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Rice is a staple crop in Asia, with more than 400 million tons consumed annually

worldwide. The protein content of rice is a major determinant of its unique

structural, physical, and nutritional properties. Chemical analysis, a traditional

method for measuring rice’s protein content, demands considerable manpower,

time, and costs, including preprocessing such as removing the rice husk.

Therefore, of the technology is needed to rapidly and nondestructively

measure the protein content of paddy rice during harvest and storage stages.

In this study, the nondestructive technique for predicting the protein content of

rice with husks (paddy rice) was developed using near-infrared spectroscopy and

deep learning techniques. The protein content prediction model based on partial

least square regression, support vector regression, and deep neural network

(DNN) were developed using the near-infrared spectrum in the range of 950 to

2200 nm. 1800 spectra of the paddy rice and 1200 spectra from the brown rice

were obtained, and these were used for model development and performance

evaluation of the developed model. Various spectral preprocessing techniques

was applied. The DNN model showed the best results among three types of rice

protein content prediction models. The optimal DNN model for paddy rice was

the model with first-order derivative preprocessing and the accuracy was a

coefficient of determination for prediction, Rp
2 = 0.972 and root mean squared

error for prediction, RMSEP = 0.048%. The optimal DNN model for brown rice

was the model applied first-order derivative preprocessing with Rp
2 = 0.987 and

RMSEP = 0.033%. These results demonstrate the commercial feasibility of using

near-infrared spectroscopy for the non-destructive prediction of protein content

in both husked rice seeds and paddy rice.
KEYWORDS

protein prediction, paddy rice, deep neural network (DNN), support vector regression
(SVR), partial least square regression (PLSR), near-infrared spectroscopy (NIRS)
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1 Introduction

Rice (Oryza sativa L.), with an annual production exceeding 400

million tons globally, is consumed as a staple food in Asia (Choi,

2007; Kim and Kim, 2023). In regions where rice constitutes the

staple diet, a marked preference exists for rice of superior quality,

characterized by specific content levels of certain rice components.

The protein content in rice, a crucial component, defines its unique

structural, physical, and nutritional attributes and plays a critical

role in influencing rice’s water retention capacity, texture, taste, and

ultimately its marketability (Jung, 2019). Consequently, protein

content serves as a crucial quality indicator, affecting nutritional

properties and quality assessment during harvesting and storage

phases (Shi et al., 2022).

The Kjeldahl method is a common approach for determining

grain protein content, including in rice (American Association of

Cereal Chemists, 2000). However, it involves expensive equipment

and skilled personnel, and is both time-consuming and cost-

intensive. Moreover, traditional analytical methods frequently

requisite pre-measurement processing steps such as drying,

polishing, whitening, and milling.

To address these challenges, non-destructive spectroscopic

analysis techniques are employed as a viable solution. These

technologies facilitate the measurement of internal components

without damaging the sample and are therefore extensively applied

in food quality assessment (Wang and Paliwal, 2007). Near-infrared

spectroscopy (NIRS), ultraviolet-visible (UV-Vis) spectroscopy,

hyperspectral imaging, and Raman spectroscopy are among the

techniques employed for quality measurement in agricultural

products. NIRS, in particular, is favored for its environmental

friendliness and capability to analyze multiple samples rapidly;

therefore, it is utilized across various crop quality evaluation

methods (Perez-Marin et al., 2019; Sharabiani et al., 2019; Teye

et al., 2019; Mancini et al., 2020; Teye et al., 2020; Najjar and Abu-

Khalaf, 2021; Khorramifar et al., 2022; Wang et al., 2022).

Near-infrared spectroscopy (NIRS) is a quantitative analysis

method based on the principle that specific functional groups (such

as O-H, N-H, and C-H) absorb near-infrared (NIR) light, causing

vibrational overtones and combination vibrations. In the NIR

region, absorption bands are caused by overtone and bond

vibrations of the molecule, and follow the Beer-Lambert law,

which states that the degree of absorption of light is proportional

to the concentration of functional groups in the sample. The NIR

region refers to the wavelength range of 800-2,500 nm (Beć et al.,

2021). In the case of agricultural foods, the main components of fat

(C-H), moisture (O-H), and protein (N-H, S-H) absorb near-

infrared rays; thus, the components can be analyzed

simultaneously using near-infrared spectroscopy (Williams and

Norris, 1987). To date, several researchers have measured protein

components in milled brown, white, whole grain brown, and white

rice via NIRS (Delwiche et al., 1996; Shu et al., 1999; Kawamura

et al., 2003; Kim et al., 2008; Bagchi et al., 2016; Fazeli Burestan

et al., 2021). The application of NIRS for measurement exhibits

promising potential to supplant conventional wet analysis methods

in rice protein analysis. Analytical methodologies employing NIRS
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encompass multivariate analysis, machine learning, and deep

learning. Although machine learning has conventionally served as

a prevalent analytical tool for evaluating agricultural product

quality, since 2010, deep learning, an advanced analytical

approach, has gained traction in the realm of agricultural product

quality assessment (Zhang et al., 2021).

Machine learning techniques such as partial least square

regression (PLSR), support vector regression (SVR), partial least

square discriminant analysis (PLS-DA), artificial neural networks

(ANNs), and random forest (RF) and deep learning techniques such

as convolutional neural networks (CNNs) are employed to establish

quantitative relationships between NIRS spectra and rice protein

content (Wang and Paliwal, 2007; Lin et al., 2019; Chadalavada

et al., 2022; Sampaio and Brites, 2022). Several studies have

identified partial least squares regression (PLSR) as the optimal

model for protein content detection in rice (Lin et al., 2019).

