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Functions, accumulation,
and biosynthesis of important
secondary metabolites in the
fig tree (Ficus carica)
Yawen Wang, Ximeng Liu, Siyu Chen, Qingjie Wang,
Biao Jin and Li Wang*

College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
Ficus carica is an economically important horticultural plant. Due to its abundant

secondary metabolites, F. carica has gained interest for its applications in

medicine and as a nutritional supplement. Both external and internal factors

affect the accumulation of secondary metabolites in F. carica. The assembly of

the F. carica genome has facilitated functional analysis of key genes and

transcription factors associated with the biosynthesis of secondary metabolites,

particularly anthocyanin. In this review, we summarize the various types and

functions of secondary metabolites, with a particular focus on flavonoids,

coumarins, and terpenes. We also explore the factors influencing their

biosynthesis and accumulation, including varieties, tissue, environmental

factors (e.g., light), stresses (e.g., high temperature, low temperature, drought,

nutrient deficiencies, salinity), hormonal treatments, and developmental factors.

Furthermore, we discuss the involvement of structural genes and transcription

factors in the biosynthesis of secondarymetabolites, specifically anthocyanin and

furanocoumarins, knowledge of which will promote the breeding and genetic

engineering of novel F. carica varieties.
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1 Introduction

Ficus carica, commonly known as the fig tree, is one of the oldest cultivated plants and

is among the most important commercial fruit trees in the genus Ficus. F. carica is

extensively cultivated in numerous regions worldwide, particularly in nations of the

Mediterranean Basin such as Portugal and Turkey (Dueñas et al., 2008). Fresh and dried
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F. carica fruits are nutritious sources of secondary metabolites,

making them popular ingredients in culinary preparations such as

sauces, fruit wines, and dried fruit assortments. Extracts of F. carica

leaves and fruits, as well as latex, have been used to treat

gastrointestinal, respiratory, inflammatory, metabolic, and

cardiovascular conditions (Mawa et al., 2013). The accumulation

of secondary metabolites in F. carica is influenced by internal and

external factors, such as light quality, high temperature, drought,

salt stress, and stress-associated hormones. Development, storage,

and processing techniques also affect the accumulation of secondary

metabolites in F. carica fruit (Sandhu et al., 2023). The availability of

the genome of F. carica and advancements in molecular biology and

sequencing technologies have yielded insights into the biosynthetic

mechanisms of important secondary metabolites in F. carica (Usai

et al., 2020). A comprehensive understanding of secondary

metabolites in F. carica is essential for its horticultural cultivation,

commercial significance, and potential health benefits. Here, we

review the types and functions of secondary metabolites in F. carica,

as well as the factors influencing their biosynthesis and

accumulation. We also summarize the regulatory mechanisms of

important secondary metabolites, including anthocyanins and

furanocoumarins, in F. carica, focusing on the related structural

genes and transcription factors.
2 Types and functions of secondary
metabolites in F. carica

More than 100 bioactive compounds have been identified in F.

carica. Almost all parts of the F. carica tree are abundant in
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secondary metabolites, particularly flavonoids, terpenes, and

coumarins (Hajam and Saleem, 2022) (Figure 1). In this section,

we focus on these secondary metabolites and their effects on health.
2.1 Flavonoids

Flavonoids, a class of polyphenolic secondary metabolites, are

formed through the combination of two six-carbon phenyl rings

connected by an oxygen heterocycle-containing ring. F. carica

produces flavonoids in various organs, and the latex secreted

from the vascular bundles of the petioles and peduncles also

contains flavonoids and phenolic acids (Abdel-Aty et al., 2019).

Flavonoids encompass several types, including anthocyanins,

flavonols, and isoflavones, with significant research focusing on

anthocyanins in F. carica fruit (Mao et al., 2023). The content and

composition of these anthocyanins play a crucial role in

determining the fruit’s color (Castañeda-Ovando et al., 2009).

Anthocyanin pigments such as cyanidin, delphinidin, peonidin,

petudinin, and malvidin are found in red, purple, and other dark-

colored fruits.

Cyanidin is the predominant anthocyanin found in F. carica.

During the ripening process of purple peel, cyanidin O-

malonylhexoside levels increase dramatically. Other cyanidins,

including cyanidin 3-O-glucoside and cyanidin-3, 5-O-

diglucoside, also experience a significant increase (Wang et al.,

2019). Among five different varieties of F. carica with distinct peel

colors, cyanidin 3-rutinoside was the predominant anthocyanin,

accounting for 48–81% of peel content and 68–79% of pulp content,

while cyanidin 3-glucoside constituted 5–18% of peel content and
FIGURE 1

The schematic representation illustrates the distribution of main secondary metabolite in the leaves, fruits barks, roots, and latex of F. carica.
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10–15% of pulp content (Dueñas et al., 2008). Notably, the dark-

purple peel of the ‘Soltani’ variety contains nine identified

anthocyanins, primarily cyanidin 3-rutinoside and cyanidin 3,5-

diglucoside. The peel of ‘Soltani’ also revealed the presence of a

novel rutinoside and petunidin dimer, yet its function remains

unclear (Ammar et al., 2015).

