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Soil salinization poses a critical problem, adversely affecting plant development

and sustainable agriculture. Plants can produce soil legacy effects through

interactions with the soil environments. Salt tolerance of plants in saline soils is

not only determined by their own stress tolerance but is also closely related to

soil legacy effects. Creating positive soil legacy effects for crops, thereby

alleviating crop salt stress, presents a new perspective for improving soil

conditions and increasing productivity in saline farmlands. Firstly, the formation

and role of soil legacy effects in natural ecosystems are summarized. Then, the

processes by which plants and soil microbial assistance respond to salt stress are

outlined, as well as the potential soil legacy effects they may produce. Using this

as a foundation, proposed the application of salt tolerance mechanisms related

to soil legacy effects in natural ecosystems to saline farmlands production. One

aspect involves leveraging the soil legacy effects created by plants to cope with

salt stress, including the direct use of halophytes and salt-tolerant crops and the

design of cropping patterns with the specific crop functional groups. Another

aspect focuses on the utilization of soil legacy effects created synergistically by

soil microorganisms. This includes the inoculation of specific strains, functional

microbiota, entire soil which legacy with beneficial microorganisms and tolerant

substances, as well as the application of novel technologies such as direct use of

rhizosphere secretions or microbial transmission mechanisms. These

approaches capitalize on the characteristics of beneficial microorganisms to

help crops against salinity. Consequently, we concluded that by the screening

suitable salt-tolerant crops, the development rational cropping patterns, and the

inoculation of safe functional soils, positive soil legacy effects could be created to

enhance crop salt tolerance. It could also improve the practical significance of

soil legacy effects in the application of saline farmlands.
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1 Introduction

In recent years, land degradation caused by climate change has

posed a huge challenge to agricultural production. In the absence of

major technological breakthroughs in agriculture, existing arable

land resources are hardly sufficient to support global food security

(German et al., 2017; Hartmann and Six, 2023). Saline farmland is

an important reserve resource of arable land with great potential for

ensuring food security and sustainable agricultural development

(Negacz et al., 2022). Therefore, finding solutions to increase the

productivity of saline farmland and improve crop tolerance to saline

stress has become an important research topic currently (Munns

and Tester, 2008).

Soil salinization is a global environmental problem, with more

than 833 million hectares of soil and more than 10% of farmland

affected by salinization (FAO, 2021), causing at least 25% of crops to

suffer from varying degrees of yield loss due to persistent salt stress,

with a serious impact on food security (Farooq et al., 2017; Kumar

et al., 2022). Soil salinization leads to reduced crop yield because the

significant negative impacts on seed germination by disrupting the

membrane permeability of the seed embryo and increasing the

osmotic stress on seeds (Deng et al., 2014). For salt-sensitive crops,

seed germination rate, germination time, and the length of the

plumule are all affected by salt stress (Abbas et al., 2012). Persistent

salt stress during the crop growth phase leads to crop water loss and

ion toxicity due to increased cellular osmotic pressure and

disruption of cell membranes (Läuchli and Grattan, 2007). Salt

stress also reduces nutrient uptake by inhibiting crop root growth

(Burssens et al., 2000; West et al., 2004), inhibits photosynthesis by

decreasing the crop’s leaf area (Hu et al., 2022), and ultimately

affects crop yield and quality.

Moreover, the survival of microorganisms is directly associated

with plant and soil environments (Pulleman et al., 2012). Salt stress

can reduce the abundance and activity of soil microbial

communities (Rietz and Haynes, 2003), affecting the composition

of functional soil microbes (Zhang et al., 2019), and disrupting the

stability of microbial networks (Li et al., 2023a). This disruption

affects nutrient cycling (Bai et al., 2012) and material utilization

(Elmajdoub and Marschner, 2013) ultimately affecting the

ecological functions of soil microbial communities (Zhang et al.,

2023). Weakened ecological functions of microbial community, in

turn, affect plant-microbe interactions (Etesami and Beattie, 2017),

as manifested by reduced microbial colonization (Li et al., 2023a)

and impaired plant growth (Jansson et al., 2023).

