.
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1 Introduction

Sugarcane smut caused by fungus, Sporisorium scitamineum is a

major disease affecting sugar cane in Australia and some other

countries causing yield losses of 40% to 60% in susceptible varieties

(Hoy et al., 1986; Bhuiyan et al., 2022). Pachymetra root rot is another

serious fungal disease, caused by Pachymetra chaunorhiza, can cause

40% yield reduction in susceptible variety (Magarey, 1994). The narrow

sense heritability for smut ranges from 0.47 to 0.55 and 0.22 to 0.65 for

Pachymetra root rot (Wu et al., 1988; Croft and Berding, 1994). These

moderate to high heritabilities suggest that there is a substantial

potential for improved resistance using selection based on estimated

breeding values for resistance against both diseases.

Genomic selection is a technology to improve genetic gain by

utilising genome-wide markers to capture mutations of small effect

that typically underpin variation in complex traits, and has been

widely applied to plant breeding (Meuwissen et al., 2001; Goddard

and Hayes, 2007; Heffner et al., 2009). Linear mixed models, such as

best linear unbiased prediction (BLUP) including GBLUP and SNP

BLUP have been widely used in genomic predictions (Goddard,

2009; Endelman, 2011; Su et al., 2012; Clark and Van Der Werf,

2013; Beyene et al., 2021). BLUPmodels assume all SNP would have

a very small but non-zero effects and follow a normal distribution.

BLUP models generally perform well across a wide range of species

and traits (Habier et al., 2013).

Other algorithms for genomic prediction have been proposed

that have at least two possible theoretical advantages over BLUP

models, particularly for disease traits in polyploid crops. Bayesian

models such as BayesC (Habier et al., 2011) and BayesR (Erbe et al.,

2012),allow a proportion of markers to have a moderate or large

effect and may have an advantage as some mutations of large effects

have been reported for crop disease resistance, for example in wheat
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(Thambugala et al., 2020; Su et al., 2021), potatoes (Sobkowiak et al.,

2022) and peanuts (De Blas et al., 2021). Secondly, other methods

may capture non-additive effects caused by either gene-by-gene

interactions or interaction between ploidies (Wu et al., 1992). For

example, BLUP can be extended to include non-additive effects,

such as dominant effect and epistatic effects (caused by marker

interactions) (Vitezica et al., 2017). Extended GBLUP models found

substantial dominance and particularly epistatic variation for yield

in sugarcane (Yadav et al., 2021).

Genomic prediction using Machine Learning (ML) algorithms

has been investigated across a range of species and traits. Ensemble

algorithms such as random forest and boosting have been shown to

have good performance in crops and animal breeding, as have some

variants of neural networks (Vanraden, 2008; Heslot et al., 2012;

Blondel et al., 2015; Abdollahi-Arpanahi et al., 2020). Deep learning

(DL) uses complex structures in which one predictor could be

learned by multiple neural weights, and flexible tunning algorithms

which would also be useful to maximize DL learning ability. Up to

now, ML methods including some standard DL models have been

demonstrated to have comparable performance with linear models

in some cases, however there is currently no universally outstanding

ML approach that performs consistently well across the wide range

cases of genomic prediction where they have been evaluated (Ma

et al., 2018; Abdollahi-Arpanahi et al., 2020; Zingaretti et al., 2020;

Montesinos-López et al., 2021).

The attention mechanism (Self-attention), the core theory of the

transformer, is suggested to have capacity to capture sequence-wide

positions within inputs of sequence features (words, signals, pixels, etc)

in order to determine “end-to-end representation” of the sequence

(Vaswani et al., 2017). For genomic prediction, such structures could

bring potential benefits in capturing marker-by-marker interactions. In

addition, unlikeMLP or CNNwhich would normally reshape the input

data, a sequence of features passed into an attention mechanism could

retainmore information, which could makes it more straightforward to

understand individual marker contributions in model interpretations

(Zeng et al., 2022; Katz and Belinkov, 2023).

One challenge with using attention networks and other ML

methods for genomic prediction is the very large number of

parameters that must be estimated, often from modest datasets.

