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Chlorophyll fluorescence,
physiology, and yield of winter
wheat under different irrigation
and shade durations during the
grain-filling stage
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Ahmed Mukhtar2,3, Qian Rui2,3, Guo Ru2,3, Haseeb Ahmad1,
Zhi Qin Zhang1, Li Bo Shi5, Muhammad Shoaib Asad2,3,
Xiaoli Chen2,3, Xun Bo Zhou1* and Xiaolong Ren2,3*

1Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop
Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China, 2College of
Agronomy, Northwest A&F University, Yangling, China, 3Key Laboratory of Crop Physio-Ecology and
Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University,
Yangling, Shaanxi, China, 4College of Horticulture, Northwest A&F University, Yangling, China,
5Sinochem Modern Agriculture (Shandong) Co., Ltd, Jinan, China
The uneven spatial and temporal distribution of light resources and water scarcity

during the grain-filling stage pose significant challenges for sustainable crop

production, particularly in the arid areas of the Loess Plateau in Northwest China.

This study aims to investigate the combined effects of drought and shading stress

on winter wheat growth and its physio-biochemical and antioxidative responses.

Wheat plants were subjected to different drought levels— full irrigation (I100),

75% of full irrigation (I75), 50% of full irrigation (I50), and 25% of full irrigation (I25),

and shading treatments — 12, 9, 6, 3 and 0 days (SD12, SD9, SD6, SD3, and CK,

respectively) during the grain-filling stage. The effects of drought and shading

treatments reduced yield in descending order, with the most significant

reductions observed in the SD12 and I25 treatments. These treatments

decreased grain yield, spikes per plant, 1000-grain weight, and spikelets per

spike by 160.67%, 248.13%, 28.22%, and 179.55%, respectively, compared to the

CK. Furthermore, MDA content and antioxidant enzyme activities exhibited an

ascending trend with reduced irrigation and longer shading durations. The

highest values were recorded in the I75 and SD12 treatments, which increased

MDA, SOD, POD, and CAT activities by 65.22, 66.79, 65.07 and 58.38%,

respectively, compared to the CK. The Pn, E, Gs, and iCO2 exhibited a
Abbreviations: IR, irrigation regimes; SD, shading duration; GY, grain yield; GW, grain weight; SPP, spikes

per plant; TKW, thousand kernel weight; MDA, malondialdehyde; SOD, superoxide dismutase; POD,

peroxidase; CAT, catalase; Pn, photosynthetic activity; E, transpiration rate; Gs, stomatal conductance;

iCO2, intercellular CO2 concentrations; Fv/Fm, maximum quantum yield in the dark; qP, photochemical

quenching; and NPQ, non-photochemical quenching.
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decreasing trend (318.14, 521.09, 908.77, and 90.85%) with increasing shading

duration and decreasing irrigation amount. Drought and shading treatments

damage leaf chlorophyll fluorescence, decreasing yield and related physiological

and biochemical attributes.
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Introduction

Food security relies significantly on wheat production, the world’s

most important cereal crop. In the loess Plateau of China, precipitation

is the sole source of irrigation for winter wheat cultivation (Qiu et al.,

2022). This region naturally experiences irregular and inadequate

rainfall (Aixia et al., 2022). The annual rainfall ranges from 400-600

mm, with only 20-30% occurring during the winter wheat growth

period, which is insufficient to meet the crop’s water requirements

(Dong et al., 2019; Li et al., 2019). Furthermore, in China’s rainfed

regions, the annual evaporation rate surpasses 830 mm, resulting in

severe drought conditions throughout the entire growth period of

winter wheat (Zhang et al., 2016). Among the developmental stages of

winter wheat, the filling stage is most vulnerable to drought stress

(Hlavacova et al., 2018; Hussain et al., 2019). In the Loess Plateau of

China, inadequate light due to cloud cover during the grain-filling stage

exacerbates this situation, leading to yield losses in maize (Naseer

et al., 2023).

Compared to a single stress, co-occurring stressors can lead to

differences in plants’ morphological and physiological responses.

