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Ontogenic stage-associated SA
response contributes to leaf
age-dependent resistance in
Arabidopsis and cotton
Lanxi Hu †‡, Jovana Mijatovic †‡, Feng Kong, Brian Kvitko*

and Li Yang*

Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of
Georgia, Athens, GA, United States
Introduction: As leaves grow, they transition from a low-microbe environment

embedded in shoot apex to a more complex one exposed to phyllosphere

microbiomes. Such change requires a coordinated reprogramming of cellular

responses to biotic stresses. It remains unclear how plants shift from fast growth

to robust resistance during organ development.

Results: Here, we reported that salicylic acid (SA) accumulation and response

were temporarily increased during leaf maturation in herbaceous annual

Arabidopsis. Leaf primordia undergoing active cell division were insensitive to

the elicitor-induced SA response. This age-dependent increase in SA response

was not due to prolonged exposure to environmental microbes. Autoimmune

mutants with elevated SA levels did not alter the temporal pattern dependent on

ontogenic stage. Young Arabidopsis leaves were more susceptible than mature

leaves to Pseudomonas syringae pv. tomato (Pto) DC3000 cor− infection. Finally,

we showed a broadly similar pattern in cotton, a woody perennial, where young

leaves with reduced SA signaling were preferentially invaded by a Xanthomonas

pathogen after leaf surface infection.

Discussion: Through this work, we provided insights in the SA-mediated

ontogenic resistance in Arabidopsis and tomato.
KEYWORDS

temporal resistance, salicylic acid, ontogenic resistance, cotton, leaf maturation
Introduction

Plant lateral organs start as small clusters of cells in the shoot apex and eventually grow

into complex structures that are exposed to a diverse range of environmental microbes,

including beneficial, commensal, and pathogenic microbes (Sinha, 1999; Bar and Ori,

2014). Young tissues are generally protected by surrounding pre-existing organs and
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therefore have limited exposure to microbes in their environment.

During their development, these organs may shift from being

susceptible to resistant to certain pathogens, which is referred to

as ontogenic resistance or age-related resistance (ARR) (Develey-

Riviere and Galiana, 2007; Berens et al., 2019; Hu and Yang, 2019).

This phenomenon has been observed in various pathosystems

(Bowling et al., 1994; Gusberti et al., 2013; Asalf et al., 2014;

Twomey et al., 2015; Mansfeld et al., 2017). For instance,

susceptibility of hop cones to powdery mildew gradually

decreases after the transition from bloom to cone development

(Twomey et al., 2015). Fruits of several cucurbit crops, including

melon, butternut squash, watermelon, zucchini, squash, and

pumpkin, also enhanced resistance to the oomycete pathogen

Phytophthora capsica, as they increase in fruit size (Ando et al.,

2009). Young cucumber (Cucumis sativus) fruits from some

cultivars are highly susceptible to infection to the oomycete

pathogen, P. capsica. However, they become resistant once they

complete their exponential growth (Ando et al., 2009). Genes

involved in multiple defense pathways, including physical barriers

(e.g., cuticle thickness), penetration defense, flavonoid biosynthesis,

oxidative stress, and microbe-associated molecular pattern

(MAMP)- or effector-triggered immune responses, are enhanced

in mature fruits (Ando et al., 2015). Comparing peel transcriptomes

and metabolomes from mature “ARR-capable” and “ARR-

defective” cucumber lines have linked an upregulation in

terpenoid glycoside production during development to the ARR

against P. capsica (Mansfeld et al., 2017). The regulatory

mechanisms upstream of those age-related metabolisms and

whether there are any signaling pathways conserved in operating

ontogenic resistance are less clear.

Salicylic acid (SA) is a plant hormone vital in promoting

resistance against biotrophic and hemibiotrophic pathogens

(Huot et al., 2014; Berens et al., 2019; van Butselaar and Van den

Ackerveken, 2020; Chan, 2022). The isochorismate synthase (ICS)

pathway contributes to the pathogen-induced SA accumulation in

Arabidopsis (Nawrath and Metraux, 1999). The AVRPPHB

SUSCEPTIBLE 3 (PBS3) enzyme converts IC to SA by catalyzing

the conjugation of IC and glutamate to produce isochorismate-9-

glutamate (Rekhter et al., 2019). Then, the multidrug and toxin

extrusion (MATE) transporter ENHANCED DISEASE

SUSCEPTIBILITY 5 (EDS5) is responsible for transporting SA

from chloroplast to cytosol. Mutations in EDS5, also known as

sid1, lead to lower levels of SA upon pathogen infection (Nawrath

and Metraux, 1999; Nawrath et al., 2002; Rekhter et al., 2019). In

Arabidopsis, NONEXPRESSER OF PR GENES (NPR) family

members act as major SA receptors in conducting SA-mediated

defense signaling (Zhou et al., 2023). NPR1 and NPR3/4 can bind to

SA with varying affinities, and a key conserved arginine residue in

NPR1 (NPR1R432) and NPR3/4 (NPR3R428 and NPR4R419) is

indispensable for SA binding (Fu et al., 2012; Ding et al., 2018;

Liu et al., 2020). When associated with transcription factors, such as

TGACG-binding (TGA) family members, NPR proteins act as

either transcriptional co-activators (NPR1) or co-repressors

(NPR3/4) to play opposing roles in regulating the transcription of

downstream genes, including CAM-BINDING PROTEIN 60-LIKE

G (CBP60g, AT5G26920) and SAR DEFICIENT 1 (SARD1,
Frontiers in Plant Science 02
AT1G73805) (Fan and Dong, 2002; Despres et al., 2003; Ding

et al., 2018). On the other hand, SA plays a pivotal role in plant

development (Rivas-San Vicente and Plasencia, 2011; Li et al.,

2022). SA modulates cell cycle transition in both positive and

negative manners (Vanacker et al., 2001; Xia et al., 2009; Xu

et al., 2017). SA also regulates specific developmental processes

such as apical hook formation (Huang et al., 2020), flowering time

(Martıńez et al., 2004), root patterning (Pasternak et al., 2019), and

leaf senescence (Morris et al., 2000).

