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Citrus fruits are extensively cultivated fruits with high nutritional value. The

identification of distinct ripeness stages in citrus fruits plays a crucial role in

guiding the planning of harvesting paths for citrus-picking robots and facilitating

yield estimations in orchards. However, challenges arise in the identification of

citrus fruit ripeness due to the similarity in color between green unripe citrus

fruits and tree leaves, leading to an omission in identification. Additionally, the

resemblance between partially ripe, orange-green interspersed fruits and fully

ripe fruits poses a risk of misidentification, further complicating the identification

of citrus fruit ripeness. This study proposed the YOLO-CIT (You Only Look Once-

Citrus) model and integrated an innovative R-LBP (Roughness-Local Binary

Pattern) method to accurately identify citrus fruits at distinct ripeness stages.

The R-LBP algorithm, an extension of the LBP algorithm, enhances the texture

features of citrus fruits at distinct ripeness stages by calculating the coefficient of

variation in grayscale values of pixels within a certain range in different directions

around the target pixel. The C3 model embedded by the CBAM (Convolutional

Block Attention Module) replaced the original backbone network of the YOLOv5s

model to form the backbone of the YOLO-CIT model. Instead of traditional

convolution, Ghostconv is utilized by the neck network of the YOLO-CIT model.

The fruit segment of citrus in the original citrus images processed by the R-LBP

algorithm is combined with the background segment of the citrus images after

grayscale processing to construct synthetic images, which are subsequently

added to the training dataset. The experiment showed that the R-LBP algorithm

is capable of amplifying the texture features among citrus fruits at distinct

ripeness stages. The YOLO-CIT model combined with the R-LBP algorithm has

a Precision of 88.13%, a Recall of 93.16%, an F1 score of 90.89, a mAP@0.5 of

85.88%, and 6.1ms of average detection speed for citrus fruit ripeness
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identification in complex environments. The model demonstrates the capability

to accurately and swiftly identify citrus fruits at distinct ripeness stages in real-

world environments, effectively guiding the determination of picking targets and

path planning for harvesting robots.
KEYWORDS
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1 Introduction

Citrus fruits possess high nutritional and economic value and

are widely cultivated globally (Wang et al., 2022). As the largest

citrus-cultivating country, China currently relies predominantly

on manual harvesting, leading to significant labor and time costs

(Pei et al., 2022). In the context of Agriculture 4.0, the

development of fruit-picking robots has emerged as a crucial

research direction (Wang et al., 2022). The identification of

distinct ripeness stages in citrus is instrumental in achieving

intelligent sorting and harvesting, thereby enhancing orchard

productivity and fruit quality (Sun et al., 2019).

During the ripening process of citrus fruits, the accumulation of

sucrose leads to a reduction in chlorophyll and an increase in

carotenoids. Consequently, the peel transitions from green to

orange in color (Iglesias et al., 2001). Simultaneously, the

synthesis of epicuticular wax on the fruit peel gradually occurs,

increasing the smoothness of the peel (Romero and Lafuente, 2020).

Based on its visual characteristics, citrus fruits with an orange area

covering more than 80% of the total peel surface area are generally

defined as ripe; otherwise, they are considered unripe. However,

citrus fruits within the same orchard often exist at distinct ripeness

stages (Gupta et al., 2021). Therefore, harvesting robots need to

rapidly and accurately identify citrus fruits at distinct

ripeness stages.

The color, shape, texture, and other features of the fruits are

commonly used as criteria for ripeness identification. Image

processing methods are widely applied in the field of citrus fruit

ripeness identification. By combining the color difference map of

citrus fruits under normal conditions with the brightness map

under illumination, and utilizing color characteristics for

threshold segmentation, Lu effectively solves the impact of

illumination on citrus ripeness identification (Lu et al., 2014).

Regarding the orange features in citrus images, which are

predominantly manifested in the Cr channel of the YCbCr color

space, Peng employed an improved fuzzy C-means clustering

threshold segmentation method (FCM) to achieve accurate

identification of ripe citrus fruits (Peng et al., 2014). Under

complex weather conditions, the color features of citrus images

are variable. Qiang utilized the morphological features of citrus

fruits and employed a multi-class support vector machine based
02
on morphological operations to effectively identify ripe citrus fruit

(Qiang et al., 2014). Xu applied the Otsu adaptive thresholding

method to the V component of the YUV color space. The Canny

edge detection algorithm was employed to obtain the

morphological features of citrus fruits, enabling a more accurate

identification in the environment (Xu et al., 2020). Texture

features are also among the essential characteristics of citrus

fruits. In addressing the issue of green, unripe citrus fruits being

close in color to the background, Zhao combined the results of the

Adaptive Red-Blue color map (ARB) and Histogram Equalization

for Hue (HEH). By utilizing five selected texture features to

eliminate false positives, accurate identification of green, unripe

citrus fruits was achieved (Zhao et al., 2016).

In recent years, deep learning models have been widely applied

in harvesting robots, achieving high automation and effectively

improving the accurate classification of complex ripeness features.

Xiong proposed a Des-YOLOv3 network, which accurately

identifies small and occluded citrus fruit targets (Xiong et al.,

2020). Based on the YOLOv5s network, the BCAM (bidirectional

cross attention mechanism) attention mechanism was added by

Yang, resulting in enhanced identification accuracy for various

fruits, including citrus (Yang et al., 2022). Regarding the

differences in characteristics among citrus fruits at distinct

ripeness stages, Lu utilized a Resnet backbone structure that

integrates deep and shallow features to construct the Mask-Rcnn

network. This approach precisely identified citrus fruits at distinct

ripeness stages (Lu et al., 2022). For real-time identification of citrus

fruits, Chen combined the Canopy algorithm and K-Means++

algorithm to automatically determine the input image size.