With the tens of thousands of markers commonly used in genomic

prediction, the number of parameters in DL methods with multiple
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layers and attention networks may number in the millions, with just

a few thousand phenotype observations. One possibility for such

methods is to cut down the number of markers, based on their

marginal additive effects, and use just these in the ML methods. The

reduction in number of markers from genome wide association

studies (GWAS) to retain only significant markers has been applied

using both simulated and real datasets, and could enable more

accurate estimates of interaction effects (Maciukiewicz et al., 2018;

Abdollahi-Arpanahi et al., 2020). Here we propose hybrid models,

using combinations of Bayesian alphabet models or GWAS to select

subsets of markers which are passed to ML methods for genomic

prediction of target traits. High confidence markers can be selected

by posterior inclusion probability (estimated via Bayesian

approaches) or p-values (estimated via GWAS). ML models

would use these marker subsets to perform genomic prediction,

ideally with better estimates of interactions and reduced risks

of overfitting.

Our aim was to evaluate and compare four major types of

algorithms, including GBLUP, Bayesian alphabets, ML methods

(including attention networks), and hybrid models, for prediction

accuracy of clonal performance for two important sugarcane

diseases: smut and Pachymetra.
2 Materials and methods

2.1 Genotyping and phenotyping

There were 4702 and 1988 clones phenotyped and genotyped

for smut and Pachymetra root rot respectively, based on number of

sugarcane clones that were tested in the trials for each disease. There

was a single trial for each disease, in a single year. Genotyping was

performed on the SRA/CSIRO array, with 26,086 markers passing

quality control (at least 90% of clones genotyped with high QC

score for each SNP). Genotypes were formatted as diploid

genotypes including AA (2), AT (1) and TT (0) following (Aitken

et al., 2016). The very small proportion of missing values for

genotypes (approximately 1%) were imputed by sampling based

on allele frequency.

The raw phenotype, disease infection score, was rescaled into

BLUPs via mixed models aimed to remove experimental designing

effects. These disease infection BLUPs were then scaled into ordinal

disease rating scores from 1-9 (where 1 = resistant, 9 = susceptible)

as phenotypes, following characterising procedure described in

Hutchinson and Daniels (1972). Ordinal disease rating scores

were treated as continuous values, inspection revealed a very

approximately normal distribution of scores for each trait. It

should be pointed out that no pedigree information was involved

during the generation of phenotypic BLUPs.
2.2 Genomic best linear
unbiased prediction

An additive GBLUP and extended-GBLUP model were fitted to

the data, the later, included dominance and epistatic random effects
Frontiers in Plant Science 03
as well as additive effects (as described in Yadav et al., 2021).

y =   u   +  Za +  Zd +  Ze +   ϵ (1)

Ajk =  
1
N o

N
i=1

(xij − 2pi)(xik − 2pi)

2pi(1 − pi)
(2)

Djk =  
1
N o

N
i=1

(xij − 2p2i )(xik − 2p2i )

2p2i (1 − p2i )
(3)

Where y was the vector of phenotypes (disease rating scores),

with one element for each clone measured, Z was the design matrix

allocating records to clones, and a, d and e are the vectors of genetic

values for the random additive component, dominance component

and epistatic component respectively, and ϵ is a random error term,

with one element for each vector for each clone (Equation 1).

Genomic relationship matrices among clones for additive and

dominance effects (Yang et al., 2011; Zhu et al., 2015) were

constructed as described in Equations 2, 3 were computed via

program “GCTA”, version 1.94 (Yang et al., 2011). The epistatic

relationship matrix was calculated by taking the Hadamard product

of the additive relationship matrix (E =  A ∘A) (Cockerham, 1954;

Jiang and Reif, 2020). Residual, additive, dominance and epistatic

effects were assumed to be normally distributed, ϵ e  N(0,  Is 2
ϵ ),

where s 2
ϵ , is the residual variance. a  e  N(0,  s 2

A), where s2
A is the

additive genetic variance captured by SNPs, d e  N(0,  Ds 2
D), where

D is the dominance relationship matrix as described above and s 2
D

is the dominance variance. e  e  N(0,  GAAs 2
E ), where s 2

E is the

epistatic variance. Variance components (additive, dominance,

epistatic and error variances) were estimated with GREML using

MTG2, version 2.22 (Lee and Van Der Werf, 2016).
2.3 BayesC and BayesR

The Bayesian approaches used in this study (BayesC and

BayesR) used a model that fits all SNP effects as random

(Equation 4);

y = 1m + Xg + e (4)

where y is the observed disease rating scores, m is the mean, 1m
is a vector of ones, X is the SNP genotype matrix, g is the vector of
SNP effects and e is a vector of random residuals.