Plants subjected to both drought stress (55.2% field capacity) and

low irradiance (PPFD = 500-600 mol m-2 s-1 at noon) did not

exhibit a decrease in transpiration rate (E), stomatal conductance

(gs), or net photosynthetic rate (Pn), unlike plants exposed to

medium or high irradiance (Shafiq et al., 2020). This supports the

facilitation hypothesis (Holmgren, 2000), suggesting that the level

of irradiance in the environment impacts how drought stress affects

plant’s photosynthetic ability. Furthermore, the presence of shade

led to a reduction in the synthesis of reductants such as glutathione

reductase, thioredoxin reductase, and ascorbate when drought

stress and shade co-occurred (Ali et al., 2005; Baier et al., 2005;

Ahmed et al., 2009). More substantial ROS-driven oxidative

damage during drought is associated with reduced reduction

ability (Fatemi et al., 2023). ROS damage leads to various

physiological and metabolic abnormalities in plants (Hussain

et al., 2019).

Light intensity plays a significant role in influencing various

aspects of photosynthesis, including the rate of photosynthesis (Pn),

transpiration rate, stomatal conductance, and light compensation

and saturation points (Li et al., 2007; Ubierna et al., 2013).

Chlorophyll fluorescence, which provides subtle insights into the
02
primary reactions of photosynthesis, is a non-invasive tool used in

ecophysiological studies to assess plant responses to environmental

stress (Sommer et al., 2023). The intricate relationships

between fluorescence kinetics and photosynthesis contribute to

our understanding of the biophysical processes underlying

photosynthesis. These processes also impact the composition of

photosynthetic pigments, chloroplast structure, and Pn. Leaf

adaptation to shading during development, particularly in

chloroplasts, involves special biochemical adjustments. Under

shade conditions, leaves contain more chlorophyll by weight but

less per unit leaf area compared to leaves in full sun. Chloroplasts

adapted for efficient photosynthetic quantum conversion have a

higher photosynthetic capacity per leaf area and higher chlorophyll

content, featuring elevated chlorophyll a and b values. Horie et al.

(2006) demonstrated that canopy temperature is lower in shaded

plants than in those exposed to full sun.

Leaves, as the primary photosynthetic organs, are significantly

influenced by light levels. Plants’ capacity to adapt to suboptimal

light conditions relies heavily on leaf characteristics (Li et al., 2010;

Bande et al., 2013; Mauro et al., 2014). Leaf anatomy is impacted by

light, but different species alter their leaf structure in varying ways

(Pang et al., 2019). Relevant morphological changes include

increased leaf area, decreased specific leaf weight (SLW), and a

higher dry weight (DW) of leaves relative to stems or the total plant

DW (Manoj et al., 2019; Angadi et al., 2022). Leaves developed

under reduced sunlight are typically thinner but larger, resulting in

a higher specific leaf area (SLA) (Rozendaal et al., 2006; Feng et al.,

2008; Liu et al., 2016). These changes are likely adaptations to

maximize light and carbon capture in low-light conditions,

reducing the plant’s dry mass per unit leaf area and increasing

the proportion of leaf biomass in the total plant biomass (Nurul

Hafiza et al., 2014).

Our study utilized different shading intervals and irrigation

gradients to quantify yield change under combined drought and

shading conditions. The shading treatments correspond to the

natural light/cloudy conditions during the grain-filling stage of

winter wheat in the loess plateau of China. Meanwhile, the

irrigation treatments correspond with the natural rainfall (mm)

during the grain-filling stage. Our study aimed to (1) quantify the

photochemistry of winter wheat flag leaves during the grain-filling

stage, (2) assess the winter wheat yield reduction due to low light
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and drought conditions during the grain-filling stage, and

(3) evaluate the changes in physiological parameters of winter

wheat and their contribution to yield reduction under these

combined stresses.
Materials and methods

Plant materials and experimental design

This experiment was conducted in a greenhouse at the Institute

of Water Saving Agriculture Experimental Station of Northwest

A&F University, Yangling (34°20′N, 108°24′E), China. The

underground soil columns (with a diameter and length of 30 cm

and 3 m, respectively) were filled with a mixture of farmland topsoil

and compost in a 2:1 ratio (w/w). The study was conducted under

waterproof sheds. The dimensions of the shed were 3 m (height) ×

15 m (width) × 16 m (length). Moveable waterproof sheds were

used to manage natural rainfall on rainy days. The experiment was

conducted using a split-plot design with three replications.
Crop management and radiation control

In this study, we used wheat (Triticum aestivum L.) cv. Xinong

979 which was obtained from Jun Hun Seed Company. Ten plants

per column were physically harvested on May 29, 2022, after being

manually planted on October 12, 2021. At the time of seeding, 225

mg kg-1 of nitrogen (from urea) and 75 mg kg-1 of phosphorus

(from diammonium phosphate) were applied. Each soil column was

irrigated with a precisely determined amount of water using pipes

emerging from drums for irrigation application.