Organ maturation has been associated with changes in disease

resistance in several pathosystems, with varying hormone and

metabolic pathways modulating these processes in coordination

with ontogenic stages (Gusberti et al., 2013; Asalf et al., 2014;

Twomey et al., 2015; Mansfeld et al., 2017). In Arabidopsis, a

priority was given to either ABA-mediated abiotic or SA-

mediated biotic stress responses at different leaf ages, enabling

plants to balance abiotic and biotic stresses during growth

(Berens et al., 2019). This suggests a temporal signaling

coordination between fast growth and potent resistance during

organ development. Still, much remains unknown about the

amplitude and regulation of innate immunity during distinct

developmental stages of an organ and if they are conserved across

species. Our study revealed an ontogenic increase in SA

accumulation and response during the maturation of Arabidopsis

leaves. At the stage and the location of active cell division, leaves

were compromised in activating SA responses and were associated

with high susceptibility to pathogen. This age-dependent increase in

SA response is not a result of prolonged exposure to environmental

microbes. Furthermore, we found that auto-immune mutants with

elevated SA did not alter the temporal pattern of SA response.

Similar to the observations in Arabidopsis, we found that

Xanthomonas citri pv. malvacearum displayed enhanced

colonization in young cotton leaves. Likewise, SA signaling was

reduced in young cotton leaves relative to expanded leaves. This

implies a potential shared mechanism of ontogenic ARR between

Brassicales and Malvales sister taxa.
Results

Arabidopsis mature leaves showed higher
SA response than young leaves

PATHOGENESIS-RELATED 1 and 2 (PR1 and PR2) are

canonical markers for SA-induced response (Cao et al., 1997;

Nawrath and Metraux, 1999; Vogel and Somerville, 2000). In soil

grown plants, we observed that the activity of b-glucuronidase
(GUS) driven by the promoters of PR1 and PR2 were preferentially

activated in mature leaves after treatment with benzothiadiazole

(BTH), an SA analogue (Figures 1A–C), which is consistent with

previously reported age-dependent accumulation of PR1 transcripts

(Berens et al., 2019). To better understand the cellular status of

leaves at different ages, we examined the expression of proCyclinB1::

GUS, a marker for actively dividing cells, in successive leaves and

defined young, expanding, and mature leaves based on their

staining pattern (Figure 1C). Leaves first mature at the distal end,
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indicated as the lack of proCyclinB1::GUS at leaf tip (arrowhead in

Figure 1C), while proPR2::GUS often first appeared at the distal end

of leaves (arrowhead in Figure 1C). We defined young leaves as

those showing active cell division in the whole or a part of a leaf

(>50% leaf area); expanding leaves have not reached their full size

but with limited cell division; mature leaves reach full size without

signs of senescence (Figure 1A). We noticed that proPR2::GUS was

mostly evident in the tips of premature leaves, complementary to

the staining pattern of proCyclinB1::GUS, indicating a suppression

of SA response in actively dividing cells (Figure 1C). The ontogenic

expression pattern was confirmed with qPCR-based quantification

for transcript levels of these marker genes (Figure 1D). To further

validate the observation, we tested the ontogenic stage expression of

four additional SA-activated genes (AT2G15080, AT4G21380,

AT2G38470, and AT2G40750) during leaf maturation (Yang et al.,

2017) (Supplementary Table S1). Like PR1 and PR2, these genes

also showed high expressions in mature leaves after the BTH

treatment (Figure 1D, E). Interestingly, despite the relatively low

expression in mock-treated samples, the ontogenic increasing

pattern remained, suggesting that endogenous SA accumulation

or response was enhanced in mature leaves (Figure 1E). Indeed,

mature leaves accumulated high level of free SA and SA metabolites,

salicylic acid beta-glucoside (SAG), compared to young leaves or
Frontiers in Plant Science 03
expanding leaves (Figure 1F). Taken together, our analysis

suggested that both the SA accumulation and signaling pathway

were temporally derepressed during leaf expansion.
The ontogenic increase in SA response was
not due to prolonged exposure to the
phyllosphere microbiome

To test if the ontogenic increase in SA response in mature leaves

was due to prolonged exposure to the phyllosphere microbiome, we

grew Arabidopsis seedlings under axenic short-day conditions and

measured the basal expression levels of the forementioned four SA-

responsive genes in young, expanding, and mature leaves harvested

4 weeks after planting (Figure 2A). All four genes showed higher

expression in mature leaves, suggesting that ontogenic maturation

of SA responses can occur independently of phyllosphere microbes.