BayesC (Habier et al., 2011) has the assumption that SNPs can

have zero or non-zero (additive) effects on the trait, with non-zero

effects following a normal distribution:

non − zero with prior probability p : gi ∼  N(0,s 2)

zero with prior probability (1 − p) : gi = 0

BayesR assumes SNPs have effects that are either zero, derived

from a normal distribution with very small variance, derived from a

distribution with small variance, or derived from a normal

distribution with moderate variance (Erbe et al., 2012). So g eN(0

,s2
i ) with four possibilities for s2

i = 0,  0:01*s
2
g, 0:1*s

2
g , 1*s

2
g

� �
,

where  s2
g is the genetic variance of the trait. So each SNP effect is
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from one of four possible normal distributions:  N(0, 0*s
2
g ), N(0,

0:01*s
2
g ), N(0, 0:1*s

2
g ), and N(0, 1*s

2
g ). As described by Erbe et al.

(2012), there are two latent parameters in the BayesR model, b(i, k)

and Pr. b (i, k) defines whether the SNP i follows normal

distribution k (k = 1,2,3,4), with

p(gi j b(i, k)) =
0,                           b(i, 1) = 1  

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

i ½k�
p exp − g2i

2s 2
i ½k�

� �
,         b(i, k) = 1(k = 2, 3, 4)  

8<:
(5)

The other parameter is Pr, which defines the proportion of all

the SNPs in each of four normal distributions (Equation 5). The

prior of Pr is drawn from Dirichlet distribution Pr ~ Dirichlet(a),
with a = [1,1,1,1]. The conditional distribution of SNP effect on the

proportion parameter Pr is p(gi jPr) = Pr1*N(0, 0*s
2
g ) +  Pr2*N(0,

0:01*s
2
g ) +  Pr3*N(0, 0:1*s

2
g ) +  Pr4*N(0, 1*s

2
g ).

Bayesian models were fitted with the software GCTB (Zeng

et al., 2018). For each model there were 25,000 iterations of the

Gibbs chain with the first 5,000 iterations discarded as burn in.

GEBV for validation clones (described below) were predicted as

GEBV = Xĝ . For other models including extended GBLUPs and

ML approaches, phenotypic performance was predicted instead

of GEBVs.
2.4 Machine learning methods

Figure 1 gives an overview of the model architecture of the

neural networks. The RF, MLP and CNN for clonal prediction were

implemented as described in Chen et al. (2023). For MLP and CNN
Frontiers in Plant Science 04
the same layer structure was used at the end of the model, a 1x1

window, single-channel convolutional layer associated with a global

average pooling layer to sum and average all the estimated effects as

the final predictions. We also added one additional layer to partially

enhance the non-linear predicting ability by using the sigmoid

function to scale the 1x1 convolution outputs and feed the output

into a one neuron fully connected layer, the output of both global

average pooling layer and this single-neuron layer would be

summed together as the predictions (Figure 1).

All the neural networks including MLP and CNN models were

built using the Python packages TensorFlow (Version 2.9.1) (Abadi,

2016) and Keras (Chollet, 2015).
2.5 Attention network

The use of attention networks in this study was inspired by the

major progress in the field of natural language prediction (Vaswani

et al., 2017; He et al., 2020). Firstly a 16-channel (n) fully connected

embedding layer was employed to obtain an expanded representation

of SNP inputs by n trainable weights (and bias), given the standard

form of attention value calculation (Equations 6, 7).

Q,K ,V = XSNP ·W (Q,K ,V) (6)

Attention(Q,K ,V) = softmax
QKTffiffiffiffiffi

dk
p !