Both plants and soil microorganisms have developed specific

abilities and mutualistic associations to cope with various stresses

(Zhao et al., 2020; Liu et al., 2022). Halophytes and salt-tolerant

plants, as the dominant vegetation in saline environments, are better

adapted to saline stresses and have formed unique strategies

improving their adaptability through such pathways as salt gland

excretion (Yuan F. et al., 2016), ionic and osmotic regulation

(Zhu, 2016), antioxidant defenses (Apse and Blumwald, 2002) and

root structural modifications (Yu et al., 2022). Soil microorganisms

also have various salt-tolerance strategies, such as salt accumulation

and synthesis of organic osmotic material to adapt to high-salt
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environments (Gunde-Cimerman et al., 2018). Meanwhile,

beneficial microorganisms can influence performance of their host

plants under harsh conditions (Wang and Song, 2022). For example,

arbuscular mycorrhizal fungi can help host plants to cope with abiotic

stresses like drought, salt, etc., by improving plant water utilization,

regulating photosynthesis and maintaining osmotic balance (Borde

et al., 2017).

In addition, soil legacy effects are microbiological and

functional substance traits retained in the soil by the plants,

which influence the growth of succeeding plants (Van der Putten

et al., 2013). The formation of soil legacy effects is the process of

plant-microbe interactions in which plants respond to stressful

stimuli and mobilize the required metabolites and functional

microorganisms, thus promoting the growth of their own and

succeeding plants as well as increasing their tolerance (Bakker

et al., 2018). So, the application of soil legacy effects may also

help to refine the way we cultivate and manage crops for agricultural

production (Mariotte et al., 2018; Carrión et al., 2019; Cordovez

et al., 2019). Therefore, based on the theoretical foundation of soil

legacy effects in natural ecosystems, it is important to further

explore the mechanism of crop-soil-microbe interactions in saline

farmlands, which has profound implication for mitigating crop salt

stress, increasing crop productivity and improving the environment

of saline farmlands (Vukicevich et al., 2016).
2 Formation and role of soil legacy
effects in natural ecosystems

In natural ecosystems, plants and soil organisms have various

effects to soil legacy (Wardle et al., 2004; Faucon et al., 2017). Plant

species with different root structures, growth habits and ways of

interacting with soil organisms have important impacts on soil

legacy effects (Oliver et al., 2021), while plant species composition

and diversity also significantly modify such effects at the

community level (Kowalchuk et al., 2002; Lange et al., 2015). Soil

organisms, playing important roles in soil ecosystems, influence soil

legacy effects by affecting soil organic matter decomposition,

nutrient cycling and soil structure (Bardgett and Wardle, 2010).

Therefore, natural ecosystems have become a ‘database’ for

exploring the mechanisms of soil legacy effects in the context of a

highly diversified plants, microorganisms and soil environmental

factors. An increasing number of studies have been carried out on

the growth characteristics, resource utilization and survival

strategies of plants and microorganisms that contribute to a

better understanding about the soil legacy effects (Bezemer et al.,

2006; Cortois et al., 2016; Bezemer et al., 2018; Heinen et al., 2020).

The diversity of plant species, plant functional traits and soil

microorganisms in natural ecosystems contributes to extensive

research on species interactions and stress adaptations. The

intricate interactions between plants and soil microorganisms

play a crucial role in promoting the stabilization of soil

ecosystems (Grayston et al., 1998; Berg and Smalla, 2009;

Berendsen et al., 2012). Above- and below-ground interactions of

plants have long-term legacy effects on biotic stresses in natural
frontiersin.org

https://doi.org/10.3389/fpls.2024.1396754
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2024.1396754
ecosystems and can improve plant performance and resistance

by manipulating soil microbial communities (Wurst and Ohgushi,

2015; Pineda et al., 2017). For abiotic stresses, soil microorganisms

are able to implement a variety of mechanisms to fight against them

and keep soil fertility as well as plant development in good

condition (Abdul Rahman et al., 2021). For example, drought

stress-induced dominance of fungal communities can influence

succeeding plant drought adaptation by maintaining higher rates

of litter decomposition and soil respiration (Mariotte et al., 2015).

Inoculation of drought-conditioned phyllosphere and soil microbial

communities can make plants capable of coping with repeated

drought stress (Li et al., 2022).