The grain-filling stage, identified as Z70 (Zadoks et al., 1974), is

particularly vulnerable to the impacts of drought and shading (Farooq
Frontiers in Plant Science 03
et al., 2014; Hlavacova et al., 2018). Therefore, Z70 was selected as the

treatment stage (Li et al., 2007; Mu et al., 2010). During the grain-filling

stage of winter wheat, irrigation treatments were determined based on

the region’s maximum and minimum historical rainfall values over the

past 10 years. Themaximum andminimumprecipitation conditions for

the area were identified as 168 mm and 0 mm, respectively (Figure 1).

We divided these into 4 levels, corresponding to natural rainfall

conditions: I100 indicates full irrigation (8.96 L), I75 represents 75%

of full irrigation (6.72 L), I50 represents 50% of full irrigation (4.48 L),

and I25 represents 25% (2.24 L) of total irrigation (8.96 L). These levels

represent the percentage of total irrigation (8.96 L) applied during the

grain-filling stage. Before the application of drought, the soil moisture in

fixed underground columns was kept at 85–90% Field Capacity (FC).

During the same period of irrigation treatments, with intervals of three

days apart, five levels of shading treatment were applied: (1) SD12

(shading for 12 days), (2) SD9 (shading for 9 days), (3) SD6 (shading for

6 days), (4) SD3 (shading for 3 days), and (5) SD0 (0 days shading, CK).

Shading was achieved using black plastic cover. A detachable shed

measuring 12 meters long by 7 meters wide and with a height of 3.5

meters was constructed using scaffolding and black polypropylene

fabric. The fabric extended 2 meters longer at the edge to block

slanting sunlight. During the experiment, the photosynthetic photon

flux density (PPFD) for the regular light treatment was about 150 ± 10

mmol photons m−2 s−1 and a red/far red (R:FR) ratio of 1.2. Under

shading conditions, the PPFD was reduced to 75 ± 10 mmol photons

m−2 s−1 with an R:FR ratio ranging from 0.4 ∼ 0.6.
Sampling and measurements

Gas exchange parameters
The gas exchange parameters (rate of net photosynthesis, stomatal

conductance, light intensity, and transpiration rate) were measured

using a portable photosynthesis system LI- 6400XT (LI-COR,
A B

FIGURE 1

(A) Average monthly precipitation (mm) during 2011-2020 in the study area (B) Average daily solar radiation (Wm-2) during the growth period in
2011-2020.
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Biosciences, Lincoln, NE, USA). The CO2 concentration in the leaf

chamber was maintained at 380 µmol mol-1, and the photosynthetic

active radiation was set at 1100 µmol m-2 s-1. Observations were

recorded from the flag leaves between 9:00 to 11:00 AM after 12 days of

shading duration during the grain-filling stage (12 days after Z70)

(Urban et al., 2018) Three plants from each soil column were selected,

and their flag leaves were tagged for these measurements.

Chlorophyll fluorescence measurements
Chlorophyll fluorescence was measured using Fluor Technologia

software (Fluor Images, United Kingdom). Three fully expanded leaf

samples from each column were collected and immediately preserved

in plastic bags placed in an ice box to prevent exposed to direct light.

The samples were then analyzed using a fluorescence analyzing device

with the mentioned software. We examined the maximum quantum

yield in the dark (Fv/Fm), quantum yield, photochemical quenching

(qP), and non-photochemical quenching (NPQ) using the FluorImager

software, Technologia LTD (Hussain et al., 2019).
Grain yield and yield components

Twenty spikes per column were harvested at maturity and

threshed to separate the grains from the straw. The number of

kernels per spike was counted, and 1000 grains were counted and

weighed. Five tillers were randomly selected in each soil column to

measure plant height using a meter rod. Spike length (distance from

the base to the end of the spike) was measured with a ruler.

Additionally, three plants were randomly selected from each

column to record the grain yield.
Malondialdehyde contents and antioxidant
enzyme activities

Three flag leaf samples from each column were taken and

preserved in liquid nitrogen after 12 days of shading treatment.