Additionally, the Scientific Control of Pruning (SCOP) algorithm

was applied to prune the YOLOv4 network, enabling real-time

identification of citrus fruits (Chen et al., 2022). The improved deep

learning model can effectively detect the maturity of citrus fruits.

Modern harvesting robots need to accurately identify unripe

and ripe citrus fruits during the harvesting process, avoiding

picking unripe ones and ensuring the precise harvesting of ripe

ones (Yang et al., 2020). However, the green color of unripe citrus

fruits is similar to the background color of leaves, resulting in

significant detection omissions; Some partially unripe citrus fruits

exhibit both orange and green characteristics, making it challenging

to differentiate them from ripe citrus fruits with similar color
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features, leading to issues of misidentification (Lu et al., 2018). This

study proposed an R-LBP (Roughness-Local Binary Pattern)

algorithm, an improvement upon the LBP algorithm. By

computing two sets of coefficients of variation in grayscale values

in eight different directions around the current pixel, one including

the grayscale value of the current pixel and the other excluding it,

the R-LBP algorithm determines encoding based on the difference

in the degree of variation between the two sets of coefficients. The

citrus fruit images processed by this algorithm are added to the

training dataset to better facilitate the learning of texture and

morphological features of citrus fruits; Furthermore, a YOLO-CIT

(You Only Look Once-Citrus) model, an improvement upon

YOLOv5s, is proposed. The backbone network of this model

combines the C3 model with the CBAM (Convolutional Block

Attention Module) attention mechanism, leveraging both channel

and spatial features to enhance the model’s capability to extract

characteristics of distinct ripeness stages in citrus. In the neck

network of the model, a Ghostnet structure is utilized,

transforming some regular convolutions into linear mappings to

reduce computational complexity and improve the model’s

inference speed. Multiple experiments were conducted to verify

the effectiveness of the proposed R-LBP algorithm and the

performance of the YOLO-CIT model.
2 Materials and methods

2.1 R-LBP algorithm

The LBP algorithm is a method that reflects the local texture

features of an image by describing the texture variations around a

pixel. Common texture features include roughness, directionality,
Frontiers in Plant Science 03
contrast, and so on (Ojala et al., 2002). In the ripening process of

citrus fruits, the synthesis of epicuticular wax leads to a noticeable

change in the roughness of the peel. In digital images, the roughness

of fruit peel can be represented by the degree of variation in pixel

grayscale values. The calculation process of peel roughness for citrus

fruits at distinct ripeness stages is illustrated in Figure 1.

In Step 1, citrus fruits at four distinct ripeness stages are

sequentially selected and converted into grayscale images. In Step

2, for each grayscale image, the longer and shorter sides of its

bounding rectangle are divided into four equal parts successively to

obtain intersection points, defining nine sampling regions. In each

sampling region, the average pixel difference in eight directions is

calculated sequentially, as shown in Equations 1, 2.

Di = oN
i=1

Xi−X
0j j

N
(1)

Pi = o8
i=1

Di

8
(2)

Where Xi represents the grayscale value of the pixel at position i,

N represents the number of pixels in that direction, X0 represents
the average value of N pixels, and Di represents the mean difference

of pixel grayscale values in that direction.

In Step 3, the roughness of the fruit peel is obtained by

calculating the average of the nine sampling regions. The results

for distinct ripeness stages of the fruit are illustrated in Figure 2.

Figure 2 shows that there is a decreasing trend in the roughness

of citrus fruit peel as it matures. Based on this characteristic, the R-

LBP algorithm, which utilizes peel roughness for encoding, is

proposed. The method’s workflow is illustrated in Figure 3.

The R-LBP algorithm processes each pixel in the image

sequentially to calculate its final grayscale value. In Step 1, the

encoding relies on the eight pixels surrounding the target pixel,
FIGURE 1

Calculation process for peel roughness of citrus fruits.
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which are named reference pixels. In Step 2, the reference pixels are

numbered sequentially in a clockwise order. In Step 3, The

coefficient of variation reflects the fluctuation in a set of data, and

the variation in pixel grayscale values can represent the roughness

of the peel. Taking reference pixel 1 as an example, the coefficient of

variation (CVa) is calculated for the array formed by pixels 1, 9, and

10 in its direction. Additionally, the coefficient of variation (CVb) is

calculated for the array formed by adding the target pixel to the

aforementioned array (pixels 0, 1, 9 and 10). The calculation process

is shown in Equations 3, 4.

CVa =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
4
i=2

(Xi−X
0 )2

3

q

X 0

0
@

1
A� 100% (3)

CVb =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
4
i=1

(Xi−X
0 )2

4

q

X0

0
@

1
A� 100% (4)
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Where Xi represents the grayscale value of the pixel at

coordinate i, and X0 represents the mean value within the array.

If the difference between CVa and CVb is greater than 15% of

CVa, it indicates that the addition of the target pixel significantly

affects the roughness between the existing reference pixels in that

direction (Brown, 1998). Moreover, the texture features in that

direction are strong. In such cases, the encoding of the current

reference pixel is set to 1; otherwise, it is set to 0. The specific

encoding process is shown in Equation 5.