Quercetin, an abundant flavonol in nature, has been extensively

studied for its antioxidative and anti-inflammatory properties. In

vitro, animal, and clinical studies have shown that quercetin can

effectively reduce oxidative stress and exhibit anti-inflammatory

activity (Ginwala et al., 2019; Jucá et al., 2020). Notably, quercetin

has been found to reduce blood glucose levels in diabetic mice

(Deepa et al., 2018; Dureshahwar et al., 2019). It is hypothesized

that quercetin, along with other compounds, contributes to the

observed hypoglycemic effect of the extract. Rutin, a glycoside form

of quercetin, is predominantly present in F. carica fruit and leaves.

Rutin has significant antioxidant activity, anticancer activity, and

anti-inflammatory and antibacterial effects (Yang et al., 2008; Hao

et al., 2016). It is a popular dietary supplement without any

significant side effects. According to the available reports, the

highest extraction rate of rutin from F. carica pulp was 0.44%

(Ammar et al., 2015). In addition to flavonols like quercetin and

rutin, F. carica also contains isoflavones. Isoflavones, which are 3-

phenyl derivatives of benzone rings, are synthesized during the

phenylalanine metabolism in plants. F. carica fruit has been found

to contain 16 types of isoflavones, while the leaf contains 2 types.

Interestingly, the isoflavones present in F. carica fruit have been

shown to possess anti-inflammatory effects by inhibiting the

production of nitric oxide (NO) (Liu et al., 2019). Several specific

isoflavones, including ficucaricone A, ficucaricone B, and indicanine

A, have been reported to exhibit potent anti-inflammatory activities

(Magalhães et al., 2006).
2.2 Coumarins

Coumarins account for 51.46% of the volatile oils in F. carica

leaves (Shahrajabian et al., 2021). Psoralen, bergapten, angelicin,

rutaretin, pimpinellin, and seselin are all members of the coumarin

family, serving as important secondary metabolites in F. carica

(Marrelli et al., 2012). Among them, psoralen and bergapten are two

of the most prominent coumarins due to their medicinal

importance. They have been identified as anticancer agents with

the ability to suppress the survival and migration of triple-negative

breast cancer MDA-MB-231 cells (Zhang et al., 2018). Psoralens

have shown promise in clinical studies, upregulating the level of

ERa protein in osteoclasts and inhibiting the growth of breast

cancer cells (Zhang et al., 2017). Additionally, psoralens and

bergaptens can inhibit acetylcholinesterase (AChE) activity and

play a role in the treatment of Alzheimer’s disease (Parhiz et al.,

2015). Due to their ability to interact with DNA when exposed to

ultraviolet A radiation (UV-A), these compounds, especially

psoralens, are often used in the treatment of skin diseases such as

vitiligo, alopecia areata, psoriasis, and neodermal diseases (Son
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et al., 2017). Psoralens and bergaptens have also demonstrated

significant insecticidal activity properties (Chung et al., 2011;

Siyadatpanah et al., 2022).
2.3 Terpenes

F. carica is rich in terpenes. Carotenoids, which belong to the

group of tetraterpenoids, are a large group of phytochemicals with

powerful antioxidant activities (Kaulmann and Bohn, 2014). F.

carica contains the carotenoids typically present in human

plasma, including b-carotene, lutein, and lycopene (Su et al.,

2002). Similar to anthocyanins, carotenoids contribute to the

coloration of F. carica fruits, giving them an orange or yellow

color. The carotenoid contents of fresh and dried fruits differ. B-

carotene, zeaxanthin, and lutein are predominant in fresh F. carica

and b-cryptoxanthin and lutein in dried F. carica (Arvaniti et al.,

2019). These carotenoids can prevent cardiovascular disease by

reducing blood pressure, preventing oxidative stress, and decreasing

the secretion of pro-inflammatory factors (Mordente et al., 2011).

Triterpenoids and sesquiterpenes are abundant in the extracts of F.

carica root, leaf, and latex. Dried and young F. carica fruits contain the

triterpenoid 9,19-cyclopropyl-24,25-ethylene-5ene-3b-spirosterol, which
has anticancer activity (Yin et al., 1997). The main sesquiterpenes in F.

carica leaf are genanthene, b-caryophyllene, and t-elemiene (Oliveira

et al., 2010c). b-Caryophyllene is used in cosmetics for its spicy aroma

(Reinsvold, 2010). Sesquiterpenes are also the most abundant terpenes in

F. carica latex, accounting for 91% of all identified compounds.

Fresh latex from F. carica has been used to treat a variety of

types of cancers (Oliveira et al., 2010b; Arvaniti et al., 2019).
3 Accumulation and distribution of
secondary metabolites in F. carica

3.1 Varieties (cultivars)

The accumulation and distribution of secondary metabolites vary

markedly among F. carica cultivars (Table 1). In general, dark F.

carica varieties exhibit higher polyphenol content and total

anthocyanin content. Compared with those with light-colored

peels, such as green and yellowish-green peels, cultivars with black

and purple peels have higher levels of phenolics, flavonoids, and

anthocyanins (Çalisķan and Polat, 2011; Ercisļi et al., 2012; Hssaini

et al., 2020). ‘Bursa siyahi’ (purple) F. carica shows a much higher

total proanthocyanidin content than ‘Sarilop’ (yellow) F. carica

(yellow) (Kamiloglu and Çapanoğlu, 2015). However, some light-

colored F. carica varieties exhibit slightly higher proanthocyanidin

content (Hssaini et al., 2020). Additionally, varieties of different colors

reportedly share some similar anthocyanin profiles, principally

cyanidin-3-O-rutinoside (> 90% of total anthocyanins). Moreover,

varieties with black peels have high levels of total phenolic

compounds, and those with green, greenish-yellow, and brown
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fruit peels have high levels of chlorogenic acid, vitamin C, and total

tannins (Solomon et al., 2006; Pereira et al., 2017).