These samples were stored in the refrigerator at -80°C. Leaf

malondialdehyde (MDA) contents, an index of lipid peroxidation,

were determined using the method described by (Cakmak and

Marschner, 1992) with slight modifications. 500 mL of supernatant

from the MDA reaction mixture (containing 0.65% (w/v)

thiobarbituric acid in 20% trichloroacetic acid) was heated for 30

min and then quickly chilled to halt the reaction. The mixture was

then centrifuged at 10,000g for 10 min. The absorbance of the

mixture was measured at 532 nm, and non-specific absorption was

accounted for by subtracting the absorbance at 600 nm.

For the determination of superoxide dismutase (SOD), peroxidase

(POD),andcatalase(CAT)activities,0.2g frozenleaf tissueswereground

in 5mLof 0.1mol L–1 Tris-HCl buffer (pH7.8) containing 1%polyvinyl

pyrrolidone, 1 mmol L–1 EDTA, and 1 mmol L–1 dithiothreitol. The

homogenatewascentrifugedat18000g for20minat4°C.Thesupernatant

was subsequently used tomeasure enzyme activities.

For the determination of SOD activity, the reaction mixture

contained 0.2 mL of the enzyme solution mixed with 50 mM
Frontiers in Plant Science 04
phosphate buffer (pH 7.6), 13 mM methionine, 750 mM NBT, 4

mM riboflavin, and 0.1 mM EDTA. The photochemical reduction

of NBT was measured following the procedure of Lei et al. (2006).

Catalase activity was assayed by mixing the reaction mixture

containing 50 mM phosphate buffer (pH 7.0) and 12.5 mM H2O2

with enzyme extract, following the method of (Djanaguiraman

et al., 2009). To estimate POD activity, 50 mM phosphate buffer

(pH 7.0), 16 mM guaiacol, enzyme extract, and 10 mM H2O2 were

added to the reaction mixture. The POD activity was determined as

described by Cakmak and Marschner (1992).
Statistical analysis

Data were analyzed using two-way analysis of variance

(ANOVA) to assess the effects of drought and shading

treatments. This analysis was conducted using R-software

(Version; 4.1.0) with the support of the agricolae package

(Version 1.3-5) to confirm variability. The Tukey HSD test was

used to quantify differences between treatments at a 5% probability

level. Data representation and illustration were performed using

Origin software. Pearson correlation analysis was conducted using

the pandas package (cluster map) in Python 3.12 to examine

relationships among the studied parameters.
Results

Effect of shading and drought stress on gas
exchange parameters

The irrigation and shading treatments significantly affected the

photosynthetic activity (Pn), transpiration rates (E), stomatal

conductance (Gs), and intercellular CO2 concentrations (iCO2)

(Supplementary Table S1). The interactive influence was also

significant for these traits (Figures 2, 3). Pn, E, Gs, and iCO2

showed a decreasing trend with increasing shading duration and

decreasing irrigation amount, with the lowest values observed under

conditions of high-duration shading and minimum irrigation

supply conditions (I25). Shading for 12 days and 75% irrigation

reduction demonstrated a significant decrease of 318.14, 521.09,

908.77, and 90.85% in Pn, E, Gs and iCO2, respectively, as

compared with no shading and full irrigation.
Effect of shading and drought stress on
chlorophyll fluorescence

Irrigation intervals and shading duration, both individually and

interactively, significantly (P<0.05) influenced chlorophyll

fluorescence (Supplementary Table S1) (Figures 4, 5). The quantum

yield, qP, NPQ, and Fv/Fm decreased in descending order with

increasing irrigation intervals and shading duration. The maximum

reduction in these traits was recorded under shading for 12 days and

25% irrigation, with reductions of approximately 26.82%, 40.83%,
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201.56%, and 105.05% in quantum yield, qP, NPQ, and Fv/Fm,

respectively, compared to the full irrigation and no shading treatment.
Effect of shading and drought stress during
grain filling on yield and yield parameters
of winter wheat

The stress treatments had a significant effect, i.e., irrigation

intervals, shading durations, and their interactions, on yield and

yield-related traits. These traits decreased in descending order with

increasing irrigation interval and shading duration (Table 1). The

maximum reduction in these traits was recorded in plants exposed

to shading for 12 days and supplemented with only 25% irrigation,
Frontiers in Plant Science 05
with reductions of 160.67% in spikes per plant, 248.13% in spikelets

per spike, 28.22% in 1000-grains weight and 179.55% in grain yield,

compared to the full irrigation and no shading treatment (Table 1).
Effect of shading and drought stress on
antioxidants and
malondialdehyde contents