1       CVa−CVbj j
CVa

> 15%

  0       CVa−CVbj j
CVa

≤ 15%

8<
: (5)

In Step 4, the encoding results from the eight reference pixels

are combined in the order of their numbering to obtain a binary

outcome. This binary result is then converted to decimal and serves

as the new grayscale value for the current pixel. The same process is

applied to other pixels, and the final result of the R-LBP algorithm

processing is obtained.
2.2 Dataset construction of citrus images

2.2.1 Image acquisition of citrus data
There are citrus orchards located in Zengcheng District,

Guangzhou City, Guangdong Province, China (23°16′N, 113°51′E)
for dataset collection. The Canon 200D Mark II DSLR camera,

equipped with an 18-55mm lens set to fully automatic mode, is

used for capturing images of citrus fruits. Take images every two days,

a total of 5 times, from 10 am to 12 am. A total of 1533 raw image

data were collected, and saved in.jpeg format, with a resolution of

4032×3024 pixels. The collection information for the initial data is

presented in Table 1.

The collected data underwent preliminary screening, removing

images with out-of-focus, motion blur, or severe distortion. Some

images from the initial dataset were augmented through random

flips, tilts, and other operations. The initial dataset can be divided

into several categories based on lighting intensity and shooting

distance, as shown in Figure 4. The specific composition is detailed

in Supplementary Table 2.

2.2.2 R-LBP–based citrus images
texture enhancement

The R-LBP algorithm primarily processes the fruit segment of

citrus images. Therefore, in this study, artificially synthesized
FIGURE 3

R-LBP algorithm process.
TABLE 1 Initial dataset composition table.

Order Date Weather Num

1 2022/10/09 Cloudy 297

2 2022/10/11 Sunny 305

3 2022/10/13 Sunny 312

4 2022/10/15 Sunny 285

5 2022/10/17 Cloudy 334
FIGURE 2

Peel roughness of citrus fruits with distinct ripeness stages.
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images were obtained to enhance the texture features of the fruit

segment at distinct ripeness stages in citrus images. The synthesized

images are added to the training dataset to enhance the features that

the model can learn. The processing workflow for artificially

synthesized images is illustrated in Figure 5.

By using Photoshop, the citrus fruit area and background area are

separately extracted. The citrus fruit undergoes processing with the R-

LBP algorithm to enhance its texture features. The background region

is converted to a grayscale image to remove its color characteristics. The

two processed results are then combined to create the final image.

The additional training set consists of synthesized images based

on close-range citrus images with clear texture features. It is used to

test the effect of adding images processed by the R-LBP algorithm to

the training set on model performance. The sample images of the

additional training set are shown in Figure 6, and the specific

composition of the additional dataset is shown in Supplementary

Table 1.
2.3 Construction of YOLO-CIT model

2.3.1 Backbone network of the YOLO-CIT model
The YOLO-CIT model proposed in this paper is built upon the

YOLOv5s model. The backbone network structure of the YOLO-

CIT model is formed by combining the CBAM attention

mechanism with the C3 module. The computational process is

illustrated in Figure 7.

The feature maps are entered into the CBAM Bottleneck, where

maximum pooling and average pooling features are computed.

These two features are then input into a Multi-Layer Perceptron

(MLP), and channel attention is calculated. The computation

process is depicted in Equation 6.

Mc(F) = s W1 W0(F
c
avg

� �� �
+W1(W0(F

c
max)ÞÞ (6)
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Where s represents the sigmoid function, W0 ∈ Rc=r*c and W1

∈ Rc*c=r represent the shared weights of the MLP, r represents the

reduction ratio, c represents the length of the feature map, Fc
avg

represents the average pooling feature, and Fc
max represents the

maximum pooling feature.

Channel attention and feature maps are broadcasted, and the

intermediate feature output F ‘is calculated, as shown in Equation 7.

F0 = Mc(F)⊗F (7)

Average pooling and maximum pooling operations are applied

along the channel axis of the middle feature map, the two results are

connected through standard convolutional layers and spatial

attention is generated. The calculation process is shown in Equation 8.

Ms(F) = s f 7�7(½Fs
avg ; F

s
max�)

� �
(8)

Where Fs
avg represents the two-dimensional average pooling feature,

Fs
max represents the two-dimensional maximum pooling feature, and

f 7*7 represents the convolution operation with a filter size of 77.

Spatial attention further aggregates with the middle feature map

through broadcasting, and the final output F00 of the module is

calculated, as shown in Equation 9.

F 00 = Ms(F
0)⊗ F0 (9)
2.3.2 Neck network of the YOLO-CIT model
In the neck network of the YOLO-CIT model, Ghostconv is

used instead of regular convolution. The structure of Ghostconv for

processing input content is shown in Figure 8.

In the context of citrus fruit image processing, the initial

features of the input image are extracted through an initial

convolution process using convolution kernels. The outcomes of

the initial convolution are divided into two segments, where one

segment undergoes mapping, and the other segment, including a1,
A B

D E F

C

FIGURE 4

Sample image of initial dataset: (A) Medium distance exposure citrus image; (B) Medium range natural light citrus image; (C) Medium distance
backlight citrus image; (D) Close range exposure citrus image; (E) Close range natural light citrus image; (F) Close range backlight citrus image.
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a2, …, an initial convolutional feature maps, undergoes additional

convolutional operations. The outputs from these two segments are

then merged to generate the final output feature map.