Among the diverse array of F. carica varieties, certain varieties

have shown exceptional potential. Notably, in the ‘Dottato’ and

‘Cuello de Dama’ varieties from Italy, cyanidin-3-rutinoside, a type

of anthocyanin, was identified within the fruit’s pulp (Russo et al.,

2014). Additionally, the ‘Boughandjo’, a high-yielding variety, and

the ‘Bither’, an early-ripening variety from Algeria, although not the

richest in secondary metabolites, have gained consumer favor for

their taste (Mahmoudi et al., 2018). Moreover, cluster analysis of 37

F. carica varieties has identified ‘Grise de Saint Jean’ and ‘Grise de

Tarascon’ as having minimal levels of furanocoumarins (which

cause skin inflammation), making them promising candidates for

the development of functional foods and pharmaceutical products

(Takahashi et al., 2017).
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3.2 Tissues

Different tissues of F. carica have different secondary metabolite

profiles (Table 2). Previous studies have focused more on the

secondary metabolites found in the fruits, pulp, peel, leaves, and

latex of F. carica, with only a limited number of studies exploring

the roots and bark.

F. carica fruits serve as a rich reservoir of flavonoids, which

notably include quercetin 3-O-rutinoside, quercetin-3-glucosides,

polymeric procyanidins, and cyanidin-3-O-rutinoside among their

key constituents (Mopuri and Islam, 2016). Quercetin-3-O-

rutinoside (rutin) is the predominant flavonoid found in light-

colored F. carica peel, whereas cyanidin-3-O-rutinoside is the

primary flavonoid present in dark-colored F. carica peel

(Palmeira et al., 2019; Calani et al., 2022). Within fruits, the peel

is richer in secondary metabolites than the pulp. For example, the

anthocyanin content of the peel of the dark-colored ‘Mission’

variety was 100-fold that of the pulp (Solomon et al., 2006).

Portuguese F. carica variety had higher levels of nutritional and

phenolic components 158 (Palmeira et al., 2019). Interestingly, an

exception is observed in the green F. carica varieties ‘Bidhi’ and

‘Kadota’, where the concentration of total phenolics in the edible

pulp significantly surpasses that found in the peel (Mahmoudi et al.,

2018). However, in the F. carica processing industry, peels are

frequently discarded as waste, highlighting the importance of

studying the bioactivity of F. carica peels and the need to develop

and utilize by-products.

Notably, the fruit pulp is a significantly richer source of

prenylated flavonoids compared to the fruit peel (Ammar et al.,

2015; Liu et al., 2019). A study analyzed the phenolic composition of

leaves, fruit, peel, and pulp, identifying an isomer of

prenylhydroxygenistein as the primary compound in the pulps

(Ammar et al., 2015). This compound, a type of prenylated

flavonoids, is known for its anti-inflammatory and cancer-

preventive activities, making it a valuable constituent for the

development of functional foods (Chang et al., 2021).

The bioactive compounds present in F. carica leaves were

extensively summarized in a previous review (Li et al., 2021).

Leaves are found to be more abundant in secondary metabolites

compared to their fruit counterparts. Overall, F. carica leaves are a

good source of flavonoids, coumarins, and terpenes. Rutin is the

main flavonoid in F. carica leaves, and psoralen is the main

furanocoumarin compound (Ammar et al., 2015). An experiment

measuring coumarin content in leaves, bark, and the woody part of

F. carica showed that the leaves contain higher levels of psoralen

and bergapten (Conforti et al., 2012). Psoralen and bergapten are

also major coumarin compounds in the root heartwood (Jaina et al.,

2013). Recent research on the phenolic composition of F. carica

bark identified rutin as the predominant compound (Yahiaoui et al.,

2024). In addition, compared with pulp and peel, F. carica leaves

contain a notably higher content of sesquiterpenes, with b-
Caryophyllene and d-Elemene as the main components, but

monoterpenes are rare (Oliveira et al., 2010c).

Latex is rich in coumarins and has a large amount of sterols. A

hexane extract of Tunisian common ‘Jrani caprifig’ latex identified
TABLE 1 Advantageous secondary metabolites in the main cultivated F.
carica varieties in fruit peel.