The antioxidant activities (SOD, POD and CAT) were significantly

different for shading duration (SD), irrigation and combined shading

and irrigation (SD×I) treatments (Figures 6, 7). SOD, POD, and CAT

activities, increasedwith reduced irrigation amounts and longer shading

durations. Compared with full irrigation and no shading treatment, a
A

B

FIGURE 2

Effect of shading durations on (A) stomatal conductance and (B) intracellular CO2 concentration of wheat under different irrigation conditions (100,
75, 50 and 25% irrigation). The values represent the mean ± standard error, and bars sharing similar letters for a parameter indicate non-significant
(p<0.05) differences.
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75%reduction in irrigationand12daysof shading increasedSOD,POD,

andCAT activity by 66.79, 65.07 and 58.38%, respectively. However, the

increase in MDA contents was not significant for IR, SD, and IR×SD

treatments (Supplementary Table S1).
Correlation analysis and principal
component analysis

The chlorophyll fluorescence, gas exchange parameters,

antioxidant activities, and yield traits were significantly correlated

under irrigation and shading treatments (Figure 8). Pn had a strong

positive correlation with iCO2, Gs, E, and yield traits (SPP, KPS, TKW

and yield) while showing a strong negative correlation with antioxidant
Frontiers in Plant Science 06
activities. Likewise, iCO2, Gs, and E were strongly positively correlated

with each other, as well as with chlorophyll fluorescence, gas exchange,

and yield traits, but had a strong negative correlation with antioxidant

activities. SOD showed a strong positive correlation with POD and

CAT, while exhibiting a strong negative correlation with gas exchange

traits, chlorophyll fluorescence, and yield-related traits.

Overall, gas exchange traits, chlorophyll fluorescence, and yield-

related traits had a significantly strong correlation with each other.

Furthermore, principal component analysis was conducted using

recorded data on gas exchange, photosynthetic traits, and yield

attributes. It was noted that PC1 captured about 77.1% of the inertia

of the data and was strongly related to CAT, SOD, and POD activity

(Figure 9), indicating that antioxidant activities accounted for seedlings’

responses to irrigation and shading treatments. PC2 described only
A

B

FIGURE 3

Effect of shading duration on (A) photosynthesis, and (B) transpiration rate of wheat under different irrigation conditions (100, 75, 50 and 25%
irrigation). The values represent the mean ± standard error, and bars sharing similar letters for a parameter indicate non-significant
(p<0.05) differences.
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6.1% of the variance and was mainly determined by gas exchange and

chlorophyll fluorescence. The comprehensive model of the change in

photosynthetic activity, antioxidant activities, photochemical efficiency

and yield due to combined effect of shading and drought on winter

wheat is shown in (Figure 10).
Discussion

Gas exchange and
photochemical reactions

Consistent with previously published studies, we observed a

significant reduction in quantum yield, Fv/Fm, qP and NPQ under
Frontiers in Plant Science 07
different shading durations as drought stress severity increased

(Hussain et al., 2019a). Due to its sensitivity and utility,

chlorophyll fluorescence is a crucial indicator of photosynthetic

efficiency and plant responses to environmental variables (Dai et al.,

2009). Reduced electron flow through PSII is typically associated

with decreased photosynthetic capacity (Yao et al., 2017a). Previous

studies have shown that crops grown in shaded conditions (Hussain

et al., 2019a; Hussain et al., 2019b) as well as under drought stress

tend to exhibit lower values of quantum yield, effective quantum

yield of photosystem (PSII), photochemical quenching (qP), and

electron transport rate (ETR) (Mafakheri et al., 2010; Abid et al.,

2017; Mathobo et al., 2017).

According to the findings, the impact on the photosynthetic

electron transport chain and leaf water loss reduced the
A

B

FIGURE 4

Effect of shading durations on (A) quantum yield, and (B) Non-Photochemical quenching (NPQ) of wheat leaves under different irrigation conditions
(100, 75, 50 and 25% irrigation). The values represent the mean ± standard error, and bars sharing similar letters for a parameter indicate non-
significant (P<0.05) differences.
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photorespiration rate as shade intensity or duration decreased.

Notably, the changes in Pn and Gs were closely linked to the light

level (Yao et al., 2017b). Conversely, the photosynthesis rate of

shaded leaves decreased due to the reduced solar radiation and

increased diffuse light (Ping et al., 2015). Previous reports indicate

that stomatal limitation is the primary factor causing lower

photosynthesis during drought (Silva et al., 2013).