2.3.3 YOLO-CIT model
The specific composition structure of the YOLO-CIT network

is shown in Figure 9. The initial image of citrus fruit is input into
Frontiers in Plant Science 06
the backbone network and processed by modules such as C3-

CBAM to generate a feature map that combines channel attention

and spatial attention; The feature map is further input into the

neck network, and through lightweight convolution and up

sampling operations in the GhostConv module, a prediction box

is generated. Citrus fruits with distinct ripeness stages

are identified.
FIGURE 5

Image synthesis process.
A B C

FIGURE 6

Sample image of additional dataset: (A) Grayscale citrus image; (B) Synthetic citrus images based on LBP; (C) Synthetic citrus images based on
R-LBP.
FIGURE 7

C3+CBAM module calculation process.
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2.4 Experiments

To validate the effectiveness of the YOLO-CIT model and R-

LBP algorithm in this study, three sets of experiments were

conducted sequentially.

In the first set of experiments, 200 close-range images of citrus

fruits were selected. These images were divided into 50 groups, with

each group containing four images representing distinct ripeness

stages of the citrus fruit. Various algorithms, including grayscale

processing, LBP algorithm, and R-LBP algorithm, were applied to

the fruit segment of the citrus fruit images respectively. The

difference in surface roughness, as introduced in Section 2.1.1,

was used to evaluate the enhancement effects of different

algorithms on surface roughness. The average difference in

roughness values between adjacent stages within each group of

images after processing by different algorithms was recorded

and analyzed.
Frontiers in Plant Science 07
In the second set of experiments, the YOLO-CIT model was

trained on the basic training set, supplemented with additional

datasets processed using grayscale conversion, LBP algorithm, and

R-LBP algorithm respectively. The performance parameters of the

model were recorded and analyzed.

In the third set of experiments, the YOLO-CIT model proposed

in this study, along with several common deep learning network

models such as models of YOLOv4, YOLOv5s, YOLOv7, YOLOX,

YOLOv8s, and faster-RCNN, was trained using the basic dataset. A

comparative performance analysis of the models was conducted.

The experimental hardware setup primarily involves a

computer system featuring an Intel i5-13600kf processor, 32 GB

RAM, and a GeForce GTX 4080 GPU. The computer is configured

with CUDA 11.2 parallel computing architecture and utilizes the

NVIDIA cuDNN 8.0.5 GPU acceleration library. The software

simulation environment is built on the PyTorch deep learning

framework (Python version 3.10). The data pre-processing
FIGURE 9

YOLO-CIT Network Architecture.
FIGURE 8

Ghostconv module calculation process.
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involved the utilization of Labeling, Photoshop 2018, and

Matlab2020b. For configuring and managing the virtual

environment, Anaconda was employed, and program compilation

and execution were carried out using Pycharm. Model performance

metrics mainly include P (precision), R (recall), F1 (harmonic

average), AP (average precision), and mAP@0.5 (mean average

precision) shown in Equations 10–14.

precision =
Tp

Tp   +  Fp
(10)

recall =
Tp

Tp   +   FN
(11)

F1 =
2  �   precision  �   recall

precision   +   recall (12)

AP = oprecision

N
(13)

mAP@ 0:5 = oK
i=1

APi

NC
(14)

where Tp represents the number of citrus fruits correctly

identified, Fp represents the number of citrus fruits incorrectly

identified, FN represents the number of missed citrus fruits, N

represents the total number of images, and NC represents the

number of categories of citrus fruit ripeness stages. AP
Frontiers in Plant Science 08
representing the integral of accuracy rate to recall rate is equal to

the area under the P-R curve. mAP@0:5 is the average of the

average precision of all categories.
3 Results

3.1 Performance analysis of citrus fruit
texture enhancement

In the first set of experiments, distinct ripeness stages of citrus

fruits were processed using grayscale conversion, LBP algorithm,

and R-LBP algorithm respectively, as shown in Figure 10. The

differences in peel roughness between citrus fruits at different

maturity stages are depicted in Figure 11.

The median in peel roughness difference of images processed by

grayscale conversion is 122.3, with an upper quartile of 138.1, a

lower quartile of 111.2, and an interquartile range of 26.9. The

dispersion of peel roughness in different images is relatively small;

The median in peel roughness difference of images processed with

the LBP algorithm is 162.8, with an upper quartile of 184.3, lower

quartile of 142.8, and an interquartile range of 41.5. The results

show a higher level of dispersion among different images in this

case. The median peel roughness difference of images processed

with the R-LBP algorithm is 220.7, which is respectively 98.4 and
FIGURE 10

(A–D) Different ripening stages of citrus fruits.
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57.9 higher than the results obtained with the grayscale conversion

and LBP algorithm. The interquartile range of peel roughness for

images processed with the R-LBP algorithm is 33.6, which is 6.7

higher than the grayscale conversion and 7.9 smaller than the LBP

algorithm. The data dispersion is relatively stable. Images processed

with the R-LBP algorithm exhibit more distinct and relatively stable

texture features compared to images processed with grayscale

conversion and the LBP algorithm, which are useful for

distinguishing distinct ripeness stages of citrus fruits.
Frontiers in Plant Science 09
3.2 Comparison of identification
performance of YOLO-CIT model trained
with different datasets