Nevertheless, we cannot exclude the possibility that prolonged

exposure to environmental microbes may also contribute to the

age-dependent enhancement of SA signaling. To obtain a global

view of SA response during leaf expansion, we re-analyzed

published transcriptomes of young, expanding, and mature leaves

from plants grown in axenic conditions (Pan et al., 2019). A total of
A B C

D E F

FIGURE 1

Mature leaves showed elevated SA accumulation and response. (A) A 5-week-old Arabidopsis plant grown in short-day condition. Y, young leaves; E,
expanding leaves; M, mature leaves. Plants used in Figure 1 were grown in soil. (B) The expression of proPR1::GUS at 24 h after mock or BTH
treatment. Note the lack of induction in the center of BTH-treated plant where young (newly emerging) leaves were located (n>12 plants grown in
soil were used for each treatment). (C) Complementary staining pattern between proPR2::GUS and proCyclinB1::GUS. The middle panel shows
enlarged view of proPR2::GUS staining in young leaves. Note the staining first appeared at tip of leaves, which is complementary to the staining
pattern of proCyclinB1::GUS. The lack of proCyclinB1::GUS and appearance of proPR2::GUS at the leaf tip is indicated by arrowheads (n>10 plants
grown in soil were used for each treatment). (D) Expression patterns of CyclinB1, PR1, and PR2 in young, expanding, and mature leaves. The fold
change is relative to the expression of each gene in young leaves. Different letters above each date set indicate significant difference based on one-
way ANOVA. Similar results were seen in two biological replicates. (E) Expression patterns of SA-responsive genes in young, expanding, and mature
leaves. Leaves were harvested from 5-week-old plants grown in SD conditions. Error bars: standard error of three technical repeats. Similar results
were observed in three independent biological replicates. Each biological replicate contained at least six leaves. Fold change is relative to the
expression of each gene in mock-treated young leaves. (F) Accumulation of SA and SAG in young, expanding, and mature leaves. Young, expanding,
and mature leaves were harvested from 5–7-week-old plants grown in SD conditions. Same plants were used to harvest young, expanding, and
mature leaves. Different letters above each data set indicate significant difference based on one-way ANOVA.
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4,718 and 3,343 genes showed ontogenic increases and decreases

during leaf growth, respectively (Pan et al., 2019). Using SA-

responsive genes defined by Yang et al. (2017), we found that

26.8% of ontogenic-increased genes were upregulated by SA

(Figure 2B, Supplementary Table S2), including CBP60g and

SARD1. Similarly, 27.1% of the temporally decreased genes were

suppressed by SA (Figure 2B, Supplementary Table S2). In

summary, SA-responsive genes counted for at least a quarter of

genes that were temporally expressed during leaf maturation,

suggesting an age-dependent tradeoff between growth and defense.
Arabidopsis auto-immune mutants did not
alter the temporal pattern of SA response

Auto-immune mutants have enhanced disease resistance due to

hyperactivation of a branch of plant innate immunity, including the

SA signaling (van Wersch et al., 2016). To investigate if the

temporal pattern of SA response could be maintained in auto-

immune mutants, we measured the activity of the PR2 promoter in

gain of function SUPPRESSOR OF NPR1–1, CONSTITUTIVE 1

(snc1), and loss-of-function CONSTITUTIVE EXPRESSER OF PR

GENES 1 (cpr1) mutants (Bowling et al., 1994; Li et al., 2001). Both

mutants accumulate a higher level of SA than Col-0 wild type and

are more resistant to biotrophic pathogens (Bowling et al., 1994; Li

et al., 2001). As previously reported, cpr1 mutant was smaller than

Col-0 (Figure 3A). Notably, we found that although these mutants

exhibited intense proPR2::GUS staining, their young leaves were still

compromised in PR2 promoter activity, indicating that the SA

response was constrained in auto-immune young leaves

(Figures 3B, C). Consistent with the staining pattern of proPR2::
Frontiers in Plant Science 04
GUS, expressions of SA-responsive genes showed temporal

increases from young to mature leaves in the snc1 mutant

background (Figure 3D). Thus, the hyperactivation of SA

response in autoimmune mutants was not due to a precocious

activation in young leaves.
Premature Arabidopsis leaves were more
susceptible to Pseudomonas syringae pv.
tomato DC3000 coronatine−

Next, we tested whether young and mature leaves differentially

activate SA response during pathogen infection. We challenged

young and mature Arabidopsis leaves with Pseudomonas syringae

pv. tomato (Pto) DC3000, a hemibiotrophic bacterial pathogen. As

their responses to BTH, mature leaves showed a strong response to

PtoDC3000 infection indicated by a high activation of proPR1::GUS

(Figure 4A). In contrast, the amplitude of activation was

compromised in young leaves (Figure 4A). This suggests that the

pathogen-triggered SA signaling was temporally elevated during

leaf ontogenesis.

We further assessed whether the ontogenic maturation of SA

response contributes to disease resistance by challenging premature

and mature leaves with Pto DC3000 and Pto DC3000 cor−

(coronatine defective) strains. Coronatine, a phytotoxin produced

by Pto DC3000, dampens Arabidopsis SA-mediated immunity by

activating jasmonic acid responses (Zheng et al., 2012). Consistent

with the previous report, Pto DC3000 multiplication was not

affected by leaf age (Figure 4B) (Berens et al., 2019). We reasoned

that the presence of coronatine in wild-type Pto DC3000 may help

it counteract the enhancement of the SA pathway from young to
A B

FIGURE 2

SA-responsive genes were upregulated during leaf expansion in sterile conditions. (A) The expression of SA-responsive genes in young, expanding,
and mature leaves. Plants were grown in deep Petri dish (15 mm depth) and kept in an SD condition (see the image insert) for 3 weeks. The fold
change is relative to the expression of each gene in young leaves. Error bars: standard error of three technical repeats. Different letters above each
data set indicate significant difference based on one-way ANOVA. Similar results were observed from two independent experiments, each with 8–10
leaves at their respective ages. (B) Gene clusters show ontogenic stage expression pattern during leaf expansion. The left panel shows the increasing
expression trajectory of 4,718 genes during leaf maturation; right panel shows the expression trajectory of 3,343 genes with decreasing patterns.
These genes were detected in Pan et al. (2019) and combined in this work (see Materials and methods). SA-responsive genes were defined by Yang
et al. (2017). Red and blue bars on the right side of the heatmap indicate BTH-activated and repressed genes, respectively. The heatmap position of
FLS2, BAK1, and CERK1 was indicated by arrows (see Supplementary Table S2).
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mature leaves (Zheng et al., 2012). In line with this, we found that

mature leaves were more resistant than young leaves to the Pto

DC3000 cor− strain, implying that the ontogenic resistance in

mature leaves can be linked to the enhanced SA-mediated

defense (Figure 4C). Surprisingly, blocking SA signaling in npr1

mutant did not abolish the difference of bacterial multiplication

between young and mature leaves (Figure 4D), suggesting NPR1-

independent pathways contribute to ontogenic resistance. In
Frontiers in Plant Science 05
support of this, the expressions of pattern-triggered immunity