Moreover, a study demonstrated that the support vector

regression (SVR) model exhibited superior accuracy compared

with the PLSR model in predicting wheat protein content

(Kamboj et al., 2022). Additionally, another study indicated that

the artificial neural network (ANN) model, characterized by its

non-linear nature, outperformed the linear PLSR model in

predicting rice protein content (Kang et al., 2021).

Despite extensive research, most studies have focused on

processed forms of rice, such as brown rice, white rice, or powder,

largely due to the interference from rice husks in measuring the

reflectance spectrum. This poses challenges in detecting the chemical

components of rice enclosed by husks. Furthermore, research on

developing models to non-destructively analyze the protein content

of rice products using deep learning techniques is scarce.

This study aims to develop a technology for measuring the protein

content of paddy rice by applyingmachine learning techniques such as

PLSR and SVR, along with deep learning techniques such as DNN.

The near-infrared spectral characteristics of paddy rice and brown rice

according to the protein content were investigated, and the machine

learning and deep learning models to predict protein content were

developed and their performance was compared.
2 Materials and methods

2.1 Experimental samples

The experimental samples comprised rice (Oryza sativa L.

subsp. Japonica) of the Gyeonggi 13 variety, harvested in October

2022 from Gyeonggi-do province, Hwaseong City, South Korea

(Figure 1). These samples were collected from 30 plots across four

fields, yielding a total of 360 samples (4 fields × 30 plots per field × 3

samples per plot) following the threshing process. Each of the

harvested samples was placed in petri dishes, 55 mm in diameter,

with three samples generated for each plot, adding up to 360 paddy

rice samples in total. In the case of brown rice samples, volume

reduction occurs during the process removing the husk from the

sample in the paddy rice. To secure the minimum sample amount

for protein analysis, three samples produced per plot were
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combined into one sample. A total of 120 brown rice samples (4

fields × 30 plots per field) were produced. These samples were

subsequently stored at a constant temperature of 20°C in

a refrigerator.
2.2 NIR spectroscopy system and spectrum
data acquisition

For the acquisition of near-infrared (NIR) spectrum data, a

near-infrared spectroscopy measurement system was utilized

(Figure 2). The system comprised a near-infrared spectrometer

(SM304, Korea Spectral Products, Seoul, South Korea), a 100 W

tungsten-halogen lamp (ASBN-W100, KSP, South Korea) as the

illumination source, and a stepper motor (28BYJ-48-5V, FSXSEMI,
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Shanghai, China) to facilitate the rotation of the sample holder. Rice

samples underwent rotation in 36° increments via the stepper

motor, enabling the measurement of reflectance spectra at 10

distinct spots on each sample. In this case, for paddy rice, spectra

were collected at 5 points per sample from 360 samples, and for

brown rice, 10 spectra were collected per sample from 120 samples.

In order to further secure the spectrum of brown rice, where the

number of samples was reduced to one third, twice as many

locations as those of rice were measured. These measurements

were conducted within the NIR range of 950–2200 nm, at a spectral

resolution of 3.8 nm. The entire experiment was conducted in a

dark room to eliminate potential spectral noise from external

light sources.

To assess the spectral characteristics and prediction model

accuracy with and without the rice husk, the NIR spectrum of
A B

FIGURE 2

(A) Configuration of the NIR spectroscopic measurement system and (B) sample rotation unit driven by stepper motor.
A B

FIGURE 1

(A) Rice samples and (B) refrigerated storage.
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paddy rice was initially measured. Subsequently, the rice husks were

removed using a rice husk removal machine, and the absorbance of

the de-husked (brown) rice was measured again under

identical conditions.

The spectral reflectance data for each sample were normalized

against a white reference and corrected using a dark reference. The

dark reference measurements were taken without exposing the

samples to the light source, whereas the white reference

measurements utilized diffuse reflectance standards of 50%

(Spectralon® Diffuse Reflectance Standards, Labsphere, New

Hampshire, USA). The formula used for reflectance calculation is

present as Equation 1:

Rcal =
Rs –Rdark

2:0  Rwhite −  Rdark
 , (1)

where Rwhite is the reflectance of white reference, Rdark is the

reflectance of dark reference, and Rs is the reflectance of the sample.
2.3 Protein content analysis of rice

Following the acquisition of spectral data, the protein content

in the rice samples was determined by converting the samples into a

powder form and applying the micro Kjeldahl nitrogen

quantification method (American Association of Cereal Chemists,

2000). This procedure involved heating the ground rice powder

with sulfuric acid (H2SO4) and an oxidizing agent to facilitate

digestion. The resultant ammonium sulfate was subsequently

treated with an excess of alkali to generate ammonia, which was

subsequently absorbed into a standard acid solution. The surplus

acid was titrated with a standard alkali solution to determine the

total nitrogen content. To perform the actual protein content

analysis, three samples from the same harvest area were ground,

combined into one sample, and analyzed in three replicates.
2.4 Development of rice protein content
prediction models

For the development of rice protein content prediction models,

models were established for both paddy rice and brown rice. The

methodology involved the use of two machine learning models,

PLSR and SVR, alongside a DNN model, a form of deep learning

model. Subsequently, their performances were compared. The input

for the PLSR, SVR, and DNN models comprised NIRS data, while

the output was rice protein content data. The data used to develop

these models included 1800 samples for paddy rice and 1200

samples for brown rice, with different zones sequentially selected

from approximately two-thirds of the total measurement zone per

sample. The averaged value was utilized for data analysis.