In the second set of experiments, the YOLO-CIT model was

trained using the same base dataset but with different additional

datasets. The variation of map@0.5 during the training process is

illustrated in Figure 12, and the performance parameters of the

model are listed in Table 2.
FIGURE 12

Change in YOLO-CIT model’s mAP@0.5 trained on different datasets.
FIGURE 11

Citrus fruit epidermal roughness difference across ripening stages.
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By observing Figure 12, it can be seen that the four curves

exhibit significant differences during the training process mAP@0.5

The value rapidly increases and remains relatively stable after the

epoch reaches 100. Among them, when the model uses the

additional dataset with R-LBP or LBP, the fluctuation of the

curve is smaller, and the mAP@0.5 value is more stable. The

YOLO-CIT model trained with the R-LBP additional dataset

exhibits a higher stable mAP@0.5 curve, indicating the best

detection accuracy among the curves. According to Table 2, the

YOLO-CIT model trained with the R-LBP additional dataset

achieves mAP@0.5 values that are 2.36, 1.71, and 2.49 higher

than the YOLO-CIT models trained with the base dataset,

additional grayscale image dataset, and additional LBP dataset,

respectively. Its Precision is slightly higher than other results, and

its Recall is approximately 2% higher than the others. The F1 score

of the YOLO-CIT model trained with the additional R-LBP dataset

is 2.15, 2.1, and 0.75 higher than the other results, respectively.
Frontiers in Plant Science 10
The YOLO-CIT model trained with the additional R-LBP dataset

exhibits the best overall performance.
3.3 Performance comparison among
various network models

In the third set of experiments, different deep-learning models

were trained using the base dataset. The variation of mAP@0.5

during the training process is illustrated in Figure 13, and the model

performance parameters are shown in Table 3.

Figure 13 shows that the mAP@0.5 curves of YOLO-CIT, YOLOX,

and YOLOv4 models gradually increase during the training process

and tend to stabilize after reaching epoch 150. This indicates that the

models can effectively learn features of citrus fruits at distinct ripeness

stages, resulting in a relatively stable improvement in accuracy in citrus

fruit identification. The mAP@0.5 curves of the YOLOv5s, YOLOv7,

YOLOv8s, and Faster-RCNN models show a rapid initial rise during

training. However, between epochs 100 and 150, there is a declining

trend, and after reaching epoch 150, there is a noticeable fluctuation.

This indicates that these models exhibit differences in feature learning

during the training process, leading to temporary decreases in detection

accuracy and insufficient stability in the models. The YOLO-CIT

model achieved its best mAP@0.5 value of 83.52 during training,

significantly surpassing the mAP@0.5 values of the YOLOv4 and

YOLOX models, and slightly outperforming the YOLOv5s, YOLOv7,

YOLOv8s, and Faster-RCNN models. The YOLO-CIT model exhibits

the highest detection accuracy. Observing Table 3, it can be seen that

the YOLO-CIT model has Precision values higher than other models

by 0.49% to 11.29%, Recall values higher by 2.08% to 11.97%, and F1
FIGURE 13

Variation of mAP@0.5 during training across different models.
TABLE 2 Performance of models trained on different datasets.

dataset mAP@0.5
Precision/

%
Recall/

%
F1score

Original dataset 83.52 87.50 90.01 88.74

Add
grayscale
images

84.17 86.42 91.31 88.79

Add
LBP images

83.39 88.70 91.63 90.14

Add R-
LBP images

85.88 88.73 93.16 90.89
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scores higher by 1.26 to 11.62. The YOLO-CITmodel demonstrates the

best performance.

The average detection time of the YOLO-CIT model compared

to other experimental models map@0.5 The distribution is shown

in Figure 14.

According to Figure 14, the YOLO-CIT, YOLOv5s, YOLOv7,

and YOLOv8s models exhibit high average detection accuracy while

maintaining a fast detection speed. The average detection speed for

these models ranges from 5ms to 7ms, meeting the requirements for

real-time detection. The detection speed of the YOLO-CIT model is

slightly lower than that of the YOLOv5s, but it achieves higher

average detection accuracy than the YOLOv5s model.

To validate the ripeness identification capability of the YOLO-

CIT model in real-world environments, the model was trained

using the base dataset and an additional dataset processed with R-

LBP. The trained model was then utilized to identify citrus fruit

ripeness stages in diverse environmental conditions, encompassing

both images and videos. Results are shown in Figure 15 and Table 4.
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According to Figure 15, it can be noted that YOLO-CIT

accurately identifies the ripeness stages of citrus fruits under

varying lighting conditions. For citrus fruits exposed to strong

light or significant shadow coverage, the identification confidence

reaches 0.8 or higher. In cases of dense growth or occlusion of citrus

fruits, for those close and with complete shapes, the confidence in

ripeness identification ranges from 0.88 to 0.94. For those farther

away with incomplete shapes, the recognition confidence is above

0.76. The above results show that the YOLO-CIT model is capable

of accurately and confidently identifying the ripeness of citrus fruits

within the robot’s picking range under various environmental

conditions. According to Table 4, it can be seen that the YOLO-

CIT model achieves an accuracy of 86.54% and an FPS of 76.36

when detecting videos on GPU devices. Beyaz & Gül deployed a

YOLOv4-tiny model similar to this one on the NVIDIA Jetson TX2

AI board, achieving an FPS of over 12 during the detection process

(Beyaz and Gül, 2023). The parameter count of the YOLO-CIT

model is smaller than that of the YOLOv4-tiny model. Applying

this model to the same type of AI board can also achieve similar

performance. It has a fast processing speed and can effectively

connect cameras for real-time detection tasks.
4 Discussion

The green unripe citrus fruits have a similar color to the

background, making it challenging to identify them using color

features alone. This study additionally investigates from the

perspective of texture features. The R-LBP algorithm proposed in

Experiment 1 effectively amplifies the differences in peel roughness

of citrus fruits at different ripeness stages. This increases the feature

disparity between green citrus fruits and the green background,

significantly improving the accuracy of identifying green citrus
FIGURE 14

Detection time and mAP@0.5 across various models.
TABLE 3 Performance of models trained on different datasets.