(PTI) components including FLAGELLIN SENSING2 (FLS2,

AT5G46330), BRI1 ASSOCIATED RECEPTOR KINASE 1 (BAK1,

AT4G33430), and CHITIN ELICITOR RECEPTOR KINASE 1

(CERK1, AT3G21630) were higher in mature leaves than in

young leaves (Figure 2B, Supplementary Table S2), with the

expression pattern of FLS2 being consistent with what was

reported previously (Zou et al., 2018).
A B C D

FIGURE 4

Young Arabidopsis leaves were compromised in defense against Pto DC3000 cor− stain. (A) Pto DC3000 and BTH triggered proPR1::GUS
expressions in mature (M) but not young (Y) leaves. Leaves were sampled 24 h after BTH or Pto DC3000 infiltration. (B) Mature and young leaves
showed the same level of susceptibility to Pto DC3000. Samples were collected at 48 h after Pto DC3000 infiltration (n=8). (C) Young leaves were
more susceptible to Pto DC3000 cor− than mature leaves. Samples were collected at 48 h after Pto DC3000 cor− infiltration (n=8). (D) The
difference in susceptibility between young and mature leaves were maintained in npr1–1 mutant. Samples were collected at 48 h after Pto DC3000
infiltration. From panels (B–D) ns, no significance. *Significant difference between young and mature leaves using Student’s t-test. Similar results
were obtained from at least three independent experiments.
A

B

C

D

FIGURE 3

Young leaves had compromised SA response in autoimmune mutants cpr1 and snc1. (A) cpr1 mutant showing dwarf phenotype. (B) Staining of
proPR2::GUS in cpr1. Note the reduced staining in the center of plants where young leaves were located (n>20 plants grown in soil for each
genotype). (C) Staining of proPR2::GUS in snc1 gain-of-function mutant. Note the gradual increase in staining during leaf (arrowhead) and cotyledon
(arrow) expansion. C, cotyledon; 1, first leaf (n>20 plants grown in soil for each genotype). (D) The expression of SA-responsive genes in young and
mature leaves from snc1 mutant. Error bars: standard error of three technical repeats. Similar results were observed in two independent biological
replicates. *Significant difference between young and mature leaves using Student’s t-test. Y, young leaves; M, mature leaves. Similar results were
obtained from two independent experiments. Fold change is relative to the expression of each gene in young leaves.
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Young cotton leaves were more
susceptible to Xanthomonas citri pv.
malvacearum infection than mature leaves

To test whether the findings in herbaceous Arabidopsis could be

generalized in distantly related species such as cotton, we dip

inoculated 2-week-old cotton seedlings with at least one fully

expanded true leaves with Xcm 4.02 wild-type Tn7LUX or Xcm

4.02 DhrcV Tn7LUX (T3SS-, defective in Type III secretion systems)

(Mijatović et al., 2021). To track the pattern of Xcm colonization, we

recorded bacterial auto-bioluminescence and examined bacterial

population in leaves at different levels of maturity (Figure 5). As it

takes up to 3 weeks for disease development in cotton, we marked

the youngest actively expanding leaf (leaf “0”) at the time of

inoculation to monitor relative leaf age (Figure 5A). Image

overlay of auto-bioluminescence patterns revealed variable

colonization dependent on leaf age at the time of inoculation

(Figure 5B). As observed in our previous work (Mijatović et al.,

2021), both Xcm 4.02 WT Tn7LUX (Figures 5C, D) and Xcm 4.02
Frontiers in Plant Science 06
DhrcV Tn7LUX (Figure 5E) can colonize cotton tissue, but at

different bacterial loads. The youngest actively developing leaves

(leaf “0”) at the time of inoculation consistently showed increased

Xcm auto-bioluminescence when compared to leaves developed

pre-noculation (leaf “−1”) and post-inoculation (leaf “+1”)

(Figure 5B). It is worth noting that auto-bioluminescence

observed from overlayed images corresponds with the location of

water-soaking disease symptoms in Xcm 4.02 WT Tn7LUX

inoculated seedlings (Figure 5C). Comparison of Xcm loads in

tested leaf samples revealed differences in bacterial population of

both the WT and hrcV mutant between leaves of different age

(Figures 5D, E), consistent with the ontogenic enhancement in basal

resistance observed in Arabidopsis. Both pathogens consistently

displayed higher colonization in the youngest actively developing

leaves (leaf 0) at the time of inoculation (Figures 5C, D). Lower

bacterial populations in leaves developed pre-inoculation (leaf “−1”)

indicate that more mature cotton leaves have enhanced defense

responses to Xcm infection. This is in line with the compromised

basal defense response observed in young leaves of Arabidopsis.
A B C

D E

FIGURE 5

Young cotton leaves were preferentially colonized by Xcm. (A) A 2-week-old cotton plant. “−1”, mature leaves developed pre inoculation; “0”, young
leaves actively developing at the time of inoculation; “+1”, young leaves actively developing post-inoculation. (B) Representative color and 2-min
exposure auto-bioluminescence overlay images of infected cotton true leaves developed pre and post Xcm 4.02 WT Tn7LUX dip inoculation. (C)
Correlation of symptoms developed 2 weeks post-Xcm 4.02 WT Tn7LUX dip inoculation and the zones of auto-bioluminescence. (D, E) Bacterial
populations in log10 CFU/cm2 value post-Xcm 4.02 WT Tn7LUX (D) and Xcm 4.02 DhrcV Tn7LUX (E) infection, combined from three experimental
replicates. Boxplots show mean ± SD. p-values were calculated using Student’s t-test.
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SA and SAG accumulation varied in young
and mature cotton leaves

Having determined that young leaves at the time of inoculation

are more heavily colonized, we hypothesized that, similar to

Arabidopsis, ontogenic differences in SA accumulation or SA

signaling might mediate age-related susceptibility to Xcm in

cotton. Samples representing mature and young cotton leaves

(Figure 6A) were collected, lyophilized, macerated, and examined

by quadrupole time-of-flight mass spectrometry (QTOF-MS).