Country Varieties References Advantageous Sec-
ondary Metabolites

Israel Mission
(Black)

(Solomon
et al., 2006)

Total anthocyanin content

Italy Mattalona
(Black)
Dottato

(Del Caro and
Piga, 2008)
(Russo
et al., 2014)

Flavonols (rutin,
anthocyanins,
hydroxycinnamic acids)
Total phenolic content
Cyaniding-3-rutinoside

Turkey Bursa siyahi
(purple)
Siyah 5

(Kamiloglu and
Çapanoğlu, 2015)
(Çalis ̧kan and
Polat, 2011)

Total flavonoid content
Total proanthocyanidin
content
Total anthocyanin content
Flavan-3-ols
Total phenolic content
Total anthocyanin content

Albania Kraps
Zi (dark)

(Hoxha and
Kongoli, 2016)

Total phenolic content
Total flavonoid content
Total anthocyanin content

Tunisia Soltani
(purple)
Kohli

(Ammar et al.,
2015)
(Harzallah
et al., 2016)

Total phenolic content
Total anthocynin content
Prenylhydroxygenistein
Total phenolic content
Total tannis content

Iran Sabz (green)
Siyah
(dark
purple)

(Maghsoudlou
et al., 2017)

Total phenolic content
Total flavonoid content

Spain Banane
VB1
Cuello
de Dama

(Pereira et al.,
2017)
(Vallejo et al.,
2012)
(Dueñas
et al., 2008)

Total Vitamin C
Total phenolic content
Total anthocynins
Luteolin 6C-hexose-8C-
pentose
Total anthocynins
Cyanidin-3-rutinoside

Algeria Bakkor
Khal
Onk
Elhamam

(Mahmoudi
et al., 2018)

Total phenolic content
Total anthocynins
Total flavonoid content

Morocco Fassi
Noukali

(Hssaini et al.,
2020, 2021)

Total phenolic content
Total anthocynins
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36 compounds, 14 of which were coumarins (Lazreg-Aref et al.,

2012). A total of 7 phytosterols were identified, among which b-
sitosterol and lupeol were the compounds with higher

concentrations (Oliveira et al., 2010a). Notably, a mixture of 6-O-

acyl-beta-D-glucosyl-beta-sitosterols, which has a significant

inhibitory effect on cancer cells, was only isolated from latex

(Rubnov et al., 2001).
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4 Factors that affect the secondary
metabolite biosynthesis
and accumulation

4.1 Abiotic stresses

Environmental factors and stressors affect secondary metabolite

accumulation in F. carica. Light influences the biosynthesis of

anthocyanins in plants (Mao et al., 2023). Although light

deprivation did not affect the coloration or anthocyanin content

of F. carica female flower tissues, it significantly inhibited the

biosynthesis of anthocyanins in fruit peel (Wang et al., 2019). In

the bagged fruit (female flower tissue), 12 flavonoids were detected,

of which 11 increased, and apigenin increased by 11 times (Wang

et al., 2021). In addition, pulse light treatment using a high-energy

xenon flashlight after harvesting resulted in a 20-fold increase in the

anthocyanin content of F. carica fruit peel. Moreover, pulse light

treatment increased the total phenolic content of fruit. Therefore,

pulse light markedly promotes the accumulation of anthocyanins

and other phenolic compounds in F. carica (Rodov et al., 2012).

Increased production of secondary metabolites can ameliorate

stress-induced damage in plants (Figure 2). The total phenolic level

of F. carica is increased by phosphorus and calcium deficiency

(Garza-Alonso et al., 2020). Salt stress increased the total phenolic

content of F. carica by 5.6%, with a particularly pronounced

increase observed in the levels of epicatechin (Francini et al.,

2021). Additionally, high temperatures increase the phenolic

content of the leaves of F. carica seedlings (Guo et al., 2017), and

drought stress increases the a-tocopherol content (Gholami et al.,

2012). In a study of fresh, frozen, and processed fruit, storage of F.

carica at −18°for 4 months resulted in significant decreases in the

total phenolic, total flavonoid, and total anthocyanin contents

(Petkova et al., 2019).
4.2 Phytohormone treatments

Phytohormones related to stress resistance, such as abscisic acid

(ABA), jasmonic acid, and ethylene, can modulate the biosynthesis

of anthocyanins in F. carica (Figure 3) (Guo et al., 2017; Lama et al.,

2019; Cui et al., 2021). ABA promotes the accumulation of

anthocyanins during fruit ripening, thereby initiating color

development (Lama et al., 2019). F. carica treated with ABA had

higher levels of cyanidin 3-O-glucoside and cyanidin 3-O-rucoside

and developed a dark-purple color earlier compared with those

treated with an ABA inhibitor (Lama et al., 2020). Transcriptomic

analysis indicated that ABA upregulated the expression levels of

genes related to anthocyanin biosynthesis, whereas an ABA

inhibitor reversed this effect, confirming the importance of ABA

for the biosynthesis of anthocyanins. Ethylene is a phytohormone

associated with plant maturation and is implicated in fruit

development and stress responses. Ethylene has bidirectional

regulatory effects on female flower and peel coloration in F.

carica. Treatment of F. carica with exogenous ethylene
TABLE 2 Dominate compounds in different tissues of F. carica.