dataset mAP@0.5
Precision/

%
Recall/

%
F1score

YOLOv4 70.83 76.89 81.02 78.90

YOLOv5s 79.81 86.10 85.19 85.64

YOLOv7 78.34 85.82 82.33 84.04

YOLOX 71.88 76.21 78.04 77.11

YOLOv8s 82.60 86.15 85.67 85.91

YOLO-CIT 83.52 87.50 90.01 88.73

Faster-
RCNN

81.31 87.01 87.93 87.47
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fruits and reducing instances of missed recognition. At the same

time, it also enhances the recognition ability of the model for citrus

fruits with different maturities. Enhancing the differences in features

between various identification targets is beneficial for target
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identification, a conclusion that aligns with findings in other

research (Sharan et al., 2013).

In Experiment 2, different types of additional datasets were added

to the basic training set to train the YOLO-CIT model. The
A B

D

E F

G H

C

FIGURE 15

YOLO-CIT model: citrus ripeness identification in varied environments: (A, B) Backlight environment; (C, D) Exposure environment; (E, F) The
situation where leaves cover the fruit; (G, H) The dense distribution of citrus fruits.
TABLE 4 Performance of the model on video detection.

Model Device Accuracy/%
Video processing

time/sec
FPS

YOLO-CIT GPU(RTX-4080super) 86.54 4.51 76.36

CPU(i5-13600KF) 86.17 30.02 11.47
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performance of the model trained with added grayscale and LBP

images did not show improvement and even slightly decreased. For

grayscale images, this may be because the color features of grayscale

images interfere with the model’s feature learning, leading to a decrease

in recognition accuracy. For LBP images, this may be because the

texture features provided by the images processed by LBP are not

sufficient to improve the performance of the model. On the other hand,

the model trained with the additional dataset using the R-LBP

algorithm exhibited improved performance. This improvement is

attributed to the fact that the training set, while containing color

images providing color features, also includes additional images that

offer roughness texture features. This enhancement contributes to the

model’s learning effectiveness. Including samples in the training set that

possess characteristics relevant to the application domain can effectively

improve identification performance. Similar conclusions can be found

in related studies (Liu, 2020; Han et al., 2021).

In Experiment 3, the YOLO-CIT model demonstrated the best

Precision and mAP@0.5, indicating its ability to accurately identify

citrus fruits at distinct ripening stages. The model also exhibited the

best Recall, suggesting that it has a lower tendency to miss detections,

providing comprehensive detection of the ripeness of all citrus fruits

within the images. Due to the clear citrus color and texture features in

the training set, the YOLO-CIT model incorporates the CBAM

attention mechanism into the C3 module. The structure of C3 and

CBAM uses more computation to extract texture features of citrus. The

computational complexity is focused on the backbone network to learn

the texture features. In the model’s neck, where the feature maps have

already been initially formed, a lightweight Ghostconv module is

utilized to reduce computational complexity. This not only avoids a

loss in identification accuracy but also enhances the model’s detection

speed. The above experiments concluded that introducing attention

mechanisms in the backbone network while reducing computational

complexity in the neck network can enhance the overall performance

of the model. Similar conclusions can also be found in other research

(McCool et al., 2017; Xu et al., 2023). In the identification results of

citrus ripeness in different environments, the model accurately

identifies citrus fruits at distinct ripeness stages. When the YOLO-

CIT model is applied to GPU devices, its FPS exceeds 60 and detection

accuracy exceeds 80%, indicating that the improved model can be

combined with high frame rate cameras to provide real-time position

information of different detection targets (Fang et al., 2019; Gündüz

and Isı̧k, 2023). It can be effectively applied to citrus harvesting robots,

laying the foundation for their efficient harvesting operations. This aids

in guiding the harvesting robot to avoid unripe citrus fruits, facilitating

subsequent tasks in path planning for harvesting ripe citrus fruits (Ning

et al., 2022; Yi et al., 2024). There were instances in the experimental

results where some citrus fruits at a distance were not identified. These

fruits were located beyond the operational range of the harvesting

robot, rendering their ripeness identification irrelevant, and therefore,

they can be disregarded.
5 Conclusion

This article first proposes an improved R-LBP algorithm based on

LBP, which can amplify the peel roughness characteristics of citrus
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fruits with distinct ripeness stages. The synthesized images processed

by the R-LBP algorithm are added to the training set, which can

improve the identification accuracy of the model for citrus fruits with

distinct ripeness stages. This article also proposes an improved YOLO-

CIT model based on YOLOv5s, which can accurately and

comprehensively identifies the ripeness stages of citrus fruits in

complex environments, The specific conclusion is as follows:
1. An R-LBP algorithm based LBP, is proposed. This algorithm

utilizes the grayscale value coefficient of variation for

encoding, enhancing the differentiation in peel roughness

among citrus fruits at distinct ripeness stages.