Plant functional group is a common concept in the study of soil

legacy effects, which refers to a group of plants that respond similarly

to ecological processes and environmental changes, such as the

grasses, forbs and legumes that are frequently mentioned in the

literature (Kulmatiski et al., 2008; Cortois et al., 2016). Different plant

functional groups can create positive or negative soil legacy effects by

accumulating soil pathogens, recruiting beneficial microorganisms

and regulating interactions with insects, etc (Petermann et al., 2008;

Latz et al., 2012; Heinen et al., 2019). Such soil legacy effects, mediated

by aboveground plant functional groups and soil microorganisms,

play a role for succeeding plant growth in terms of soil physical

properties, soil nutrient availability, soil microbial community

structure, stress tolerance and competitive coexistence relationships

(Byun et al., 2013; Strecker et al., 2015; Fischer et al., 2018; Mackie

et al., 2018; Adomako and Yu, 2023).

Different plant functional groups play distinct roles in shaping

soil legacy effects. For instance, grasses may improve soil physical

structure and water retention through dense root systems (Hanamant

et al., 2022), while legumes retain soil nutrients through nitrogen

fixation (Spehn et al., 2002). The soil legacy effects resulting from

these changes in the soil environment create more favorable

conditions for succeeding plant growth. Simultaneously, the

interaction between various plant functional groups and soil

microorganisms yields diverse soil legacy effects. Grasses and forbs

secrete different carbon compounds into the soil, recruiting different

soil microorganisms (Philippot et al., 2013). For example, the

presence of the grasses Lolium perenne not only increased the

density of active bacteria in the soil but also elevated the expression

of biocontrol genes associated with these bacteria, thereby

contributing to the productivity of succeeding plant communities

(Latz et al., 2015). Moreover, grasses positively influence other plant

functional groups by altering soil microbial communities and soil

nutrients (Cortois et al., 2016). Forbs, however, with more

decomposers and higher concentrations of chemicals in their litter,

may negatively impact succeeding plants (Bonanomi et al., 2006).

To foster positive soil legacy effects, it is essential to manage

specific plant functional groups, regulate appropriate levels of

beneficial microorganisms, decomposers and pathogenic

microorganisms, and develop diverse plant-microbe community

interactions (Carrión et al., 2019; De la Fuente Cantó et al., 2020;

Xiong et al., 2020; Song et al., 2021). However, there is a current lack

of studies exploring the application of the principle of soil legacy

effects in understanding plant salt tolerance. Most studies have

focused on the mechanism of plant’s intrinsic salt tolerance and the
Frontiers in Plant Science 03
utilization of specific microorganisms to enhance salt tolerance in

laboratory and simulation experiments (Li et al., 2020a; Li et al.,

2020b; Li et al., 2021a; Schmitz et al., 2022). Therefore, it is

important to address how the rules of soil legacy effects can be

developed and applied in saline farmlands.
3 Processes of plant response to
salt stress

Plants have various strategies to cope with salt stress, involving

refinement in their cellular physiology, phenotypic structures,

osmoregulation, antioxidant production, and the regulation of

signaling pathways (Van Zelm et al., 2020; Zhao et al., 2020). For

instance, plants eliminate excess salt through a salt excretion

mechanism to minimize salt-damage (Dassanayake and

Larkin, 2017). Plants can also modify their root structure, such as

developing deeper root systems to increase water uptake and mitigate

the impact of salinity (Galvan-Ampudia and Testerink, 2011). In

addition, plants respond to salt stress-induced damage by producing

antioxidants, osmotic substances and protective enzymes (Hasegawa

et al., 2000). ABA-dependent protein kinases are activated in response

to salt stress, affecting cellulose distribution, controlling root tip cells,

thus promoting salt avoidance in plant (Yu et al., 2022). Plant roots also

secrete peptides that are transferred to the leaves to induce ABA

accumulation, thereby driving stomatal closure to prevent leaf

(Takahashi et al., 2018; Yu et al., 2020). Therefore, the combined

application of these strategies enables plants to better adapt and survive

in high-salt environments.

Besides plant innate responses, the complex microbial

communities in rhizosphere soil play a critical role in host

performance and tolerance to stresses (Durán et al., 2018; Carrión

et al., 2019). These microbial communities help plants adapt to harsh

conditions by forming mutualistic relationships, participating in

nutrient uptake, producing beneficial compounds, and inducing

immune responses that support plants against stress (Hou et al., 2021).

In terms of salinity tolerance, microorganisms establish mutually

beneficial symbiotic relationships with plants through various

mechanisms, assisting them in adapting to high salt environments.