Spectral preprocessing technologies were employed to enhance

performance and mitigate effects such as spectrum shape distortion,

light scattering, and noise, which could arise from external

environmental conditions (Bian, 2022). Various data

preprocessing techniques, including Savitzky–Golay first-order
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and second-order derivatives, maximum normalization, mean

normalization, range normalization, standard normal variate

(SNV), and multiplicative scatter correction (MSC), were applied

to compare model accuracy with and without data preprocessing.

The efficacy of the protein content prediction model for rice

products following each pretreatment method was compared and

assessed. Reflectance spectrum preprocessing was executed using

Unscrambler X (v10.4, CAMO SOFTWARE AS, Norway). To

minimize data testing uncertainty and overfitting issues, 10-fold

cross-validation was employed as the validation approach (de

Oliveira Carneiro et al., 2023). The calibration dataset was

divided into 10 distinct folds (subsets). In each iteration, one fold

was used as the test set, while the remaining (10-1) folds were used

as the training set to evaluate the model. This process was repeated

10 times, and the average performance was computed. The

prediction of rice protein content was performed on independent

prediction datasets using PLSR, SVR, and DNN models.

For the composition of the calibration dataset (training dataset)

and validation dataset (test dataset), a stratified sampling

distribution method was applied to randomly divide the data set

and ensure statistical representativeness of the data. Using the

stratified sampling distribution method, the distribution of

protein content was similar in both the training and test sets.

Through this, the protein distribution of rice in both data sets

was preserved and bias was alleviated.

2.4.1 Partial least squares regression model
The PLSR model, typically employed in chemometrics and

spectral data analysis, identifies linear combinations of predictor

(x, spectrum) and response variables (y, protein content) that

exhibit a common structure (Geladi and Kowalski, 1986).

By maximizing the covariance between x and y, the PLSR

algorithm alternates between regression and compression steps to

derive a set of orthogonal factors termed optimal factors. These

factors are assessed against a calibration set (Guo et al., 2019; Hao

et al., 2019). Wavelengths were deemed significant when the b-

coefficient surpassed thresholds set at the standard deviation of

the values.

Equation 2 employed in the PLSR model is as follows. The PLSR

model was developed using Unscrambler X software (v10.4, CAMO

SOFTWARE AS, Norway). The dataset for developing the

calibration model (calibration dataset) and the dataset for

validating the developed calibration model (prediction dataset)

were divided at the ratio of 7:3.

A calibration model was developed using the calibration dataset

with 1260 samples for paddy rice and 840 samples for brown rice

and 10-fold cross-validated. The model was subsequently verified

using a prediction dataset, which consisted of unknown samples not

utilized in the model’s development. The prediction datasets

consisted of 540 samples for paddy rice and 360 samples for

brown rice.

X = TPT + E

Y = UQT + F

U = TB +H

(2)
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X(n×m) is the independent variable (spectral matrix); U(n×k) is

the score matrix describing the dependent variable Y; T(n×k) is the

score matrix describing the dependent variable X; P(m×k) is the

eigenvalue matrix of the independent variable; Q(p×k) is the

eigenvalue matrix of the dependent variable; E(n×m), F(n×p), and

H(n×k) are the residual matrices; and B(k×k) is the regression

coefficient of PLSR (Lee et al., 2022).

2.4.2 Support vector regression model
SVR represents a sophisticated machine learning approach

grounded in statistical learning theory. It operates within the

domain of supervised learning, offering capabilities for pattern

recognition and data analysis, with primary applications in

classification and regression analysis. SVR, an adaptation of the

SVM framework for regression, utilizes kernel functions to project

input variables into a higher-dimensional feature space (Üstün

et al., 2007). In this study, the linear regression (LR) kernel

function was employed to develop a model for predicting rice

protein content. Because linear models have faster learning and

prediction speeds and are more economical than nonlinear models,

the performance of two linear models (PLSR and SVR) in machine

learning was compared. The SVR model was formulated using

Unscrambler X (v10.4, CAMO SOFTWARE AS, Norway), with the

calibration datasets and prediction datasets partitioned in a 7:3 ratio

for model development as in 2.4.1.

2.4.3 Deep neural network model
The DNNmodel, a type of deep learning architecture, features a

perceptron with multiple hidden layers, enabling the modeling of

nonlinear relationships through specific activation functions

associated with each layer. One of the main advantages of DNN

is that in some cases, the step of feature extraction can be performed

by the model itself. DNN models have significantly improved the

state-of-the-art in many different sectors and industries, including

agriculture (Liakos et al., 2018). This study utilized a neural network

with five hidden layers, constructed using the Pytorch framework.

The architecture of the DNN model includes an input layer (input),

six linear layers (Linear1 to Linear6), five batch normalization layers

(BatchNorm1d 1 to BatchNorm1d 5), five ReLu function layers

(ReLu1 to ReLu5), and an output layer (Output) (Table 1)

(Figure 3). The selected architecture consists of multiple fully

connected layers with ReLU activation functions and batch

normalization. This structure is designed to effectively capture

and learn the complex relationships within the data. It enables

the model to progressively learn from local features to more

abstract, global features (Goodfellow et al., 2016). The input and

output data correspond to the spectral data and protein content of

the rice samples, respectively. Model development employed

hyperparameters as outlined in Table 2. Adam, a widely adopted

optimization algorithm in diverse deep learning models, was chosen

for weight adjustments (Soydaner, 2020). The learning parameters

—epoch, batch size, and learning rate—were determined to be 1000,

32, and 0.0005, respectively, through a trial-and-error approach.