Analysis of accumulation of free SA revealed higher concentration

in young leaves than in mature leaves (Figure 6B). Conversely, the

inactive vacuole stored SAG was at a higher concentration in

mature leaves compared to young leaves (Figure 6C). These

results indicate that the cause of young leaf age-related
Frontiers in Plant Science 07
immunodeficiency in cotton is likely not linked to the free SA

level but may be correlated with accumulations of SAG or impaired

SA signaling.
GhPR1 induction by BTH differs between
young and mature cotton leaves

To further elucidate the contribution of SA to the

immunodeficiency in young cotton leaves, we investigated the

accumulation of GhPR1, an SA-responsive gene in cotton and an

orthologue of Arabidopsis PR1. We dip inoculated cotton leaves

with BTH and recorded expression of GhPR1 at 24 h after treatment

in mature and young (Figure 6D) leaves. GhPR1 was induced by

BTH treatment in mature leaves at 24 h post-inoculation, but
A B

C D

FIGURE 6

Young cotton leaves were compromised in SA signaling. (A) Visual representation of the morphology of collected mature and young leaf samples.
Bars represent 1 cm length. (B) Concentration of free SA in ng/mg of dry leaf weight. (C) Concentration of SAG in ng/mg of dry leaf weight. Boxplots
show mean ± SD. Eight samples of five pooled biological replicates each represented as jitter dots on boxplots. Two dots representing two samples
(white filled) were not used in statistical analysis, as they were found to be outliers outside of the first and third quartile. Data were analyzed by
Kruskal–Wallis test because the results met non-parametric requirements. (D) Expression of SA-responsive genes in mature and young cotton leaves
at 24-h post-BTH treatment. Points represent biological replicates from three experimental replicates. Boxplots show mean ± SD. Differences in
gene expression from 3 experimental replicates were pooled and analyzed using ANOVA. *Significant difference between GhPR1 expression in young
and mature leaves.
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induction in young leaves was not statistically significant

(Figure 6D). Thus, the SA signaling response was elevated in

mature leaves in cotton, which correlated with the enhanced

disease resistance against Xcm 4.02 strains (Figures 5D, E).
Discussion

Leaf development involves two types of cell divisions. In the first

type, cells undergo rapid proliferation with a high incidence in the

initial primordium. When these cells exit the mitotic cycle, they

continuously expand in volume and increase further in size.

Endoreduplication is a variant of the cell cycle in which cells

undergo DNA replication without subsequent mitosis. During

plant organ ontogenesis, cell division often first occurs densely at

the distal half of an organ and then progresses toward the base over

time. This common spatial pattern is known as the basipetal

gradient (Nath et al., 2003; Ori et al., 2007; Nelissen et al., 2012;

Du et al., 2018). Resemble to this gradient of cell proliferation, in

our work, we observed that SA response indicated by PR1 and PR2

promoter activities first appeared in the distal part of an expanding

leaf where cells mature earlier than those in the proximal end of a

leaf (Figure 1), suggesting that the elevated SA response is

associated with cellular maturation status in a leaf. On the other

hand, genes involved in regulating endoreduplication could play

dual roles in plant immunity. For example, SIAMESE (SIM) and

SIAMESE RELATED 1 (SMR1) act synergistically to promote

endoreplication (Churchman et al., 2006; Hamdoun et al., 2016).

Cells in a sim smr1 double mutant showed a low endoreduplication

index. Interestingly, smr1 mutant also partially suppressed the

dwarfism and cell death phenotypes caused by high SA levels in

acd6–1, indicating that SMR1 may be a positive regulator of plant

defense (Hamdoun et al., 2016). These studies indicate that SMR1

may coordinate the increase in ploidy level and SA response during

leaf maturation. On the other side, overexpressing a D-type

CYCLIN 3;1 (CYCD3;1) restrains endoreduplication (Menges

et al., 2006). Cycd3;1,2,3 mutants showed a higher ploidy level

than wild type and were more susceptible to a virulent strain

Pseudomonas syringae pv. maculicola ES4326, which could be

rescued by BTH (Hamdoun et al., 2016). In another case,

OMISSION OF SECOND DIVISION (OSD1) and UV-B-

INSENSITIVE 4 (UVI4) inhibited endoreduplication because

their loss-of-function mutants showed high endoreduplication

indices (Bao and Hua, 2014). However, overexpressing OSD1 and

UVI4 can enhance immunity to a bacterial pathogen (Bao and Hua,

2014). Thus, the level of endoreduplication is not always positively

correlated with high SA response or elevated defense, indicating a

more complex crosstalk.

Despite cell division, other developmental constraints may

contribute to SA-mediated ontogenic resistance. Key steps of SA

biosynthesis include the synthesis of isochorismate that are

processed in chloroplasts and then transported to cytoplasm by

EDS5, a MATE family transporter (Serrano et al., 2013; Rekhter

et al., 2019; Lefevere et al., 2020). Chloroplast differentiation is

tightly associated with leaf maturation, from proplastids in cells of

primordia to chloroplasts in mature leaves. During chloroplast
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biogenesis, thylakoids are formed, and proteins required for

photosynthesis are arranged within the thylakoid (Jarvis and

López-Juez, 2013; Gugel and Soll, 2017; Cackett et al., 2022).

Premature leaves contain a reduced number of thylakoids per

chloroplast (Gugel and Soll, 2017). The transition from plastids to

mature chloroplasts during leaf development is shared between

monocots and dicots seedlings (Pogson et al., 2015), although it is

not clear if fully differentiated chloroplasts are more potent in

producing SA precursors. Still, reduced SA biogenesis alone is not

sufficient to explain the diminished SA response because young

leaves were also compromised in SA signaling transduction upon

SA treatment or pathogen infection (Figures 2, 3, 6).