Results showed that limited irrigation decreased the maximum

photochemical efficiency of PSII (Fv/Fm), the probability of electron

transport beyond QA (1-VJ), and the ratio of (1-VI)/(1-VJ), which

express the efficiency with which an electron from the intersystem

electron carriers moves to electron acceptors at the PSI acceptor side.

This reduction was more pronounced under the control treatment (no
Frontiers in Plant Science 08
shade) than other treatments (Figure 5). Due to its sensitivity to stress,

chlorophyll fluorescence can reliably represent changes in

photosynthesis under drought and shade stress. According to

Naramoto et al. (2006), protein phosphatases are thought to

dephosphorylate LHCII (the light-harvesting chlorophyll protein) in

situations of decreasing light intensity (shading conditions), causing the

mobile light receptor antennae to revert to PSII (Naramoto et al., 2006;

Strasser et al., 2010). Due to the overstimulation of PSII, leading to a

shift in the mobile antennae, the efficiency of total electron transport is

higher in shaded conditions than in full sunshine. Under field

conditions, where plants typically experience both water stress and

high light levels, down-regulated photosynthesis occurs due to the

interaction between water stress and excessive light (Rakic et al., 2015).
A

B

FIGURE 5

Effect of shading durations on (A) Photochemical quenching, and (B) Fv/Fm of wheat leaves under different irrigation conditions (100, 75, 50 and
25% irrigation). The values represent the mean ± standard error, and bars sharing similar letters for a parameter indicate non-significant
(P<0.05) differences.
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Light enhances evaporation and dehydrates the leaves, and it can also

directly induce photoinhibition, which is the temporary damage to

proteins in the photosynthesis reaction centers (Yamazaki et al., 2011).

Both evaporation and photoinhibition can reduce plant photosynthetic

activity. In an experiment, Li and Ma (2012) found that direct

photoinhibition of light on dehydrated apple tree leaves was the

primary cause of decreased PSII activity.
Antioxidant enzyme activity and
ROS generation

Drought and shade conditions cause oxidative stress in

plants, leading to increased ROS generation and inducing lipid

peroxidation. This process damages the plant’s cell membrane
Frontiers in Plant Science 09
and results in oxidative damage to DNA, protein, and

chlorophyll pigments, ultimately causing cell death (Naseer

et al., 2022). In response to oxidative stress, plants produce a

complex array of antioxidant enzymes such as SOD, POD, and

CAT. These enzymes prevent uncontrolled oxidation by ROS

and maintain a balance between ROS production and removal,

which is essential for the optimal functioning of photosynthesis

(Foyer, 2018). We found that enzymatic activity was

substantially higher in shaded conditions compared to full

light. Additionally, increasing auxin levels under simultaneous

shade and drought stress enhanced antioxidant enzymatic

activity (Duan et al., 2005). Moreover, as drought stress

intensifies, plants under shade stress increase their synthesis of

antioxidants to control their redox balance, thus mitigating the

severe consequences of drought stress (Asghar et al., 2020).
TABLE 1 Effect of shading durations on spikes per plant, grains per spike, 1000-grain weight, and grain yield of winter wheat under different
irrigation regimes.

Irrigation
regimes (IR)

Shading durations
(SD)
(days)

Spikes per plant
(number)

Grains per spike
(number)

1000 grain
weight
(g)