Model development leveraged Google Colab Pro and an NVIDIA

Tesla T4 GPU, with the training datasets and prediction datasets

partitioned in a 7:3 ratio for model development as in 2.4.1.
Frontiers in Plant Science 05
2.4.4 Model performance evaluation
The evaluation of model performance involved comparing

actual rice protein content against predictions derived from

calibration and 10-fold cross-validation or independent prediction

datasets across PLSR, SVR, and DNN models. The efficacy of the

prediction model was gauged through various statistical measures,

including the coefficient of determination for calibration (Rc
2),

cross-validation (Rv
2), and prediction (Rp

2), alongside the root

mean squared error for calibration (RMSEC), cross-validation

(RMSEV), and prediction (RMSEP). The selection of the optimal

model was based upon achieving the highest Rp
2 and the lowest

RMSEP. The formulas for each statistical measure, as represented in

Equation 3, are provided for assessment.

R2 = 1 − on
i=1

(yi−byi)2
on

i=1
(yi−�y)

2 ,

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1
(yi−ŷ i)

2

n

q
,

bias =on
i=1

ŷ i−yi
n ,

(3)

where yi and ŷi are the reference and predicted values of the

target variables in the sample, respectively; �y is the mean of

reference values, while n is the number of samples.
3 Results

3.1 Rice protein content analysis

The analysis of rice protein content in this study revealed that

the protein concentration within the sampled rice, specifically the
TABLE 1 Feedforward neural network with several hidden layers for
regression tasks.

Layer (type) Output Shape Parameter

Linear-1 [-1, 200] 425,200

BatchNorm1d-1 [-1, 200] 400

ReLU-1 [-1, 200] 0

Linear-2 [-1, 200] 40,000

BatchNorm1d-2 [-1, 200] 400

ReLU-2 [-1, 200] 0

Linear-3 [-1, 200] 20,000

BatchNorm1d-3 [-1, 200] 200

ReLU-3 [-1, 200] 0

Linear-4 [-1, 50] 5,000

BatchNorm1d-4 [-1, 50] 100

ReLU-4 [-1, 50] 0

Linear-5 [-1, 25] 1,250

BatchNorm1d-5 [-1, 25] 50

ReLU-5 [-1, 25] 0

Linear-6 [-1, 1] 25
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Gyeonggi No. 13 variety, was in the range 6.33–7.86 g/100 g, with an

average content of 7.26 g/100 g (Table 3). This average is closely

aligned with the national standard for brown rice protein content,

which is 7.33 g/100 g as per the Korea National Standard Food

Ingredients Table, indicating that the Gyeonggi No. 13 rice exhibits

protein levels within the expected range for high-quality rice.
3.2 Near-infrared spectrum characteristics
of paddy and brown rice

In the examination of the NIR reflectance spectra of rice

samples, both with and without the rice husk (paddy and brown

rice, respectively), notable differences in reflectance were observed

based on the presence of the rice husk (Figure 4). The spectral

analysis demonstrated similar trends for paddy rice and brown rice

between 950 nm and 1400 nm, diverging significantly in the

wavelength range of 1400–2200 nm. Specifically, brown rice

exhibited lower reflectance in the wavelength range of 1400–2200

nm, a finding consistent with prior research (Weng et al., 2023).

The absorption peak observed at 985 nm within the NIR

spectrum correlates with the N-H bond stretching vibration of

protein (Wadood et al., 2019). Similarly, the absorption peak

detected at 1200 nm is attributed to the C-H stretching

vibration of lipids, starch, and proteins (Wadood et al., 2019;
Frontiers in Plant Science 06
Wei et al., 2021). Moreover, absorption peaks noted at 1460 nm

and 1940 nm are associated with the bending vibration of the O-H

bond in water (Rohaeti and Rafi, 2017). Notably, the absorption

peak of brown rice manifests as notably gentler than that of paddy

rice within the wavelength bands of 1450 nm and 1950 nm. Thus,

in this study, spectral analysis was conducted utilizing samples in

the paddy rice state, with subsequent removal of the rice husk

following complete desiccation to generate brown rice samples.

Consequently, a reduction in moisture content was observed

during this process.

The spectral trough observed at 1925 nm corresponds to the O-

H single bond stretching vibration of cellulose and starch, alongside

the C=O stretching vibration of protein secondary amide double

bonds. Comparatively, the absorption peak evident in the spectrum

of paddy rice surpasses that of brown rice, attributable to the

presence of cellulose, a constituent of rice husk (Weng et al.,

2023). Additionally, the absorption peak in the range 2000–2250

nm correlates with lignin, the principal constituent of plant xylem,

thereby leading to a higher absorption rate in the spectrum of paddy

rice with husk compared with husk-removed brown rice (Kästner

et al., 2022).

Figure 5 presents the average spectrum categorized by protein

content, alongside the spectral range encompassing 985 nm, 1200

nm, and 1925 nm, all of which are linked to protein content.

Notably, a negative correlation exists between protein content

and spectral reflectance of the sample, indicating that higher

protein content corresponds to heightened absorbance levels,

considering the association of each wavelength band with

protein content.
3.3 Development of protein content
prediction model for paddy and brown rice

3.3.1 PLSR model development for protein
content prediction

A comprehensive analysis led to the development of 16 PLSR

models aimed at predicting the protein content in both paddy and

brown rice samples (Table 4). The performance of these models was
TABLE 2 Hyperparameters used in deep neural network (DNN).