· V (7)

According to our model structure, besides the initial SNP

sequence (N,1), all other intermedia SNP information was multi-
FIGURE 1

Model structure of MLP, CNN and Attention network.
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dimensional (N × n-dimensional), the embedded dimension was

defined by weight shape of the previous layers and the choice of any

n (channel number of the model structure, a hyper-parameter, 16

was used here) in different weight matrices were defined priorly as

one of model structural hyper-parameters, as a standard strategy of

neural network (Gardner and Dorling, 1998). Specifically in this

model, the Query (Q), Key (K) and Value (V) represented encoded

SNP information X passing through separated encoding matrices.

W was the (n x n) matrix of encoding weights created by random

initialization, each weight matrix belonging to encoding formula

would be trained independently respect to encoding types (Q, K, V).

The Attention values were a scalar value based on interactions with

other SNPs and dk was the dimension of QKV array. The Softmax

function represents the normalized probabilities for each input

array as described in Vaswani et al. (2017). The attention

calculation could be described in our context as all the SNPs have

an effect of interactions with all the other SNPs. A single attention

block was used in the attention network after the embedding section

and was used to calculate the attention value for each input.

The attention blocks require calculation of a very large matrix

(N x N) according to SNP numbers (N). This would easily exhaust

GPUmemory if we directly feed the raw SNP data to the model, and

the same issues also exist if large N are processed by multiple neural

layers (Gardner and Dorling, 1998). To ameliorate the memory

issue, we used the strategy of locally connected layers to priorly

compress and summarise the information from SNP array by

merging them by N’-SNP segments that contain independent

SNP weights, this could be described as segmental compression.

The formula of merging SNP signals in single segment could be

described as following equation (Equation 8):

yj =  oN 0
i=1wixi (8)

Where the yj is the output, as the SNP of jth segment, wi is the

weight particular to SNP alleles (xi) in position i inside the segment,

N’ was the previously chosen hyper-parameters for the segment

length. It should be mentioned that unlike the convolutional kernel,

segments in the locally connected layers would only calculate SNP

signals for fixed SNP, every SNP would have its unique weights.

Multiple channels were also applied into locally connected layers

aimed to enhance the learning capacity. In summary, we selected a

32-channel (n=32), 10 SNP segment length (N’=10) locally

connected layer before the attention encoding layer in our

attention network, to compress the raw SNP sequence to one-

tenth the length.

Furthermore, considering about the extremely long length of

genetic SNP sequence (26K), the standard encoding learning with

three (n x n) matrices may not be adaptable for capturing genome-

wide epistasis. To overcome this limitation, we implemented a

modification to the attention block used in our model, by adding an

extra trainable weight matrix (N x N) as Wepi into the attention

formula, in order to adjust the attention assigned to some SNP

(Equation 9).

Attention(Q,K ,V) = softmax
QKTffiffiffiffiffi

dk
p !

·Wepi ·  V (9)
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Before and after the attention block, a dense layer the same as

the fully connected layer would be inserted to enhance the learning

performance. The fully connected layer contains 32 neurons and

manipulates the output for each channel.

All the DL models was built and trained by in-house Python

program “GS_Composer” and currently available at GitHub

repository (https://github.com/CCS-voidBird/GS_composer).
2.6 Hyper-parameter design

All the neural network models were trained with 30 epochs,

using Mean squared error (MSE) as the loss function, initial

learning rate 0.001 and 0.9 learning rate decay after trained by

6000 individuals cyclically. Due to the limitation of GPU memory,

attention models using 26K SNP were trained with batch size 18.

Parameters used in the attention network models are given

in Table 1.
2.7 Hybrid models

The hybrid models had two steps; 1. marker selection, and

2. prediction.

We used either BayesR or GWAS to choose a subset of 1000

SNP. For BayesR the criteria was posterior probability of inclusion

(PIP), with the 1000 SNP with the highest PIP selected, for GWAS

the 1000 SNP with the lowest p-values of mixed linear model were

used. These subsets were always chosen based on training sets only,

information from validation set were never included when selecting

the 1000 markers from a trained model (BayesR or GWAS). As a

control we also evaluated a scenario where 1000 SNP were chosen at

random within each cross-fold.