In our research, both SA biogenesis and signaling were

developmentally regulated. In Arabidopsis, SA is glucosylated to

SAG or SA glucose ester (SGE) (George Thompson et al., 2017).

SAG is mostly accumulated in the vacuole, and the majority of SGE

is located in the cytosol (Vaca et al., 2017). It is proposed that in

Arabidopsis, SAG acts as a long-term storage form of SA, while SGE,

due to its ease of modification for active SA release, acts as a mobile

SA factor (Vaca et al., 2017). Our results indicate that, unlike

Arabidopsis, free SA is more abundant in young cotton leaves

than that in mature leaves (Figure 6B), while the SAG

concentration was consistently higher in mature than in young

leaves (Figures 1E, 6C). It is possible that free SA and SAG played

distinct roles in ontogenic resistance of Arabidopsis and cotton

leaves, which remain to be investigated. We also observed a

significant induction of GhPR1 in mature but not young cotton

leaves at 24 h post-BTH treatment. These data were further

supported by the disease resistance output.

Like many Xanthomonas pathogens, Xcm infection of cotton

takes place over the course of weeks rather than over the course days

as seen for the Pto DC3000-Arabidopsis interaction. However, a

similar pattern of ontogenic resistance was observed in both

pathosystems. We observed increased Xcm colonization of young

cotton leaves actively developing at the time of inoculation based on

both bacterial load and auto-bioluminescence localization pattern.

Similar age-dependent reductions in bacterial loads were observed

for both the WT and disarmed Xcm hrcV T3SS mutant, which is

consistent with decreased basal immunity in young cotton leaves.

Although cotton is grown as an annual crop, it is a perennial plant

that develops a woody stem. These observations suggest an SA-

dependent ontogenic resistance pathway exists in both herbaceous

annual and woody perennial plants, despite the differences in

infection strategies and disease progression.

It is interesting that the mutation in NPR1 did not fully abolish

the ontogenic resistance as we observed in Arabidopsis. Other

genetic factors in charge of ontogenic resistance may be tied to

genes involved in the downstream function of different NPR

proteins, such as key transcription factors in SA signaling: TGAs

and WRKYs. In addition to genes involved in SA pathway, we also

noticed that key components of the PTI signaling in Arabidopsis

were upregulated during leaf maturation (Figure 2B, Supplementary

Table S2). The activation of either SA or PTI responses can result in

stunted growth, spontaneous cell death, and other developmental

defects. These negative impacts on plant growth could be more

detrimental in young tissues than in old tissues. Thus, the age-
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dependent activating of PTI or SA responses may have evolved to

protect young tissues from strong immune damages.

Overall, we showed that age-dependent SA signaling, and part

of the SA accumulation, are positively associated with the enhanced

disease resistance in both mature Arabidopsis and cotton leaves.

This positions SA as a potentially conserved pathway regulating

ontogenic resistance across woody and herbaceous species. As

cotton displays both apical and axillary growth throughout the

growing season, young cotton leaves are continuously available as a

potential entry point for pathogen invasion. Given the diversity of

SA biogenesis and signaling mechanisms (Ullah et al., 2023), further

investigations of SA molecular components in cotton and other

plants could shed lights on the conservation and divergence of SA-

mediated ontogenic resistances.
Materials and methods

Plant material, growth conditions, and
bacterial strains

For Arabidopsis, wild type, transgenic lines, and mutants

utilized in this study were in a Columbia-0 (Col-0) genetic

background. The plants were sown on Fafard #3 Mix propagation

soil, and the planted seeds were placed under 4°C for 2 days before

transferring to a growth room with a temperature of 22°C and 45%

humidity. A short-day condition with a photoperiod of 9 h light and

15 h dark and 180 mmol m−2 s−1 was employed, and the lighting was

provided by a 5:3 combination of white (USHIO F32T8/741) and

red-enriched (interlectric F32/T8/WS Gro-Lite) fluorescent lights.

Plant age was counted from the day when seeds were transferred to

the growth room. Young, expanding, and mature leaves were

collected from 5–7-week-old plants, using the same plants for

each leaf age. These leaves were in adult stage beyond leaf 10.

Under axenic conditions, plants grown on autoclaved 1/2 MS media

had leaves harvested from 3-week-old plants in the same manner as

those grown in soil.

For cotton, seeds of an Xcm-susceptible cotton cultivar

Deltapine 1747NR B2XF (DP 1747NR B2XF) were sown (one to

two seeds/pot) directly in SunGrow Professional growing potting

mix (Farfard 3B, Sungro; Agawam, MA) in 9-cm pots. Pots were

incubated in a growth chamber (Conviron A1000) with a 12-h day

at 26°C and a 12-h night at 23°C.

P. syringae DC3000 wild type and DC3000 cor− mutant strains

were described in (Yang et al., 2017). Xanthomonas 4.02 WT and

DhrcV mutant creation and Lux Tn7 tagging were described

previously (Mijatović et al., 2021).
Bacterial infection

Arabidopsis infection with P. syringae. Bacteria strains were

cultivated on King’s B solid medium [10 g/L peptone, 10 g/L

glycerol, 15 g/L agar, 10 g/L Tryptone, 10 mL 10% K2HPO4 (10 g

K2HPO4/100 mL), and 10 mL 10%MgSO4 (10 g MgSO4 anhydrous/

100 mL)] at 28°C. The medium was supplemented with rifamycin
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for selection, and cycloheximide was added to prevent fungal

growth. Before inoculation, bacterial stocks were streaked on a

plate and allowed to grow for 2 days before being re-streaked one

day prior to hand inoculation. To initiate infiltration, bacteria were

collected from the plate and suspended in a 10-mMMgCl2 solution.

Bacteria were inoculated into Arabidopsis leaves using a needless

syringe. The initial inoculum was at OD = 0.1 and with 500 times

dilution. After inoculation, plants were covered with transparent

lids for 1 h. Each sample was composed of four-leaf disks obtained

from four individual leaves using a corer. Two days after infiltration,

leaf samples were collected and homogenized using an OMNI

International homogenizer, diluted serially, and plated on KB

plates with 10 µL of bacterial suspension per sample. The plates

were incubated in a 28°C incubator for 2 days, and colony forming

units were counted manually and normalized based on the inside

area of the corer.