Tissue Classification Constituents Dominant
Compounds

Fruit Flavonoids Flavonols Quercetin 3-O-
rutinoside;
Quercetin-
3-glucosides

Anthocyanins Polymeric
Procyanidins;
Cyanidin-3-
O-rutinoside

Isoflavones Ficucaricone A;
Ficucaricone B;
Ficucaricone C;
Ficucaricone D

Peel Flavonoids Flavonols Quercetin 3-O-
rutinoside;
Quercetin-
3-glucosides

Anthocyanins Polymeric
Procyanidins;
Cyanidin-3-
O-rutinoside

Pulp Flavonoids Anthocyanins Cyanidin-3-
O-rutinoside

Isoflavones Prenylgenistein
III; 7methoxy
2’hydroxy
genistein
(cajanin)

Leave Flavonoids Flavonols Quercetin 3-
O-rutinoside

Coumarins Psoralen;
Bergapten

Terpenes Sesquiterpenes b-Caryophyllene;
d-Elemene

Latex Sterols b-sitosterol;
Lupeol;

6-O-acyl-beta-D-
glucosyl-

beta-sitosterols

Woody
Part

Coumarins Psoralen;
Bergapten

Bark Flavonoids Flavonols Quercetin 3-
O-rutinoside

Root
Heartwood

Coumarins Psoralen;
Bergapten

Sterols b-sitosterol
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upregulated the expression levels of genes related to flavonoid

biosynthesis, thereby accelerating the coloration of the receptacle,

whereas downregulation of these genes delayed the coloration of

female tissues (Cui et al., 2019). In addition, F. carica seedlings

treated with methyl jasmonate under high-temperature stress had

elevated total phenolic contents (Guo et al., 2017).
4.3 Developmental factors

Developmental and ripening stages affect the accumulation of

secondary metabolites in F. carica fruit (Veberic et al., 2008). Some

species of F. carica can ripen twice and be harvested twice annually:

first from late May until the end of June (‘Breba’) and subsequently

from mid-July to early September (main crop). In the F. carica

cultivars ‘Zuccherina’, ‘Crna Petrovka’, and ‘Miljska’, fruits from the

second ripening had higher levels of phenolic than those from the

first ripening (Veberic et al., 2008). Similarly, the main crops of two

‘Albanian’ cultivars had higher phenolics contents compared with

the ‘Brebas’ from the second ripening (Hoxha and Kongoli, 2016).

However, in the cultivars ‘VB1’, ‘Antonio’, and ‘Santado’, the levels

of phenolic compounds were higher in fruits from the first ripening

than in those from the second ripening, suggesting that secondary
Frontiers in Plant Science 06
metabolite accumulation varies among developmental and ripening

stages (Vallejo et al., 2012). In addition, the contents of

furanocoumarins and pyranocoumarins are higher in the first

ripening in June, whereas those of polyphenolics are highest in

the second ripening in September (Marrelli et al., 2012).

The types and levels of secondary metabolites also vary according

to the maturity of F. carica fruit within a ripening stage. Among fruits

at the immature, mature, and fully mature stages, the total phenolic

content increased during maturation and peaked at the fully mature

stage (Pereira et al., 2017). However, others have reported that the

total phenolic content decreases with fruit development (Gündeli

et al., 2021; Hoxha et al., 2022). In addition, the polyphenolic contents

of dark-colored F. carica cultivars change more during ripening

compared with light-colored cultivars (Wang et al., 2019). Overall,

the accumulation of secondary metabolites in F. carica fruit is

influenced by the developmental time, stage of maturity, and also

depends on the cultivars.
4.4 Post-harvest processing techniques

As a result of its susceptibility to physical damage and post-

harvest infection, fresh F. carica fruit is typically processed into
FIGURE 2

Effects of environmental stresses affect the accumulation of secondary metabolites. (A) high temperature and drought, (B) low temperature, (C)
nutrient deficiencies, and (D) salinity.
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dried fruits, jams, jellies, and syrups, as examples. These processes

affect the secondary metabolite profiles of F. carica fruit (Liu et al.,

2020). Drying, including sun- and oven-drying, is the most

common method for preserving fresh F. carica fruit. Sun drying

markedly reduces the levels of polyphenols in fruit, and the effect is

greater on flavonoids than on phenolic acids. Sun drying decreased

the contents of phenolic acids and flavonoids in fruit by 29% and

86%, respectively (Bachir et al., 2016). Similarly, the total phenolic

and total anthocyanin contents of a yellow- and a purple-colored

fruit variety decreased significantly after drying, but the total
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flavonoid and proanthocyanidin contents of the yellow fruit

variety significantly increased (Kamiloglu and Çapanoğlu, 2015).