For the second step, a range of models were used to predict

clonal performance, including GBLUP, extended GBLUP, BayesC,

BayesR and Attention network. The structure of the attention

network used in hybrid models was slightly modified from that

described above including manipulating both window size and step

of its locally connected layers into one, and training batch size

would be increased to 64 because the reduced marker population
TABLE 1 Attention network parameters in one step (26k markers) and
hybrid models (1000 markers).

Parameters 26K Markers
Hybrid models
(1000 Markers)

LCL Window 10 1

LCL Step 10 1

LCL Channel 32

Batch Size 18 64

Learning
rate (LR)

0.001

LR decay step 6000

LR decay rate 0.9
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would not exhaust calculation resource. Table 1 describes details of

the two stages of attention network modelling.
2.8 Random and PCA five-fold
cross validation

Two scenarios of cross-validation were applied during the

prediction assessments. Random sampling was the first scenario,

whereby five subsets of 20% of the data were sampled at random.

Secondly, we performed PCA analysis of the genomic relationship

among the 4702 sugarcane clones, and then PC1 used to separate

sugarcane clones into training and validation five times, again with

approximately 20% of the clones in each validation to keep training

set sizes equal, Figure 2. This was termed “PCA five-fold cross

validation” aimed to assess model performance when the validation

set is less related to the training set. The distances between subsets

were varying depend on orders. Fold 1 has relatively highest

genomic variance comparing to other folds. The maximized

genomic distance with PCA based splits was expected to bring

difficulties to the prediction. Note that the assessment of hybrid

models only used PCA cross validation.
3 Results

3.1 Variance components and heritability

Both disease traits had mainly additive variation, with only

moderate to limited dominance or epistatic variation (Figure 3).

According to the summary results of restricted maximum

likelihood analysis (ADE GBLUP), 36% of the phenotypic

variance was additive for smut, with only 4% for epistatic

variance and limited dominance variance. For Pachymetra root

rot, 34% of the phenotypic variance was additive, dominance effects

accounted for 6% of the variance and epistatic variance was limited.
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3.2 Performance of genomic prediction
methods in cross-validation by random
sampling and cross validation by PCA
genomic distance sampling

Prediction accuracies from random cross-validation were generally

higher than PCA five-fold cross validation. When PC1 was used to

define reference and validation sets, prediction accuracy decreased by

16.1% for smut prediction and 14.2% for Pachymetra root rot

prediction relative to accuracies in datasets using random cross

validation when PC1 was used to define reference and validation sets.

The prediction accuracy for Pachymetra root rot was lower than

for smut regardless of the prediction method. Although differences

between methods were modest, BayesC and BayesR gave the highest

accuracies of prediction for both diseases across the ten algorithms.

The attention network methods performed with second highest

accuracies regardless of the cross-validation strategy used.

(Figure 4). Meanwhile, The ML methods generally had the lowest

mean square error (MSE) of prediction across the validation folds

(Supplementary Table 1).

One of the challenges with disease resistance phenotypes in practise

is that classification of intermediate types is less reliable than the tails of

the distribution, and it is the tails that breeders are most interested in.

To assess the ability of our genomic predictions to accurately identify

clones with smut resistance in the tails of the distribution, we calculated

the probability of correctly assigning clones into a category of< 4 rating,

and alternatively the probability of correctly assigning into a bin of > 6,

based on the GEBV from BayesR.We ranked the clones on their GEBV

for smut, then looked at true smut ratings in the bottom ranked 25%,

middle bottom 25%, middle top 25% and top (worst) 25%. Figure 5

shows the percentage of clones in each band (quartiles) with a true

rating of >6, >7, >8 and >9. The results indicate if the worst 75% of

clones on smut GEBV are culled, and only the best 25% are taken

forward in the breeding program, there is only a ~6% chance that a

clone with a smut rating >6 (and only a 0.1% chance of a clone with

smut rating of 9) will enter the breeding program. These results suggest
FIGURE 2