Cotton infection with Xanthomonas citri pv. malvacearum.

Two-week-old cotton seedlings of the Xcm-susceptible (DP

1747NR B2XF) cotton cultivar, with the first two true leaves

developed, were dip inoculated by submerging in 400 mL of

bacterial cell suspension for 30 s. Inoculum (∼5 × 108 CFU/mL)

was made by suspending plate-cultured cells cultured 48 h on LB

agar augmented with 50 µg/mL Kanamycin of Xcm 4.02 WT

Tn7LUX or Xcm 4.02 DhrcV Tn7LUX in Milli-Q H2O with 0.02%

Silwet adjuvant (Silwet L-77 Ag, PhytoTech). The youngest actively

developing leaf at the time of inoculation was marked with plastic

flagging for future analysis. This experiment was repeated three

times. The Student’s t-test was conducted to analyze Xcm load using

R studio.

Leaves that developed from inoculated cotton seeds were

collected and imaged at 2 weeks after transplanting into soil. For

each sample, three images were taken with the following conditions:

color (Samsung galaxy s10+), grayscale (70% aperture) (Analytic

Jena UVP ChemStudio, Upland, CA), and no light with 2 min of

exposure time (100% aperture) (Analytic Jena UVP ChemStudio,

Upland, CA). Grayscale and 2-min exposure images were overlayed

in Adobe Photoshop CC 2020. Details regarding image processing

using Adobe Photoshop (2022) are as previously described

(Mijatović et al., 2021).

Bacterial load quantification (CFU/cm2) was done by collecting

4 × 4 mm2 leaf disks with a biopsy punch, suspending it in 200 µL

water in 2 mL, screw-cap with o-ring plastic tubes (Fisher Scientific)

with three high-density 3 mm zirconium beads (Glen Mills).

Maceration was done twice for 1 min each at 1,750 Hz, using a

GenoGrinder (SPEX SamplePrep, Metuchen, NJ). The macerate

was then 10-fold serially diluted and plated on LB agar media

supplemented with 50 mg/mL of kanamycin and 80 mg/mL

cephalexin. Bacterial populations were determined after

incubation for 2 days at 28°C.
HPLC-QTOF-MS

For Arabidopsis, adult Col-0 leaves harvested from 5-, 6-, or 7-

week-old plants grown in soil constituted one biological replicate

for young (eight leaves per replicate), expanding (eight leaves per
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replicate), and fully mature leaves (three leaves per replicate). Five

biological replicates were prepared for each developmental stage.

Each biological replicate was flash frozen in a 50-mL falcon tube.

The leaves were lyophilized and proceed for the high-performance

liquid chromatography coupled with quadrupole time-of-flight

mass spectrometry (HPLC-QTOF-MS) following the method

described in Hu et al (Hu et al., 2023). The amount of salicylic

acid beta-glucoside (SAG) and salicylic acid (SA) were quantified in

the unit of nanogram metabolite per milligram of tissue (ng/

mg tissue).

For cotton, eight samples, each consisting of five pooled

biological replicates were flash frozen in 50-mL conical tubes and

lyophilized for 24 h at 0.008 mbar and −84°C in a freeze dryer

(Labconco). Following lyophilization, samples were macerated in 50

mL conical tubes with three 3-mm steel beads, two times for 2 min

at 1,750 Hz, using a GenoGrinder (SPEX SamplePrep, Metuchen,

NJ). Samples were then sent for metabolite extraction and QTOF

analysis at Warnell School of Forestry and Natural Resources, UGA.

The amount of SAG and SA were measured and calculated in the

unit of nanogram metabolite per milligram of dry weight (ng/

mg DW).
qRT-PCR

For Arabidopsis, RNA extraction was conducted using an

Omega biotek EZNA plant RNA kit (Omega Biotek) or a RNeasy

Plant Mini Kit (Qiagen), and quantitative PCR (qPCR) was

performed on an Applied Biosystems QuantStudio 1 Real-Time

PCR system with SYBR Green master mix (Applied Biosystems).

The following PCR conditions were used: 95°C for 5 min, followed

by 40 cycles of 95°C for 15 s, 56°C for 30 s, and 72°C for 20–30 s.

Reference gene SAND (AT2G28390) was utilized. SAND expression

was not affected by leaf age (Klepikova et al., 2016) (Pan et al., 2019)

or infection (Yang et al., 2017). Relative expression was determined

using the relative standard curve method, while delta–delta CT was

used when the PCR efficiency for the primers was previously

established to be at least 95%. The oligonucleotides used in this

study are listed in Supplementary Table S1.

For cotton, RNA was extracted following the woody plant

protocol from Gambino et al. (2008). Briefly, 900 µl of extraction

buffer (2% CTAB, 2.5% PVP-40, 2M NaCl, 100 mM Tris–HCl pH

8.0 and 2% b-mercaptoethanol added just before use) preheated at

65°C were added to ~150 mg of cotton tissue sampled previously,

ground in liquid nitrogen with three 3-mm zirconium beads (Glen

Mills) and one metal bead, macerated two times for 1 min at 1,750

Hz, using a GenoGrinder (SPEX SamplePrep, Metuchen, NJ). The

tubes were then vortexed and incubated at 65°C for 10 min. An

equal volume of chloroform:isoamyl alcohol (24:1 v/v) was added.