However, the levels of phenolic compounds, except apigenin-3-O-

rutinoside, were high after oven drying, suggesting that oven drying

can increase the total phenolic content and the antioxidant activity

of fruit (Slatnar et al., 2011). The processing of fruit pulp into jam

and honey also reduces the content of secondary metabolites

(Tanwar et al., 2014). Although nectar processing, and jam

processing reduce the levels of secondary metabolites,

considerable quantities, particularly of carotenoids and phenols,
FIGURE 3

The synthesis pathways of anthocyanin and coumarin in F. carica and the external factors (ABA, light, and JA) affect the expression of genes and TFs.
(A) The biosynthesis of anthocyanins in F. carica is regulated by MYB, bHLH, WD40, bZIP, and MADS-box transcription factors, as well as the MBW
(MYB-bHLH-WD40) complex. Effects of exogenous abscisic acid (ABA) or ethylene (B), ABA inhibitors nordihydroguaiaretic acid (NDGA) or fluridone
(C), and jasmonic acids (JAs) (D) on the expression of anthocyanin biosynthesis genes in fruit. Effects of light deprivation on anthocyanin biosynthesis
genes in fig peel (E) and female flower tissue (F). The structural genes involved in the biosynthesis of anthocyanins include phenylalanine ammonium
lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate: coenzyme A ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone
3-hydroxylase (F3H), flavanone 3’-hydroxylase (F3’H), dihydroflavonol 4-reductase (DFR), anthocyanin synthetase (ANS), and UDP glucose: flavonoid
3-O-glucosyltransferase (UFGT). The simplified biosynthetic pathways of coumarin and furanocoumarin (FC). The core skeleton structures of linear
and angular FCs are psoralen and angelicin. The key enzymes involved in the biosynthesis of FCs include umbelliferone 6-dimethylallyltransferase
(U6DT), umbelliferone 8-dimethylallyltransferase (U8DT), marmesin synthase (MS), columbianetin synthase (CS), psoralen synthase (PS), angelicin
synthase (AS), psoralen 5-hydroxylase (P5H), psoralen 8-hydroxylase (P8H), bergaptol 5-O-methyltransferase (B5OMT), xanthotoxol 8-O-
methyltransferase (X8OMT), bergapten 8-hydroxylase (B8H), xanthotoxin 5-hydroxlyase (X5H), 8-hydroxybergapten 8-O-methyltransferase
(8HB8OMT), and 5-hydroxyxanthotoxin 5-O-methyltransferase (5HX5OMT).
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remain after jam processing (Tanwar et al., 2014; Petkova et al.,

2019). This suggests that the processing of fruit into jams maintains,

at least in part, their contents of phenolics and carotenoids.
5 Enzymes involved in secondary
metabolism in F. carica

The first preliminary genome sequence of F. carica was obtained

by sequencing the genome of the Japanese traditional variety

‘Horaishi’ based on the Illumina platform. The first high-density

linkage map was constructed using restriction enzyme site-

associated sequencing (Mori et al., 2017). Further sequencing and

assembly of the F. carica genome, ‘Dottato’, have been conducted

using third-generation sequencing technologies (Usai et al., 2020).

This version of the genome assembly of F. carica comprises 333

Mbp, 80% of which is anchored to 13 chromosomes (Usai et al.,

2020). Later, the newest genome of F. carica ‘Orphan’ was built,

with a total length of 366.34 Mb and a contig N50 of 9.78 Mb (Bao

et al., 2023). Generally, ten families of structural genes associated

with the anthocyanin biosynthesis pathway have been identified:

FcPAL (two genes), FcC4H (one gene), Fc4CL (three genes), FcCHS

(five genes), FcCHI (three genes), FcF3H (one gene), FcF3’H (three

genes), FcDFR (three genes), FcANS (three genes), and FcUFGT

(two genes) (Li et al., 2020) (Figure 3).
5.1 Chalcone synthase and
chalcone isomerase

Chalcone synthase (CHS) is a key enzyme that catalyzes the first

committed step in the anthocyanin biosynthesis pathway (Jez and Noel,

2001). As the receptacle tissues of F. carica develop and ripen, the contents

of flavonoids increase, and the expression level of FcCHS is upregulated

(Cui et al., 2021). FcCHS1 encodes 389 amino acid residues, including two

phenylalanine residues essential for substrate specificity (Li et al., 2020). In

addition, the transcription of FcCHS1 can be regulated by light-induced

signal transduction elements such asHY5 (Wang et al., 2019). Subsequent

to the reaction catalyzed by CHS, chalcone isomerase (CHI) catalyzes the

conversion of chalcone into naringenin (Ralston et al., 2005). FcCHI1

encodes a 257 amino-acid type I chalcone isomerase, which includes four

conserved active sites (Li et al., 2020). The expression levels of FcCHS1 and

FcCHI1 increase with the accumulation of anthocyanins and are

significantly higher in pigmented tissues (fruit peels and flowers) than

non-pigmented tissues. The expression of FcCHS1 is very low in non-

pigmented tissues (Li et al., 2020). FcCHS1 and FcCHI1, together with

their homologs associated with anthocyanin accumulation, have similar

molecular characteristics and secondary structures, implicating their

involvement in F. carica fruit coloration.
5.2 Dihydroflavonol-4-reductase

Dihydroflavonol-4-reductase (DFR) is a key enzyme involved in

the later steps of anthocyanin biosynthesis. It catalyzes the
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Metabolomic and transcriptomic analyses showed that the

expression levels of three FcDFR genes were significantly

increased in fruit peel. Among them, the expression levels of

FcDFR2 and FcDFR3 were upregulated by light deprivation,

whereas FcDFR1 was downregulated (Wang et al., 2019). FcDFR1

encodes a 363-amino-acid protein encompassing a typical NADP-

binding region and a substrate-binding region (Li et al., 2020). The

secondary structure of FcDFR1 is similar to MnDFR1 (Morus

notabil is) , which has been implicated in anthocyanin

accumulation, suggesting that FcDFR1 is involved in the

anthocyanin biosynthesis of F. carica.
5.3 Anthocyanidin synthase and UDP-
glycose flavonoid glycosyltransferase

Anthocyanidin synthase (ANS) catalyzes the penultimate step

in the anthocyanin biosynthesis pathway, the conversion of

colorless into colored anthocyanins. FcANS1 encodes a 358-

amino-acid protein encompassing a conserved domain 2OG-FeII-

Oxy (Cao et al., 2016). FcANS1 was significantly upregulated in F.

carica fruit peel compared with flower tissue (Wang et al., 2019).