Clonal distributions of two types of five-fold cross validation based on the first principal component. The cross-validation subgroups were divided by
using PC1 based on genomic relationships. Sugarcane clones for each fold were picked based on their PC1 values, each fold (20%) would contain
almost same number of clones.
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breeders could use the clonal predictions to select for disease resistance

with some confidence.
3.4 Genomic prediction accuracy from
hybrid models

To assess the effect of prior marker selection we compared the

prediction accuracy of the full 26K marker set to the prediction

accuracy obtained using only 1000 selected markers based on either

the BayesR or GWAS results, or a random subset of markers of the
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same size. The combination of selecting 1000 markers followed by

the attention network usually performed better than GBLUPs and

ML models with all 26k markers, though the improvement was

greater for smut than Pachymetra root rot. When the 1000 markers

were chosen at random, performance of hybrid models was worse

than one stage methods using entire 26K marker as predictors,

demonstrating improvement in accuracy from the hybrid models

was not just an artefact of using fewer markers in the prediction

(Figure 6). The MSE of the hybrid approach with the attention

network was much lower than other methods (Supplementary

Figure 3) (Supplementary Table 1).
FIGURE 4

Clonal prediction accuracy among 10 models using all 26K markers under two types of five-fold cross-validations (random and PC1 separated) for
smut (top panel) and Pachymetra root rot (bottom panel). The y axis is mean accuracy across five-fold cross-validation, measured as Pearson’s
correlation. The error bars are the standard errors of the mean accuracy across the five folds. The X axis was the GBLUP models: A - Additive
GBLUP, AD - Additive dominant GBLUP and Additive, ADE – Additive, dominant and epistatic GBLUP, Attention – Attention network, EpiAttention –

Variant Attention network using additional epistatic matrix.3.3 Implications for breeding for disease resistance.
FIGURE 3

Proportion of phenotypic variance explained by additive, dominant and epistatic effects for smut and Pachymetra root rot scores. Variances were
estimated by GREML and extended GREML models. The X axis was the GBLUP models: A - Additive GBLUP, AD - Additive dominant GBLUP and
Additive, ADE – Additive, dominant and epistatic GBLUP.
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All hybrid models had significantly reduced compute time for

the ML component compared to using 26K markers. In detail, the

marker selection step of hybrid prediction would take the same time

as the selected approaches running on the initial 26K data. The

second step of using GBLUP and Bayes models as predicting

approaches took about one minute using a 12-core computing

server node. For the attention network, it would take about six

minutes to finish an entire modelling session including training and

validations, using a GPU (Nvidia V100) platform (Table 2).

We investigated the consistency of marker subsets generated by

different selection procedures in the hybrid models, in which those

markers were ranked and extracted from trained BayesR models
Frontiers in Plant Science 08
(ranked by PIP), GWAS results (Ranked by -log10 p-value) and

random sampling. Overall, for smut, across all folds 1703 markers

were commonly discovered by BayesR and GWAS, 1656 markers

were shared within Bayes and GWAS for Pachymetra root rot. In

the random scenario only 297 and 155 markers were commonly

shared for smut and Pachymetra root rot respectively (Figure 7).

The fact that more markers are shared between BayesR PIP and

GWAS than between either approach or random selection suggests

that at least a proportion of the markers really are associated with

large effects, although a lot of variability is induced by error.
4 Discussion

In this study we applied multiple genomic prediction

approaches to predict resistance for two important diseases of

sugarcane. Narrow sense heritabilities of both diseases were in

good agreement with previous estimates [e.g., Croft and Berding

(1994), Wu et al. (1988)]. Variation in both diseases had small

contributions from epistatic and dominance effects.

For genomic prediction of clonal performance, hybrid methods

combining marker selection using BayesR and attention network

methods performed consistently well across both diseases and had

the lower MSE.
4.1 Relative performance of genomic
prediction methods for sugarcane disease
is affected by genomic relationship.