2. The fruit segment of citrus images is processed using the R-

LBP algorithm, while the background is subjected to

grayscale conversion to create synthetic images. Adding

these images to the base training set enhances the model’s

performance, effectively improving the accuracy of

identifying green citrus fruits against a green background.

Simultaneously, it reduces the misidentification rate for

partially green and partially orange unripe citrus fruits.

3. The backbone network of the model is constructed using the

C3+CBAM structure, and the traditional convolution in the

neck network is replaced by Ghostconv. Thus, the YOLO-

CIT model is established. The YOLO-CIT model, trained

using the base dataset combined with the additional dataset

processed with R-LBP, achieves a Precision of 88.13%,

Recall of 93.16%, F1score of 90.89, and mAP@0.5 of

85.88%. It demonstrates comprehensive identification of

the ripeness stages of citrus fruits in complex environments,

including exposure, backlight, and occlusion.
These findings validate that the proposed YOLO-CIT model, in

conjunction with the R-LBP algorithm, can comprehensively and

accurately identify citrus fruits at distinct ripeness stages in complex

environments. This provides accurate data for obtaining target

coordinates and robotic arm parameters for the fruit-picking robot.

In the future, we will study a harvesting path planning algorithm that

comprehensively considers both mature and immature fruits,

avoiding rotten citrus fruits and jointly planning the harvesting path.
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Gündüz, M.Ş., and Işık, G. (2023). A new YOLO-based method for real-time crowd
detection from video and performance analysis of YOLO models. J. Real-Time Image
Process. 20, 5. doi: 10.1007/s11554-023-01276-w

Gupta, A., Pathak, U., Tongbram, T., Medhi, M., Terdwongworakul, A., Magwaza, L.,
et al. (2021). Emerging approaches to determine maturity of citrus fruit. Crit. Rev. Food
Sci. Nutr. 62, 5245–5266. doi: 10.1080/10408398.2021.1883547

Han, E., Smith, A., Kemper, R., White, R., Kirkegaard, J., Thorup-Kristensen, K., et al.
(2021). Digging roots is easier with AI. J. Exp. botany. 72, 4680–4690. doi: 10.1093/jxb/
erab174

Iglesias, D., Tadeo, F., Legaz, F., Primo-millo, E., and Talón, M. (2001). In vivo
sucrose stimulation of colour change in citrus fruit epicarps: Interactions between
nutritional and hormonal signals. Physiologia plantarum. 112, 244–250. doi: 10.1034/
j.1399-3054.2001.1120213.x

Liu, W. (2020). Interfruit : deep learning network for classifying fruit images. bioRxiv.
doi: 10.1101/2020.02.09.941039

Lu, J., Lee, W., Gan, H., and Hu, X. (2018). Immature citrus fruit detection based on
local binary pattern feature and hierarchical contour analysis. Biosyst. Engineering. 171,
78–90. doi: 10.1016/j.biosystemseng.2018.04.009

Lu, J., Sang, N., Hu, Y., and Fu, H. (2014). Detecting citrus fruits with highlight on
tree based on fusion of multi-map. J. Light-and Electronoptic. 125, 1903–1907.
doi: 10.1016/j.ijleo.2013.04.135

Lu, J., Yang, R., Yu, C., Lin, J., Chen, W., Wu, H., et al. (2022). Citrus green fruit
detection via improved feature network extraction. Front. Plant Sci. 13, 946154.
doi: 10.3389/fpls.2022.946154

McCool, C., Perez, T., and Upcroft, B. (2017). Mixtures of lightweight deep
convolutional neural networks: applied to agricultural robotics. IEEE Robotics
Automation Letters. 2, 1344–1351. doi: 10.1109/LRA.2017.2667039

Ning, Z., Luo, L., Ding, X., Dong, Z., Yang, B., Cai, J., et al. (2022). Recognition of
sweet peppers and planning the robotic picking sequence in high-density orchards.
Comput. Electron. Agriculture. 196, 106878. doi: 10.1016/j.compag.2022.106878

Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell. 24, 971–987. doi: 10.1109/TPAMI.2002.1017623

Pei, Y., He, C., Liu, H., Shen, G., and Feng, J. (2022). Compositional analysis of four
kinds of citrus fruits with an NMR-based method for understanding nutritional value
and rational utilization: from pericarp to juice. Molecules 27, 2579. doi: 10.3390/
molecules27082579

Peng, H., Zou, X., Xiong, J., Chen, Y., Guo, A., and Chen, K. (2014). Recognition of
mature citrus in natural scene under the occlusion condition. J. Inf. Comput. Science.
11, 1947–1958. doi: 10.12733/issn.1548-7741

Qiang, L., Cai, J., Bin, L., Lie, D., and Zhang, Y. (2014). Identification of fruit and
branch in natural scenes for citrus harvesting robot using machine vision and support
vector machine. Int. J. Agric. Biol. Engineering. 7, 115–121. doi: 10.3965/
j.ijabe.20140702.014

Romero, P., and Lafuente, M. (2020). Abscisic acid deficiency alters epicuticular wax
metabolism and morphology that leads to in-creased cuticle permeability during sweet
orange (Citrus sinensis) fruit ripening. Front. Plant Science. 11, 594184. doi: 10.3389/
fpls.2020.594184

Sharan, L., Liu, C., Rosenholtz, R., and Adelson, E. (2013). Recognizing materials
using perceptually inspired features. Int. J. Comput. Vision 103, 348–371. doi: 10.1007/
s11263-013-0609-0