The expression pattern of FcANS1 and the anthocyanin content are

correlated during fruit development. Bagging treatment resulted in

downregulation of FcANS1 expression in fruit peel and female

flowers, suggesting that FcANS1 functions in anthocyanin

biosynthesis (Cao et al., 2016). On the contrary, three FcANS

genes FcANS1, FcANS2 and FcANS3 in female flower tissues were

upregulated after bagging (Wang et al., 2021).

UFGT is the last key enzyme in the anthocyanin synthesis

pathway, which can catalyze the glycosylation of unstable

anthocyanins to form stable anthocyanins. The open reading

frame of FcUFGT1 is 1374 bp. The expression level of FcUFGT1

in the fruit peel of F. carica at the mature stage was much higher

than that in female flower tissue. However, the expression of

FcUFGT1 was significantly downregulated in the fruit peel by

light deprivation but significantly upregulated in the female

flower tissue (Wang et al., 2019).
5.4 Other enzymes

Glutathione S-transferases (GSTs) are multifunctional enzymes

involved in the transport of anthocyanins to vacuoles (Gullner et al.,

2018). A total of 53 GST genes from five subfamilies are present in

the F. carica genome. FcGSTF1 and FcGSTU5/6/7may be important

in anthocyanin accumulation in F. carica peel, but further research

is needed (Liu et al., 2023).

Compared to anthocyanins, less research has focused on the

regulation of the biosynthesis of other secondary metabolites in F.

carica. Furanocoumarins (FCs), like anthocyanins, are synthesized

via the phenylpropanoid pathway and are structurally classified as

angular and linear furanocoumarins (Villard et al., 2019). The first

step of the furanocoumarin pathway is catalyzed by the
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umbelliferone dimethylallyl transferase (UDT) and is important for

the prenylation of umbelliferone (Figure 3). Comparative RNA-seq

and enzyme activity analyses of F. carica latex organs have shown

that FcPT1 has UDT activity and participates in the biosynthesis of

furanocoumarins in F. carica, converting umbelliferone into

demethylsuberosin (DMS) (Munakata et al., 2020). However, the

functions of these enzymes need to be validated by in vitro studies.

Marmesin synthase is a key enzyme in the biosynthesis of

furanocoumarins and is involved in the production of the defense

compound psoralen from p-coumaroyl coenzyme A (Villard et al.,

2021). The cytochrome P450 gene CYP76F112 in F. carica encodes

marmesin synthase, which can convert DMS into marmesin with

high affinity. The discovery of CYP76F112, the first identified

marmesin synthase, expands the potential applications of the

furancoumarin pathway (Villard et al., 2021).
6 Transcription factors regulating the
biosynthesis of secondary metabolites
in F. carica

Transcription factors modulate the expression of structural

genes associated with the biosynthesis of secondary metabolites.

They bind to cis-acting regions, thereby inhibiting or promoting

gene expression. These factors collaboratively or independently

regulate the synthesis of enzymes involved in the biosynthesis of

secondary metabolites, such as anthocyanins.
6.1 MYB transcription factors

MYB transcription factors are widely distributed in plants and

are involved in a variety of aspects of plant growth and metabolism

(Pratyusha and Sarada, 2022). Transcriptomic analysis revealed that

light deprivation alters the expression of several F. carica genes,

such as MYB114 and three R2R3MYB transcription factors, with

FcMYB114 specifically regulating FcDFR1 and anthocyanin

biosynthesis via promoter interaction (Wang et al., 2019). Virus-

induced gene silencing of FcMYB114 led to significant

downregulation of FcDFR1, FcANS1, and FcUFGT1, resulting in a

reduction of anthocyanin content in F. carica fruit peel (Chen et al.,

2023). Overexpression of two R2R3-MYB genes, FcMYB21 and

FcMYB123, led to significantly increased anthocyanin content in

apple peel and fruit callus tissues (Li et al., 2020). Furthermore, the

significant promotion of MdMYC2 expression by overexpressing

FcMYB21 suggests a potential close relationship between FcMYB21

and FcMYC2 in promoting F. carica fruit coloring.
6.2 Basic helix-loop-helix
transcription factors

The bHLH family is the second largest group of plant

transcription factors involved in plant growth, development, and

signal transduction. bHLH transcription factors can interact with
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MYB transcription factors to regulate the biosynthesis of

anthocyanins (Hichri et al., 2010). The genome of F. carica

contains 118 bHLH genes (Song et al., 2021). According to the

bHLH family classification in Arabidopsis, FcbHLH genes can be

classified into 25 subgroups. bHLH genes of different subfamilies

show different expression patterns in female flower tissues and fruit

peel during F. carica fruit development. The transient

transformation of FcbHLH42 in tobacco induced a significant

increase in anthocyanin content, suggesting that FcbHLH42

promotes the accumulation of anthocyanins in F. carica. The

levels of WD40 and other MYB transcription factors were

positively correlated with the expression of FcbHLH42, providing

insight into the regulatory mechanism of flavonoid biosynthesis in

F. carica (Song et al., 2021).
6.3 WD40

The WD40 transcription factors are structurally stable and

important regulators of plant development and physiology,

including the biosynthesis of anthocyanins. TTG1 was the first

WD40 protein discovered in Arabidopsis thaliana, and it forms a

trimer with AtMYB123 and AtbHLH42 to promote anthocyanin

biosynthesis (Baudry et al., 2004). The F. carica genome contains a

total of 204WD40 genes. Subcellular localization prediction showed

that 109 FcWD40 proteins were localized to the cytoplasm, 69 to the

nucleus, and 26 to other cellular compartments. FcWD4097 has

been identified and named FcTTG1. The expression level of FcTTG1

was significantly highest in the flesh and peel, followed by the stem

of F. carica (Fan et al., 2022).