BayesR was the method with the best performance across both

traits and both validation scenarios, with the highest accuracy of
FIGURE 6

Comparison of prediction accuracies in scenarios using different sources of marker sets under PCA cross validation. X axis is scenarios including
initial models using entire 26K marker set, hybrid models using high confidence marker subsets selected by BayesR PIP, GWAS P-value and random
sampling. Boxes filled by different colours represent models/secondary models that make predictions in which bold dashes were median accuracies,
triangles represented mean accuracies. Prediction accuracies were measured by Pearson’s correlation on the Y axis, results were separated into two
disease traits. Significance within scenarios was assessed by pair-wised student-t test (*: p-value< 0.05, **: p-value< 0.01, ***: p-value< 0.001, ****:
p-value< 0.0001).
FIGURE 5

Probability of correctly assigning clones into extreme smut ratings,
based on the clonal predictions (genomic estimated breeding value
s, GEBV) from BayesR.
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clonal prediction for random cross validation for smut and

Pachymetra root rot. The Epi-attention method also performed

well, ranking amongst the top methods for all all-scenarios. The

good performance of BayesR (and BayesC) in the PC1 cross

validations may be because these allow for moderate to large

effects, the marker-QTL associations identified persist across

genetically more distant sub-sets of the population, as suggested

and demonstrated by Kemper et al. (2018). We could speculate that

the good performance of the attention and epi-attention methods,

relative to other ML approaches, in PC1 cross validation is due to a

related phenomenon – the attention methods do not “collapse”

marker information to the same degree as the other methods, so

markers with moderate to large effects can be captured in the

output. We supposed that the lower accuracies in Pachymetra root

rot predictions were probably caused by the poor data enrichment

due to substantially lower number of clones phenotyped

for Pachymetra
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Recently, some authors have suggested that MSE of accuracy in

cross-folds is an important criteria for assessing genomic prediction

methods, as in practise crop and livestock breeders aim to reduce

risk of future outcomes (e.g. varieties predicted to do well not

performing as predicted) (Daetwyler et al., 2013). We observed that

some of the MLmethods, particularly attention networks, had lower

MSE than GBLUP and Bayes methods, which may be an argument

in their favour, though more research is required to understand how

these methods achieve a lower MSE.
4.2 ML genomic prediction: insights
and limitations

Comparing ML approaches used here, RF, MLP and CNN did

not have consistently good performance across traits and validation

strategies, consistent with previous research that implemented ML
TABLE 2 Compute time for hybrid model genomic prediction approaches.

Model CPU cores GPU requires 26k markers * 1000 markers **

GBLUP 12 No ~3 minutes ~1 minutes

Bayesian Alphabet*** 12 No ~5 minutes ~1 minutes

GWAS**** 12 No ~2 minutes N/A

RF 12 No <1 minute <1 minute

MLP 1***** Yes ~1 minute ~1 minute

CNN 1 Yes ~1 minute ~1 minute

Attention network 1 Yes ~1 hour 2-5 minutes
*: Modelling with 26086 markers.
**: Modelling with 1000 marker subsets.
***: BayesR model was also used for marker selection, as the first step of hybrid model.
****: GWAS was only applied for marker selection from initial 26K markers.
*****: By default, CPU in DL modelling process would only work on data I/O.
FIGURE 7

Proportion of markers shared within subsets. Two Venn plots represented marker intersects within different selection tools: Posterior inclusion
probability (PIP) from BayesR, GWAS and random sampling.
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methods for genomic predictions (Heslot et al., 2012; Azodi et al.,

2019; Abdollahi-Arpanahi et al., 2020; Mahood et al., 2020;

Zingaretti et al., 2020; Chen et al., 2023). The attention network

however did perform competitively with GBLUP models and Bayes

models in most scenarios. This finding (and the finding that this

method has lower MSE of prediction across cross-folds) would

support the hypothesis that the attention network could be a useful

alternative method for genomic prediction for complex traits.

However, the structure of attention mechanism has its own

limitations when applied to genomic prediction:
Fron
the predictors (usually diploid genotypes) in genomic

prediction contained fewer categories (usually 0, 1, 2) than

the attention network typically deals with which could

significantly limit the ability of attention mechanism and

cause fitting failure.