Tubes were then inverted vigorously and centrifuged in a pre-

cooled centrifuge for 10 min at 4°C, 11,000 RCF. Following

centrifugation, the supernatant was extracted into clean 1.5-mL

tubes and a second chloroform:isoamyl alcohol extraction was

done. The supernatant was then transferred into a new

microcentrifuge tube with 400 µL 3M LiCl. The mixture was then
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incubated on ice for 30 min and incubated at −20°C overnight. The

next day, the RNA was pelleted by centrifugation at 21,000 RCF for

20 min at 4°C. The supernatant was decanted, and the pellet was

resuspended in 500 µL of SSTE buffer consisting of 10 mM Tris–

HCl pH 8.0, 1 mM EDTA pH 8.0, 1% SDS, and 1M NaCl preheated

at 65°C. An equal volume of chloroform:isoamyl alcohol was added,

and the mixture was centrifuged for 10 min at 4°C, 11,000 RCF. The

supernatant was then precipitated with 0.7 volumes of cold

isopropanol and centrifuged for 15 min at 4°C, 21,000 RCF. The

RNA pellet was subsequently washed with 70% EtOH in nuclease-

free water, dried, and resuspended in nuclease-fee water.

Cotton RNA samples were subjected to an off-column DNase

treatment using a TURBO DNA-free kit (Thermo Fisher Scientific)

following the manufacturer’s recommendations. Following DNase

treatment, the samples were cleaned using New England Biolabs

(NEB) Monarch RNA Clean and Concentrate kit, following

manufacturer’s instructions. The cDNA library was then created

using qScript cDNA supermix (Quantabio) according to

manufacturer’s instructions. All RNA and cDNA samples were

tested for genomic DNA (gDNA) contamination before qPCR

analysis using cotton GhGAPDH (glyceraldehyde 3-phosphate

dehydrogenase) gene primers (Supplementary Table S1). For the

qPCR reaction, 1–5 ng of cDNA template was used (standardized to

the same concentration per experimental replicate). Conditions of

the qPCR were kept identical throughout all runs within

experimental replicates following the protocol of Smith et al.

(2018). Amplification of cDNA was done in 10 µl reactions using

Luna Universal qPCRMaster Mix (NEB), 0.25 µM primers, and 2 µL

of standardized cDNA. Master mixes and primers were pre-

aliquoted for single use and stored at −20°C. All PCR reactions

were run in triplicate wells, and sample-well organization was kept

identical between plates within experimental replicates. We followed

the default thermal cycling protocol in the StepOne software v2.3

(Thermo Fisher Scientific) with real-time capture of SYBR green and

ROX (passive reference) fluorescence as follows: 10 min at 90°C,

followed by 40 cycles of 95°C for 15 s and 60°C for 1 min, with

camera capture at the end of each cycle. A melt curve was generated

after the 40th cycle, using the following parameters: 95°C for 15 s,

60°C for 1 min, then a slow ramp (0.3°C/s) to 95°C, with camera

capture. All runs were conducted on the Step One Plus real-time

PCR system (Thermo Fisher Scientific). For housekeeping gene

controls, we used previously published GhUBQ1 (Cox et al., 2017)

and GhGAPDH (McGarry et al., 2016) primers (Supplementary

Table S1). Relative quantification of GhPR1 was calculated as

described by Smith et al. (2018) following the modified Pfaffl

method (Hellemans et al., 2007; Pfaffl, 2007). Three biological and

three technical replicates were included in each run. Differences in

gene expression were determined by comparing all 24-h data to 6-h

mock-treated sample set. Relative expression was calculated using

average Cqs and PCR efficiencies. The E^DCq values from reference

genes (GhGAPDH, GhUBQ1) (Supplementary Table S1) were

geometrically averaged to make the Normalizing Factor (NF). NF

is divided into the E^DCq of GhPR1 to give Fold Change (FC). The

FC of all three experimental replicates was analyzed using Rstudio to

determine significant difference based on one-way ANOVA.
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GUS staining assay

Plants containing proPR2::GUS, proPR1::GUS, or proCyclinB1::

GUS were harvested at the specified time after planting. To prepare

the GUS solution, a mixture of 0.1 M NaPO4 (pH 7.0), 10 mM

EDTA, 0.1% Triton X-100, 1 mM K3Fe(CN)6, and 2 mM X-Gluc

(dissolved in N,N-DMF and freshly made) was vacuum infiltrated

into the plants. Samples were incubated at 37°C for various time

from 1 h to 24 h. The staining solution was then substituted with

70% ethanol. The tissues were washed multiple times with 70%

ethanol until the chlorophyll in the leaves was removed. The GUS-

stained leaves were then observed under a dissecting

microscope (VWR).
Re-analysis of published RNA-seq datasets

We reanalyzed cluster 1 (3,918 genes), cluster 2 (800 genes),

cluster 3 (1,512 genes), and cluster 4 (1,831 genes) derived from Pan

et al. (2019). Clusters 1 and 2 were combined as 4,718 upregulated

genes during leaf development. Clusters 3 and 4 were combined as

3,343 downregulated genes during leaf development. In Excel, we

calculated the arithmetic mean and standard deviation of

transcripts per million (TPM) for each gene using three replicates

derived from 9 days, 12 days, and 15 days, respectively. The Z-score

for each gene, replicate, and day was calculated with the following

formula: (observed TPM − arithmetic mean)/standard deviation.

The mean Z-score per gene per day was generated by averaging the

Z-score of the three replicates. Next, we overlapped the BTH-

responsive genes identified by Yang et al. (2017) with these

ontogenic genes and marked the BTH-triggered genes as

visualized in the heatmaps (R package ComplexHeatmap v.2.15.4)

(Gu et al., 2016; Gu, 2022).
BTH treatment

For Arabidopsis, BTH (Actigard 50WG, Syngenta) at a

concentration of 50 µM was sprayed onto seedlings. Water was used

as a mock control. Samples were collected at 24 h post-treatment.

For cotton, 2-week old plants with one fully expanded true leaf

(mature) and one actively expanding (young) true leaf were dipped into

the 3-mM suspension of BTHwith 0.02% Silwet. Samples were collected

in liquid nitrogen at 6 h and 24 h post-dip inoculation, for RNA

extraction. This experiment was repeated three times with similar results.
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