Sun, Y., Singh, Z., Tokala, V., and Heather, B. (2019). Harvest maturity stage and cold
storage period influence lemon fruit quality. Scientia Horticulturae. 249, 322–328.
doi: 10.1016/j.scienta.2019.01.056

Wang, S., Xie, W., and Yan, X. (2022). Effects of future climate change on citrus
quality and yield in China. Sustainability 14, 9366. doi: 10.3390/su14159366

Wang, Z., Xun, Y., Wang, Y., and Yang, Q. (2022). Review of smart robots for fruit
and vegetable picking in agriculture. Int. J. Agric. Biol. Engineering. 15, 33–54.
doi: 10.25165/j.ijabe.20221501.7232

Xiong, J., Zheng, Z., Liang, J., Zhong, Z., Liu, B., and Sun, B. (2020). Citrus detection
method in night environment based on improved YOLO v3 network. Trans. Chin. Soc.
Agric. Mach. 51, 199–206. doi: 10.6041/j.issn.1000-1298.2020.04.023

Xu, X., Ding, Y., Lv, Z., Li, Z., and Sun, R. (2023). Optimized pointwise convolution
operation by Ghost blocks. Electronic Res. Archive. 31, 3187–3199. doi: 10.3934/
era.2023161

Xu, L., Zhu, S., Chen, X., Wang, Y., Kang, Z., Huang, P., et al. (2020). Citrus
recognition in real scenarios based on machine vision. DYNA 95, 87–93. doi: 10.6036/
DYNAII

Yang, R., Hu, Y., Yao, Y., Gao, M., and Liu, R. (2022). Fruit target detection based on
BCo-YOLOv5 model. Mob. Inf. Syst. 2022. doi: 10.1155/2022/8457173

Yang, C., Xiong, L., Wang, Z., Wang, Y., Shi, G., Kuremot, T., et al. (2020). Integrated
detection of citrus fruits and branches using a convolutional neural network. Comput.
Electron. Agric. 174, 105469. doi: 10.1016/j.compag.2020.105469

Yi, T., Zhang, D., Luo, L., and Luo, J. (2024). View planning for grape harvesting
based on active vision strategy under occlusion. IEEE Robot. Autom. Lett. 9, 2535–2542.
doi: 10.1109/LRA.2024.3357397

Zhao, C., Lee, W., and He, D. (2016). Immature green citrus detection based on
colour feature and sum of absolute transformed difference (SATD) using colour images
in the citrus grove. Comput. Electron. Agric. 124, 243–253. doi: 10.1016/j.compag.
2016.04.009
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1397816/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1397816/full#supplementary-material
https://doi.org/10.1590/1678-4324-2023220803
https://doi.org/10.1007/978-3-642-80328-4
https://doi.org/10.1007/s11042-022-12687-5
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1007/s11554-023-01276-w
https://doi.org/10.1080/10408398.2021.1883547
https://doi.org/10.1093/jxb/erab174
https://doi.org/10.1093/jxb/erab174
https://doi.org/10.1034/j.1399-3054.2001.1120213.x
https://doi.org/10.1034/j.1399-3054.2001.1120213.x
https://doi.org/10.1101/2020.02.09.941039
https://doi.org/10.1016/j.biosystemseng.2018.04.009
https://doi.org/10.1016/j.ijleo.2013.04.135
https://doi.org/10.3389/fpls.2022.946154
https://doi.org/10.1109/LRA.2017.2667039
https://doi.org/10.1016/j.compag.2022.106878
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.3390/molecules27082579
https://doi.org/10.3390/molecules27082579
https://doi.org/10.12733/issn.1548-7741
https://doi.org/10.3965/j.ijabe.20140702.014
https://doi.org/10.3965/j.ijabe.20140702.014
https://doi.org/10.3389/fpls.2020.594184
https://doi.org/10.3389/fpls.2020.594184
https://doi.org/10.1007/s11263-013-0609-0
https://doi.org/10.1007/s11263-013-0609-0
https://doi.org/10.1016/j.scienta.2019.01.056
https://doi.org/10.3390/su14159366
https://doi.org/10.25165/j.ijabe.20221501.7232
https://doi.org/10.6041/j.issn.1000-1298.2020.04.023
https://doi.org/10.3934/era.2023161
https://doi.org/10.3934/era.2023161
https://doi.org/10.6036/DYNAII
https://doi.org/10.6036/DYNAII
https://doi.org/10.1155/2022/8457173
https://doi.org/10.1016/j.compag.2020.105469
https://doi.org/10.1109/LRA.2024.3357397
https://doi.org/10.1016/j.compag.2016.04.009
https://doi.org/10.1016/j.compag.2016.04.009
https://doi.org/10.3389/fpls.2024.1397816
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Fusion of fruit image processing and deep learning: a study on identification of citrus ripeness based on R-LBP algorithm and YOLO-CIT model
	1 Introduction
	2 Materials and methods
	2.1 R-LBP algorithm
	2.2 Dataset construction of citrus images
	2.2.1 Image acquisition of citrus data
	2.2.2 R-LBP–based citrus images texture enhancement

	2.3 Construction of YOLO-CIT model
	2.3.1 Backbone network of the YOLO-CIT model
	2.3.2 Neck network of the YOLO-CIT model
	2.3.3 YOLO-CIT model

	2.4 Experiments

	3 Results
	3.1 Performance analysis of citrus fruit texture enhancement
	3.2 Comparison of identification performance of YOLO-CIT model trained with different datasets
	3.3 Performance comparison among various network models

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