Hyperparameter Value

Learning Rate 0.001

Batch Size 32

Number of Epochs 5,000

Hidden Layer 5

Weight Decay 0.0000001

Loss Function RMSE (Root Mean Square Error)

Optimizer Adam
FIGURE 3

Architecture of DNN model.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1398762
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1398762
evaluated based on their calibration and validation metrics, with

and without the application of spectral preprocessing techniques.

For paddy rice, the models that demonstrated the most robust

predictive capabilities were those without preprocessing and those

that underwent MSC preprocessing. The calibration values for the

model without preprocessing and the MSC-preprocessed model

were characterized by coefficients of determination (Rc
2) of 0.928

and 0.940, and RMSEC of 0.395 and 0.072, respectively. However,

the validation metrics revealed a slight advantage in applying MSC

preprocessing, with coefficients of determination for validation

(Rv
2) of 0.927 and 0.922, and RMSEV of 0.396 and 0.083,

respectively, indicating a lower RMSEV with preprocessing. The

prediction performance for unknown samples, as measured by the

coefficient of determination of prediction (Rp
2) and RMSEP, was

identical for both models at 0.918 and 0.082, respectively.

In the context of brown rice, models without preprocessing and

those subjected to SNV preprocessing exhibited the highest

predictive accuracy. The calibration values for these models

exhibited (Rc
2) of 0.947 and 0.946, and RMSEC of 0.066 and

0.067, respectively. The validation metrics for the model without

preprocessing and the model with MSC preprocessing

demonstrated comparable performance, with (Rv
2) of 0.926 and

0.925, and RMSEV of 0.079 for both models. The prediction

performance on unknown samples yielded (Rp
2) and RMSEP of

0.928 and 0.079 for the unprocessed model, and 0.928 and 0.080 for
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the MSC-preprocessed model, respectively, indicating comparable

predictive capabilities (Figure 6).

The analysis revealed that for both paddy and brown rice, the

models without preprocessing performed comparably to those

with the optimal preprocessing technique. Furthermore, while

the brown rice protein content prediction models exhibited

slightly higher overall performance than their paddy rice

counterparts, the prediction accuracy between the two was

nearly equivalent, highlighting the effectiveness of PLSR models

in predicting rice protein content irrespective of rice type or

preprocessing application.

Figure 7 shows the regression coefficients that are instrumental

in determining the effective wavelength within the optimal PLSR

model—specifically, the raw data model devoid of any

preprocessing—for the purpose of predicting the protein content

in paddy and brown rice. An effective wavelength, deemed capable

of delineating variations in protein parameters, is recognized as

either a positive or negative regression coefficient when the standard

deviation surpasses the predetermined threshold (illustrated by the

dotted line). Previous research has identified a spectral band

indicative of protein content in the vicinity of 1570, 985, 1200,

and 1925 nm (Kim et al., 2008; Weng et al., 2023). The current

study reveals significant positive peaks correlating with protein

content around the wavelengths of approximately 985 and 1950 nm,

whereas negative peaks were observed in the ranges of

approximately 985–1000 nm and 1150–1200 nm. These findings

align with those of a preceding study, which confirmed 985, 1200,

and 1925 nm as principal wavelengths for protein content

identification (Weng et al., 2023). Furthermore, the wavelength

band near 1450 nm is posited to relate to O-H bonds (Rohaeti and

Rafi, 2017).
TABLE 3 Protein content of rice. (N=120).

Min. Max. Avg. Std.

Protein
(g/100 g)

6.33 7.86 7.26 0.29
A-1

B-1

A-2

B-2

A-3

B-3

FIGURE 4

(A) Paddy rice and (B) brown rice reflectance with applied main preprocessing [(1) raw, (2) 1st order derivative, and (3) 2nd order derivative].
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3.3.2 SVR model development for protein
content prediction

A comprehensive study led to the development of 16 SVR

models to forecast protein content in samples of paddy rice and

brown rice, as detailed in Table 5. Within the SVR framework, the

model utilizing first-order derivative preprocessing emerged as the

most effective for predicting protein content in paddy rice.

Specifically, the model’s coefficient of determination (Rc
2) were

0.659 and 0.952, for paddy rice, without any pretreatment and with

first-order derivative pretreatment, respectively, and the RMSEC
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were 0.172 and 0.065, without any pretreatment and with first-order

derivative pretreatment, respectively. Regarding cross-validation

results, the coefficient of determination for validation (Rv
2) were

0.749 and 0.928, for paddy rice, without any pretreatment and with

first-order derivative preprocessing and RMSEV were 0.152 and

0.079, without any pretreatment and with first-order derivative

pretreatment, respectively. The prediction performance on

unknown samples yielded (Rp
2) and RMSEP values of 0.622,

0.176 for the unprocessed model, and 0.932, 0.062 for the first-

order derivative -preprocessed model, respectively (Figure 8).
TABLE 4 PLSR model performance results for the predicting the protein content of rice.