MYB transcription factors form the MBW complex by binding

to the FcMYB113, FcGL3, and FcWD40 proteins of the MYB,

bHLH, and WD-repeat families, respectively. This complex

directly activates the expression of genes involved in the

biosynthesis of anthocyanins (Gonzalez et al., 2008). The MBW

complex was identified in pollinated and parthenocarpic F. carica

fruits. FcMYB113 was significantly downregulated, whereas FcGL3

and FcWD40 were moderately upregulated by exogenous ABA and

ethylene. The high expression of FcMYB113, FcGL3, and FcWD40

during the later stages of anthocyanin biosynthesis may affect

coloration (Lama et al., 2020). In addition, yeast two-hybrid

assays and biomolecular fluorescence complementation

experiments showed that FcWD40–97 and FcbHLH42 regulate the

biosynthesis of anthocyanins by forming MBW complexes with

FcMYB114 and FcMYB123 (Fan et al., 2022).
6.4 Other transcription factors

Other families of transcription factors, such as MADS-box and

bZIP, have been identified in F. carica. MADS-box proteins are

functionally diverse and regulate multiple processes, including floral

organ development, fruit development and maturation, and seed

coloring (Aerts et al., 2018). The F. carica genome has a total of 64

FcMADS-box genes, the expression levels of which were shown to

be tissue specific (Kmeli et al., 2023). FcMADS9 has been cloned,
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and its regulation of the biosynthesis of anthocyanins in F. carica

has been validated by heterologous expression in apple fruit and

callus tissues (Li et al., 2021).

The bZIP family is one of the largest gene families in plants and

is important for biological processes such as secondary metabolism,

stress responses, and seed maturation. Y1 screening indicated that

FcHY5 (bZIP) binds to the promoter region of FcCHS, implicating

the latter in transcription of the structural genes linked to the

biosynthesis of anthocyanins (Wang et al., 2019).
7 Concluding remarks and
future perspectives

We have conducted a comprehensive review of the functions

and biosynthesis of secondary metabolites in the economically

significant F. carica. A diverse array of secondary metabolites in

F. carica, such as flavonoids, terpenes, and coumarins, exhibit

various beneficial activities. Dark-colored F. carica varieties and

the fruit peel display elevated levels of secondary metabolites.

To fully exploit the potential application of these metabolites in

food and medicine, it is crucial to acquire a more in-depth

understanding of their biological activity and pharmacological

efficacy. The functions of the flavonoids, terpenoids, and

coumarins of F. carica require further investigation in cell-culture

experiments, animal models, and clinical studies to identify

potential health benefits. In addition, while F. carica is primarily

consumed as fruit, the leaves contain higher levels of coumarin

compounds, which are usually discarded as industrial byproducts

without utilization; therefore, further research on the use and value

of these byproducts is necessary.

The content of secondary metabolites undergoes substantial

changes during the development and maturation of F. carica fruits,

and it is also influenced by the genotype of F. carica. Additionally, a

range of environmental factors (e.g., light), stresses (e.g., high

temperature, low temperature, drought, nutrient deficiencies,

salinity), hormone treatments (e.g., ABA, ethylene, NDGA,

fluridone, and methyl jasmonate), as well as developmental factors,

can affect the accumulation of secondary metabolites in F. carica.

Post-harvest processing methods are worth further exploration as a

low-cost and practical technique to maximize the retention of

secondary metabolites in F. carica. Some cultivation and

management practices can be applied to F. carica to achieve better

fruit quality, including artificial light supplementation systems,

fertilizer rationing, and the application of growth regulators.

Anthocyanins, as secondary metabolites in F. carica, play a

significant role in determining the fruit’s appearance and

nutritional value. The availability of the F. carica genome has

facilitated the investigation of key genes involved in anthocyanin
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biosynthesis and their regulatory mechanisms. Transcriptomic and

bioinformatics analyses have identified several structural genes,

including FcPAL, FcCHS, FcCHI, FcF3H, FcDFR, FcANS, FcUFGT,

and FcGST, which regulate anthocyanin synthesis. Furthermore,

CYP76F112 and FcPT1 have been identified as crucial enzymes in

the coumarin compound synthesis pathway. Moreover, MYB,

bHLH, WD40, bZIP, and MADS-box transcription factors are

implicated in the regulation of the biosynthesis of anthocyanins.

Genetic and molecular studies are needed to further identify the

functional genes involved in the regulation of secondary metabolite

biosynthesis. The application of genetic transformation systems

(root hair transformation, virus-induced gene silencing, and gene

editing) will facilitate the development of biotechnological

techniques for increased contents of bioactive secondary

metabolites in F. carica varieties. Studies on the biosynthesis

mechanisms of anticancer bioactive compounds such as psoralens

and saponins in F. carica warrant further research.
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