Grain yield

100

12 19.55 ± 0.69c-h 19.33 ± 2.52c-e 42.53 ± 0.27c-e 16.1 ± 0.351b-e

9 21.32 ± 0.87c-f 23.00 ± 2.65b-d 42.95 ± 0.07c-e 17.2 ± 1.05a-c

6 23.09 ± 0.43bc 25.00 ± 2.00a-c 43.68 ± 0.29bc 16.86667 ± 0.81a-d

3 27.70 ± 3.16b 29.00 ± 2.65a 46.41 ± 0.36ab 18.43667 ± 0.42ab

0 34.20 ± 3.54a 28.67 ± 2.52ab 47.06 ± 0.28a 19.01667 ± 0.34a

75

12 19.88 ± 1.27c-h 11.33 ± 1.15gh 40.28 ± 0.36e-g 14.14333 ± 1.48ef

9 21.82 ± 0.73c-e 13.00 ± 2.0f-h 40.89 ± 0.20def 15.77333 ± 1.51bcde

6 24.03 ± 1.82bc 15.67 ± 1.15e-g 41.29 ± 0.05c-f 14.30333 ± 0.92def

3 27.90 ± 1.02b 17.67 ± 1.15d-f 42.07 ± 0.12c-f 15.81333 ± 1.34bcde

0 35.66 ± 5.50a 18.00 ± 1.73d-f 42.34 ± 0.01c-e 15.80667 ± 0.65bcde

50

12 13.52 ± 0.13i 11.33 ± 0.58gh 40.35 ± 1.52e-g 9.733333 ± 0.06gh

9 15.02 ± 0.55g-i 13.33 ± 0.58f-h 37.95 ± 0.06gh 13.73333 ± 0.47f

6 16.14 ± 0.04e-i 8.67 ± 1.53h 41.55 ± 2.54c-f 12.26 ± 1.49fg

3 19.67 ± 2.44c-h 13.67 ± 1.53e-h 43.58 ± 1.00cd 12.4 ± 1.3fg

0 22.54 ± 0.37b-d 13.00 ± 2.65f-h 46.43 ± 1.00ab 14.74333 ± 0.56cdef

25

12 13.12 ± 0.63i 8.33 ± 1.15h 36.70 ± 1.23h 6.8 ± 0.62ij

9 14.19 ± 0.50hi 12.67 ± 1.15f-h 37.31 ± 1.16h 7.526667 ± 0.67hij

6 15.78 ± 0.44f-i 10.67 ± 1.53gh 37.69 ± 1.13gh 6.533333 ± 0.15j

3 17.09 ± 0.77d-i 14.67 ± 1.15e-g 37.25 ± 0.05h 8.466667 ± 0.40hij

0 20.64 ± 1.37c-g 15.33 ± 3.79e-g 39.45 ± 0.85f-h 9.45 ± 0.13hi

Analysis of variance

LSD (p< 0.05) Spikes/plant Kernels/spike 1000-grain weight Grain yield

IR (***) <2 × 10-16 (***) <2 × 10-16 (***) <2 × 10-16 (***) <2 × 10-16

SD (***) <2 × 10-16 (***) 8.67 × 10-10 (***)6.06 × 10-14 (***) 1.04 × 10-9

IR×SD (*)0.018 (*) 0.0134 (***)6.35 × 10-6 (*) 0.048
IR, irrigation regimes; SD, shading durations (days); (***), p < 0.001; (**), p< 0.01; (*), p< 0.05; (ns), non-significant. Values represent means ± standard error. Means sharing similar letters for a
parameter indicates non-significant (P<0.05) differences.
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Partitioning of absorbed light energy
and photorespiration

Our results illustrate a reduction in the quantum yield of PSII

under limited irrigation compared to full irrigation and across all

shading treatments, as well as a decrease in the capture efficiency

of excitation energy (Fv/Fm) (Figure 5). Notably, when shade was

provided throughout the entire growing season, as opposed to

previous shading treatments, the values of quantum yield and Fv/

Fm exhibited a significant decrease (Figure 5). This decrease is

likely attributed to the longer duration of shade exposure and

lower irrigation levels. Furthermore, the non-photochemical

quenching (NPQ) experienced a significant decrease due to the
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combination of shade and water stress (Figure 4). The values for

Fv/Fm and quantum yield were higher in the control treatment

(no shade) when plants received full irrigation. However, NPQ

was still greater in the shading treatment, even under full

irrigation conditions. As longer shade durations (SD12) were

imposed, changes in the photorespiration rate suggested

that more photosynthetic electrons were partitioned to

photorespiration during water deficiency stress. Only a minimal

amount of light energy is used for photosynthesis during drought

stress (closed stomata and subsequent secondary light stress due

to a lack of CO2), and nearly all of the available energy must be

securely disposed of. Photorespiration can sustain the Calvin cycle

when CO2 availability restricts photosynthesis by making
A

B

FIGURE 6

Effect of shading durations on (A) malondialdehyde (MDA) and (B) superoxide dismutase (SOD) of wheat under different irrigation conditions (100, 75,
50 and 25% irrigation). The values represent the mean ± standard error, and bars sharing similar letters for a parameter indicate non-significant
(P<0.05) differences.
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phosphoglycerate available (Suorsa and Aro, 2007). Nonetheless,

it should be noted that the rate of leaf water loss was the main

factor controlling photorespiration in stressed plants (Corpas

et al., 2001).