Rice Type Preprocessing   R  2
c

RMSEC
(g/100g)

  R  2
v

RMSEV
(g/100g)

  R  2
p

RMSEP
(g/100g)

Optimal factor

Paddy Rice

Raw 0.928 0.395 0.927 0.396 0.918 0.082 14

Mean
Normalization

0.939 0.073 0.921 0.083 0.918 0.082 14

Range
Normalization

0.937 0.074 0.918 0.085 0.919 0.081 14

Maximum
Normalization

0.934 0.076 0.916 0.086 0.914 0.084 14

1st order derivative 0.933 0.076 0.916 0.085 0.904 0.088 14

2nd order derivative 0.935 0.075 0.919 0.084 0.885 0.097 14

MSC 0.940 0.072 0.922 0.083 0.918 0.082 14

SNV 0.932 0.077 0.915 0.086 0.913 0.084 14

Brown Rice

Raw 0.947 0.066 0.926 0.079 0.928 0.079 14

Mean
Normalization

0.942 0.069 0.921 0.081 0.925 0.081
13

Range
Normalization

0.943 0.069 0.922 0.081 0.923 0.082
14

Maximum
Normalization

0.945 0.068 0.924 0.080 0.926 0.080
13

1st order derivative 0.944 0.069 0.921 0.081 0.910 0.089 14

2nd order derivative 0.942 0.070 0.917 0.083 0.917 0.085 13

MSC 0.944 0.069 0.922 0.081 0.927 0.080 13

SNV 0.946 0.067 0.925 0.079 0.928 0.080 14
The meaning of the bold values indicates the preprocessing methods that achieved the best prediction performance along with their corresponding results.
A B C

FIGURE 5

Average reflection spectrum around protein-related wavelength; (A) 985nm, (B) 1200nm, and (C) 1925nm.
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In brown rice, the protein-content prediction model employing

second-order derivative preprocessing demonstrated superior

performance. The calibration values for these models exhibited

(Rc
2) of 0.816 and 0.958, and RMSEC of 0.127 and 0.060,

respectively. validation metrics for the model without preprocessing

and the model with second-order derivative preprocessing

demonstrated comparable performance, with (Rv
2) of 0.817 and

0.946, and RMSEV of 0.132 and 0.068, respectively. Further,

verification with an unknown sample indicated that (Rp
2) were

0.806 and 0.943, and RMSEP were 0.134 and 0.071, respectively.

The SVR models exhibited enhanced predictive accuracy over the

PLSRmodels. Application of preprocessing techniques to both paddy

and brown rice samples markedly improved model performance

compared with their unprocessed counterparts. A comparison

between the optimal model performances for paddy and brown

rice, akin to the findings from the PLSR model development,

indicated that the protein content prediction model for brown rice

outperformed that for paddy rice. Without preprocessing, the (Rp
2)

and RMSEP for the protein content prediction models for paddy rice

and brown rice were 0.622 and 0.176 and 0.806 and 0.134,

respectively, demonstrating superior performance of the brown rice

model. Upon implementing optimal preprocessing, the (Rp
2) and

RMSEP for the protein content prediction models for paddy rice and
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brown rice improved to 0.932 and 0.062 and 0.943 and 0.071,

respectively, thereby narrowing the accuracy gap observed without

preprocessing (Figure 8).

3.3.3 DNN model development for protein
content prediction

Sixteen DNN models were devised to predict the protein content in

samples of paddy rice and brown rice, as delineated in Table 6. For paddy

rice, the model that incorporated first-order derivative preprocessing

emerged as the most efficacious. The calibration values for the paddy rice

model without preprocessing and the first-order derivative-preprocessed

model were characterized by coefficients of determination (Rc
2) of 0.934

and 0.978, and RMSEC of 0.071 and 0.040, respectively. Regarding

validation results, the coefficient of determination for validation (Rv
2) of

0.931 and 0.971, and RMSEV of 0.076 and 0.047, respectively. The

prediction performance for unknown samples, as measured by the

coefficient of determination of prediction (Rp
2) of 0.936 and 0.972, and

RMSEP of 0.074 and 0.048, respectively.

In the case of brown rice, as paddy rice, the model applying

first-order derivative preprocessing demonstrated superior

performance. The calibration values for the paddy rice model

without preprocessing and the first-order derivative-preprocessed

model were characterized by coefficients of determination (Rc
2) of
A B

FIGURE 7

Regression coefficient plot of the optimal PLSR models for predicting protein content in (A) paddy rice and (B) brown rice.
A B

FIGURE 6

Validation results of the optimal PLSR model with prediction datasets: (A) paddy rice and (B) brown rice.
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0.931 and 0.986, and RMSEC of 0.073 and 0.034, respectively.

Regarding validation results, the coefficient of determination for

validation (Rv
2) of 0.917 and 0.976, and RMSEV of 0.083, 0.042,

respectively. The prediction performance on unknown samples

yielded (Rp
2) and RMSEP of 0.916 and 0.082 for the without-

preprocessed model, and 0.987 and 0.033 for the first-order

derivative-preprocessed model, respectively (Figure 9).
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The DNN models demonstrated higher predictive accuracy

compared to PLSR and SVR. The optimal DNN models for paddy

rice and brown rice achieved (Rv
2) and (Rp

2) values between 0.971

and below 0.987, with RMSEC and RMSEP values ranging from

above 0.033 to below 0.048. Preprocessing significantly enhanced

performance for both paddy rice and brown rice samples compared

to the non-preprocessed models. In the comparative analysis of
TABLE 5 SVR model performance results for the predicting the Protein content of rice.