The large attention matrix formed from large markers sets

(e.g., 26K markers) requires extremely large computational

resources during the model training. Thus, we also suspected

that the commonly used DL model structure: layer

normalization or batch normalization, their availability

would be significantly limited unless additional calculation

resource could be invested, for example, performing parallel

GPU modules. However, such implementation would

significantly increase the computational cost and difficulty

of implementation.
In our implementation of DL models including MLP, CNN and

attention networks, we removed the normalization step in the model

structures, and replaced the combination of ReLU & Batch-

Normalization by Leaky ReLU to reduce the risk of gradient

vanishing and neuron death. This resulted in less overfitting (Ioffe

and Szegedy, 2015; Xu et al., 2015). This study also implemented and

tested two modifications to the attention network which were aimed

to solve issues mentioned above. First, the extended attention formula

“EpiAttention” with additional trainable matrix did increase the

prediction accuracy in the training set comparing to standard

attention mechanism but couldn’t promise the advantages during

the cross validation because the risk of overfitting was also increased.

Secondly, a multi-channel locally connected layer synchronously

mitigated exhaustion of memory in practice, and allowed

information from each marker to be directly measured by multiple

weights inside locally connected segments. The benefits of applying

locally connected layers into neural network models have been

previously implemented by Pook et al. (2020) and they observed

positive results in accuracy of genomic prediction in Arabidopsis

traits. However, specific benefits for adding locally connected layers

into attention network models was not clearly verified. In addition, a

recent study used another procedure to extended the marker

diversities by replacing genotypes by genotypic allele frequency,

such treatment received higher accuracy compared to models

directly using genotypes (Jubair et al., 2021). All of these studies
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emphasized the necessity of increasing marker dimensions (e.g. using

a weighting layer, associating with allele frequency) while applying

attention mechanism into the genomic prediction. For instance to

solve the low data dimension issue in genomic prediction that results

from using discrete, diploidised genotypes, Hayes et al. (2023)

suggested using marker haplotypes, which are much more variable

than individual SNPs, as the input into attention networks, and this

concept is supported by results from other studies in which annotated

haplotype analysis (Liang et al., 2020) or prediction using haplotype

blocks (Difabachew et al., 2023; Weber et al., 2023) was used.

Unlike linear mixed models, the neural network models require

a solid learning epochs (e.g., 30) and have a high risk of fitting

failure due to the random initialization, which is hard to resolve

either through parameter tunning or training optimization. DL

Models in this study were associated with a designed learning rate

decay to reduce the risk of fitting failure caused by fixed learning

rate, but still had the problems mentioned above because the

tunning procedure was still quite limited, and has been

determined with minor benefits in MLP and CNN by previous

studies (Bellot et al., 2018; Abdollahi-Arpanahi et al., 2020; Han

et al., 2021; Montesinos-López et al., 2021). For attention networks,

general parameter tunning would be even more computationally

expensive as the attention mechanism requires huge graphical

calculations, although this could be at least partially resolved by

using parallel computing across multiple GPU nodes.
4.3 Applying hybrid models for
disease prediction

Our hypothesis that applying hybrid models in which the

attention network was implemented on a subset of markers with

moderate marginal effects for disease predictions seems to be at least

partly confirmed.We speculate that this is because smaller number of

markers used, allows more accurate estimation of marker interaction

effects. A consistent marker set would give some confidence that the

markers really were associated with mutations of larger effect.

A future direction worth investigating is incorporating Bayesian

influence into neural networks, for example to directly select high

confidence markers inside a neural network modelling. Some

previous studies have verified that applying Bayesian influence

into MLP and CNN with prior information could potentially

benefit the prediction performance in the simulated dataset and

real animal genomic prediction (Glória et al., 2016; Waldmann,

2018; Zhao et al., 2022).
5 Conclusion

This study implemented four main predicting algorithms

(GBLUP, Bayesian alphabets, ML and hybrid methods) and a

framework of hybrid models for predicting clonal performance
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for disease resistance in sugarcane. BayesR, BayesC and the

attention network were the algorithms with the best performance.

Attention network had higher accuracy and lower MSE than other

ML methods. The modified attention network in a hybrid model

with 1000 pre-selected markers had good accuracy across all

scenarios, and very low MSE.
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