The reduced stomatal density, leaf thickness, cross-sectional

size of the vascular bundle, and contact area of the bundle

sheath cells (Baldi et al., 2012) may contribute to reduced

photosynthetic capability under shading conditions (Sultan,

2000). Modifications in leaf anatomy, morphology, physiology,

and function can decrease photosynthesis. The physiology of

leaves responds to shade in two ways: lower canopy leaves may

age rapidly in intense shade conditions before the whole plant

undergoes monocarpic senescence. Alternatively, another
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response involves the adaptation of photosynthesis in shaded

leaves that persist on the plant until monocarpic senescence.
The facilitative effect of shading under
drought conditions

Interestingly, some studies have also reported that under shaded

conditions, as opposed to full light, the rate of Pn increased

significantly. This findings indicate a beneficial effect of shade

under drought conditions, supporting the facilitation theory

(Holmgren, 2000; Quero et al., 2006). Several processes may

contribute to the facilitative impact of shade under drought stress.
A

B

FIGURE 7

Effect of shading durations on (A) peroxidase (POD) and (B) catalase (CAT) of wheat under different irrigation conditions (100, 75, 50 and 25%
irrigation). The values represent the mean ± standard error, and bars sharing similar letters for a parameter indicate non-significant
(P<0.05) differences.
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First, in light-limited conditions, the sensitivity of gs to drought was

reduced, suggesting that the stomatal inhibition caused by drought

was lessened (Prider and Facelli, 2004). Secondly, as indicated by

reduced Fv/Fm, drought led to moderate photo-inhibitory injury in

the photosystem II of plants grown in full-light conditions. This
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result suggests that the amount of light absorbed by plants exceeded

what was necessary for photosynthesis, a condition exacerbated by

drought (Demmig-Adams and Adams, 1992). Finally, the shade-

induced rise in Pn became more favorable when the water supply

decreased. This phenomenon is attributed to the lower air

temperature in shaded conditions, which reduces the demand for

water for transpiration. Consequently, plants can store more water

and maintain a healthier tissue water status (Valladares and Pearcy,

1997; Prider and Facelli, 2004). These observations, consistent with
FIGURE 8

Relationships among net photosynthetic rate, antioxidant enzymes,
chlorophyll fluorescence, lipid peroxidation, and grain yield. Pn,
photosynthetic activity; E, transpiration rate; iCO2, intracellular CO2

concentration; Gs, stomatal conductance; SOD, superoxide
dismutase; CAT, catalase; POD, peroxidase; MDA, malondialdehyde;
Yield, grain yield; SPP, spikes per plant; KPS, Kernels per spike; TKW,
thousand kernel weight.
FIGURE 9

PCA (principal component analysis) of photosynthetic activity,
chlorophyll fluorescence, malondialdehyde contents, antioxidants
enzymes and yield parameters.
FIGURE 10

The comprehensive model of physiological metabolism regulation in winter wheat plants under drought and shading stress. Changing the light
environment and drought conditions regulate the photosynthetic activity, photochemical efficacy, and antioxidant enzyme activities to adapt the
environmental stress. The distribution and regulation of photo-assimilates affect the agronomic characteristics, and yield of winter wheat plants.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1396929
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Naseer et al. 10.3389/fpls.2024.1396929
previous studies, likely elucidate the positive impact of the drought-

shade interaction on biomass production by mitigating the adverse

effects of drought.
Conclusions

Shading and drought stress significantly affected winter wheat’s

physiological, biochemical, and yield traits. Both drought and shading

treatments caused a marked decrease in yield and related traits, with a

positive correlation between yield and associated traits such as spikes

per plant, grains per spike, and 1000-grain weight. Furthermore,

shading and drought affected physiological and biochemical

characteristics, with values decreasing values as stress intensity

increased. These reductions in physiological and biochemical traits

ultimately led to a substantial decrease in winter wheat yield. Shading is

a common abiotic stress in crop cultivation, significantly impacting

crop productivity. Unfortunately, this stress has often been overlooked,

despite its detrimental effects on crop growth, especially in

intercropping systems and high-density monocropping systems,

where crops frequently encounter shade throughout their lifespan.

Plants employ numerous intricate biochemical, physiological, and

molecular mechanisms to adapt to shade stress. Recent

advancements in biotechnology have been instrumental in

elucidating how plants respond to shade stress. However, further

research is needed to fully explore these techniques. Identifying

essential genes, proteins, metabolites, and other factors is possible

using contemporary computational and systems biology technologies.
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