Rice Type Preprocessing   R  2
c

RMSEC
(g/100g)

  R  2
v

RMSEV
(g/100g)

  R  2
p

RMSEP
(g/100g)

Kernel type

Paddy Rice

Raw 0.659 0.172 0.749 0.152 0.622 0.176 linear

Mean
Normalization

0.930 0.078 0.894 0.097 0.903 0.070 linear

Range
Normalization

0.895 0.096 0.844 0.117 0.859 0.089 linear

Maximum
Normalization

0.583 0.200 0.485 0.214 0.576 0.164 linear

1st order derivative 0.952 0.065 0.928 0.079 0.932 0.062 linear

2nd order derivative 0.949 0.067 0.925 0.081 0.929 0.066 linear

MSC 0.944 0.070 0.916 0.086 0.852 0.088 linear

SNV 0.949 0.067 0.927 0.08 0.926 0.066 linear

Brown Rice

Raw 0.816 0.127 0.817 0.132 0.806 0.134 linear

Mean
Normalization

0.941 0.075 0.909 0.090 0.916 0.147
linear

Range
Normalization

0.796 0.138 0.762 0.148 0.779 0.203
linear

Maximum
Normalization

0.576 0.198 0.468 0.212 0.574 0.089
linear

1st order derivative 0.958 0.060 0.94 0.071 0.931 0.078 linear

2nd order derivative 0.958 0.060 0.946 0.068 0.943 0.071 linear

MSC 0.964 0.056 0.941 0.071 0.945 0.070 linear

SNV 0.962 0.057 0.942 0.07 0.947 0.068 linear
The meaning of the bold values indicates the preprocessing methods that achieved the best prediction performance along with their corresponding results.
A B

FIGURE 8

Validation results of the optimal SVMR model with prediction datasets: (A) paddy rice and (B) brown rice.
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optimal model performance, the model performance for brown rice

was higher but both types of rice exhibited relatively strong predictive

capabilities for protein content.

3.3.4 Performance evaluation of optimal model
for predicting protein content of rice

The optimal models for predicting protein content in paddy rice

and brown rice were evaluated using a prediction dataset not involved

in the model development process, as illustrated in Figures 7–9.

Among the evaluated models, the DNN model demonstrated

superior performance compared with the PLSR and SVR models.
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Specifically, the coefficients of prediction (Rp
2) for the optimal PLSR

(RAW), SVR (first-order derivative), and DNN (first-order derivative)

models for paddy rice were 0.918, 0.932, and 0.972, respectively. For

brown rice, the corresponding Rp
2 values for the optimal PLSR

(RAW), SVR (second-order derivative), and DNN (first-order

derivative) models were 0.928, 0.943, and 0.987, respectively. The

performance of the SVR model surpassed that of the PLSR model,

while the DNN model exhibited the most substantial performance

enhancement. In the case of paddy rice, the Rp
2 values for the optimal

PLSR, SVR, and DNN models varied from 0.918 to 0.972, with

RMSEP values ranging from 0.048 to 0.082 g/100g. For brown rice,
TABLE 6 DNN model performance results for the predicting the Protein content of rice.

Rice Type Preprocessing   R  2
c

RMSEC
(g/100g)

  R  2
v

RMSEV
(g/100g)

  R  2
p

RMSEP
(g/100g)

Paddy Rice

Raw 0.934 0.071 0.931 0.076 0.936 0.074

Mean Normalization 0.980 0.039 0.965 0.053 0.967 0.053

Range Normalization 0.891 0.093 0.843 0.111 0.843 0.113

Maximum
Normalization

0.969 0.049 0.966 0.053 0.966 0.054

1st order derivative 0.978 0.040 0.971 0.047 0.972 0.048

2nd order derivative 0.988 0.048 0.971 0.028 0.971 0.049

MSC 0.984 0.036 0.96 0.055 0.963 0.056

SNV 0.977 0.042 0.96 0.058 0.959 0.008

Brown Rice

Raw 0.931 0.073 0.917 0.083 0.916 0.082

Mean Normalization 0.961 0.057 0.954 0.059 0.944 0.065

Range Normalization 0.921 0.079 0.917 0.082 0.924 0.077

Maximum
Normalization

0.896 0.09 0.796 0.126 0.79 0.129

1st order derivative 0.986 0.034 0.976 0.042 0.987 0.033

2nd order derivative 0.98 0.038 0.98 0.04 0.982 0.038

MSC 0.971 0.046 0.974 0.045 0.975 0.044

SNV 0.973 0.046 0.977 0.043 0.979 0.041
The meaning of the bold values indicates the preprocessing methods that achieved the best prediction performance along with their corresponding results.
A B

FIGURE 9

Validation results of the optimal DNN model with prediction datasets: (A) paddy rice and (B) brown rice.
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the Rp
2 values for the optimal PLSR, SVR, and DNNmodels was in the

range 0.928–0.987, with RMSEP values ranging from 0.033 to 0.079 g/

100g. Although the prediction accuracy for the protein content in

paddy rice was lower than that for brown rice, the models for both

types of rice demonstrated nearly equivalent performance.
4 Discussion

This study demonstrates the feasibility of predicting the protein

content in paddy rice with accuracy comparable to that of brown

rice using NIR spectroscopy, alongside machine learning and deep

learning techniques. The developed PLSR, SVR, and DNN models

are capable of estimating the protein content in rice, with values

ranging from 6.33 g/100g to 7.86 g/100g.

The application of spectral preprocessing techniques during model

development significantly enhanced the prediction performance of the

models. Preprocessing methods could effectively mitigate the impact of

high-frequency noise, including the light scattering effect attributable

to particles of various sizes and shapes. The implementation of

Savitzky–Golay first and second order derivatives preprocessing on

the SVR and DNN models notably improved prediction accuracy, as

depicted in Figures 8, 9. These findings are in alignment with prior

research indicating the superior efficacy of Savitzky–Golay

preprocessing over other methods in most machine learning

applications (Vestergaard et al., 2021). Upon comparing the

prediction performance of models with and without rice husk, the

PLSR, SVR, and DNN models were observed to demonstrate superior

performance in predicting protein content in brown rice. These

outcomes are attributed to interference from rice husk,

corroborating findings from prior studies suggesting that rice husk

exerts a specific influence on spectral photosensitivity, thereby acting as

a disruptive factor in prediction (Li et al., 2015). Furthermore, the

samples utilized in this study were directly harvested from rice fields

and threshed using a rudimentary thresher, potentially resulting in

coarser threshing compared to mechanized harvesting methods.

Augmenting experiments to enhance mutual correlation could

enhance prediction accuracy in future endeavors.

The development outcomes of the PLSR and SVR machine

learning models, along with the DNN deep learning model

(Figures 7–9), showed comparable or superior accuracy compared

to previous studies. For instance, Ma et al. reported Rp
2 and RMSEP

values of 0.843, 0.44, and 0.829, 0.23, respectively, when predicting

paddy rice protein content using PLSR and SVR models in

hyperspectral imaging technology (Ma et al., 2021). Similarly, Lian

et al. predicted white rice protein content utilizing PLSR and ANN

models in NIRS, yielding Rp
2 and SEP values of 0.934, 0.157, and

0.824, 0.257, respectively (Lin et al., 2019). In this study, the DNN

model demonstrated superior performance compared with the PLSR

and SVR models. The inherent characteristics of the DNN model,

comprising multiple hidden layers, facilitated the derivation of

complex functional relationships between paddy rice and protein

content more effectively than the machine learningmodels, PLSR and

SVR. While PLS and SVM models exhibit linearity, DNN can learn

complex patterns, including nonlinear relationships. This advantage

likely enabled it to better capture the correlation between protein
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content and spectral data. Furthermore, while PLSR and SVR models

in this research learn linear relationships, DNNs are capable of

learning complex patterns, including nonlinear relationships. This

distinction likely facilitated a more accurate capture of the correlation

between protein content and spectral data.

While most extant studies have collected and analyzed spectral

data employing husk-removed white or brown rice samples in

powdered form (Kim et al., 2008; Xie et al., 2014; Bagchi et al.,

2016; Fazeli Burestan et al., 2021; Mishra et al., 2021; Liu et al., 2023;

Shi et al., 2023), this study utilized near-infrared spectrum obtained

from paddy rice containing rice husk and husk-removed brown

rice. The achievement of high prediction accuracy by employing

deep learning analysis techniques highlights the significance of this

approach. These findings show that the application of deep learning

technology is an effective method in a wide range of agricultural

product quality evaluation fields, especially non-destructive testing

of paddy rice. Moreover, the findings indicate the potential for rapid

and non-destructive prediction of paddy rice protein content using

near-infrared spectroscopy, even in conditions involving freshly

harvested rice with high moisture content and rice husk.

Furthermore, the technology holds promise for diverse

applications. The development of a portable device could enable

real-time assessment of rice quality on farms. Conversely, if

developed as an indoor measuring device, it could facilitate quality

determination during rice purchase and sale at rice processing centers

(RPCs). Moreover, it could be utilized for immediate testing and

research on rice quality post-harvest. By integrating the insights from

this study into a combine-mounted system, real-time acquisition of

rice data for quality assessment becomes feasible. Such data could

inform nitrogen fertilizer application adjustments for each rice field

area in subsequent years. These results can also be applied in the

processing industry when selecting rice for specific protein content.

Recent research has explored the use of Near-Infrared (NIR)

spectroscopy and machine learning to measure protein content in a

variety of samples, including not only rice but also edible insects and

plant-based meat substitutes (Li et al., 2023; Xiao et al., 2023). This

approach will holds promise as a nutritional analysis technology for

addressing a range of food security issues.

Nonetheless, this study has limitations, particularly regarding the

necessity for a wider range of predictable protein content to effectively

apply this model in industrial settings. In order to apply these models

to various rice varieties, acquiring spectral data and developing

models for various rice varieties will be necessary. Additionally, the

construction of big data will be necessary to strengthen model

robustness to the variability of rice quality. As a future research

direction, additional deep learning models other than DNN can be

incorporated to compare prediction accuracy between models.
5 Conclusion

In this study, models for predicting the protein content in

unhusked (paddy) rice and brown rice were developed employing

PLSR, SVR, and DNN algorithms, in conjunction with NIR

spectroscopy technology. The models were refined through the

application of various spectral preprocessing techniques, including
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normalization, first-order derivative, second-order derivative, MSC,

and SNV transformation, which were subsequently correlated with

actual protein content values.

The prediction model for rice protein content (with overall

protein contents ranging from 6.33–7.86 g/100 g) showed the high

prediction performance in deep learning model (DNN) than

machine learning model (PLSR, SVR). The optimal DNN model,

with Savitzky–Golay first-order derivative preprocessing applied to

paddy rice, attained Rp² of 0.972 and RMSEP of 0.048. Similarly, for

brown rice, upon applying Savitzky–Golay first-order derivative

preprocessing, the optimal DNN model achieved an Rp² of 0.987

and an RMSEP of 0.033.

The findings of this study highlight the potential for non-

destructive measurement of protein content in paddy rice

through the integration of machine learning and deep learning

algorithms with NIR spectroscopy technology.
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