Rhizosphere microorganisms can secrete specific compounds, such as

bacterial exopolysaccharides (EPS), which improve plant ion balance,

promote soil aggregation, and thusmaintain plant growth in high-salt

(Morcillo and Manzanera, 2021). Arbuscular mycorrhizal fungi

(AMF) enhance host plant salt tolerance by manipulating the

osmotic balance through mycelium, improving access to water and

nutrients (Hammer et al., 2011; Ruiz-Lozano et al., 2012). Moreover,

rhizosphere microorganisms also play a role in physiological

regulation and defense processes (Mishra et al., 2021). Plant growth

promoting rhizobacteria (PGPR) can stimulate root development and

enhance nutrient utilization under salt stress. For instance, the IAA-

overproducing strain Sinorhizobium meliloti has been found to

enhancive salt tolerance of alfalfa in saline soils by stimulating root

proliferation (Bianco and Defez, 2009). Under salt stress conditions,

the increase in the number and weight of root nodules in Acacia

gerrardii inoculated with Bacillus subtilis contributed to the

enhancement of nitrogen fixation by the roots, as well as uptake
frontiersin.org
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and systemic translocation of phosphorus by the plant (Hashem et al.,

2016a, Hashem et al., 2016b). AMF can activate an antioxidant

protection system, maintaining cell membrane stability by

decreasing permeability and malondialdehyde (MDA) content in

plants (Yang et al., 2014).

These complex processes converting salinity tolerance cannot be

separated from the dynamic interactions between plants and

microorganisms (Liu et al., 2022). In the context of climate change-

induced stress, introducing new microbial taxa had been shown to

improve plant survival in stressful environments, and plant tolerance

can be predicted by the climatic history of the microbial community

(Allsup et al., 2023). Building on this, plant-soil-microbe interactions

in salt-stressed environments may result in a history of stress

response for soil microbes and the soil environment, generating soil

legacy effects that aid succeeding plants in overcoming salt stress

(Figure 1; Li et al., 2021a; Jing et al., 2022).
4 Creating soil legacy effects to
improve crop salt tolerance

Farmlands vulnerable to saline stress often experience extreme

environmental conditions and undergo specific agricultural

management practices. These practices include high surface

evapotranspiration, low precipitation, elevated ambient
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temperatures, and the application of chemicals, along with heavy

irrigation during production (Arora et al., 2018; Enebe and

Babalola, 2018). In contrast to natural ecosystems, the production

function of farmland directly determines its monoculture structure,

resulting in low plant diversity and nutrient use efficiency,

imbalanced dynamics between above-ground crops and below-

ground soil food webs, and altered crop defense mechanisms

(Savary et al., 2019). Crops cultivated in farmlands tend to

prioritize growth over defense compared to their wild

counterparts of the same species. This preference, combined with

the monoculture structure, increases the likelihood of negative soil

legacy effects between previous and succeeding crops (Mariotte

et al., 2018). The multiple stresses of saline farmlands challenge the

growth of crops and soil microbes, and there is a need to rethink

how to create soil legacy environments that are conducive to crop

growth, while optimizing agricultural practices and fostering

sustainable methods to enhance soil health and crop (Li et al., 2014).
4.1 The use of plants to create soil
legacy effects

The productivity constraints of saline farmlands primarily

result from the highly stressful environment directly impacting

the growth of aboveground crops. Most staple crops in agricultural
FIGURE 1

Processes of plant response to salt stress in natural ecosystems and possible soil legacy effects by plants. This figure shows, from left to right, three
different plant functional groups, legume, grass, and forb, which respond simultaneously through above-ground and below-ground parts to salt
stress. For above-ground parts of the plant, by refining cellular physiological and plant phenotypic structure, regulating signaling pathway, hormone
and metabolite and thus responding to salt stress. For below-ground parts of the plant, by maintaining ionic balance, producing different root
secretions, recruiting beneficial microorganisms and thus responding to salt stress. The response of above- and below-ground parts to salt stress
simultaneously with increasing the plant’s own acquisition of soil water and nutrients, promoting plant root proliferation, and maintaining the
osmolality of the plant as well as the rhizosphere, thus creating the positive soil legacy effects through this favourable response processes.
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production, such as maize, wheat, and rice, show high sensitivity to

salinity stress. This sensitivity manifests itself in increased crop

water loss, plant and fruit wilting, reduced crop photosynthesis,

lowered carbon fixation, inhibited crop nutrient uptake, and slowed

growth (Atta et al., 2023). To overcome the production bottlenecks

in saline farmlands, it is necessary to harness biological resources

with inherent salt tolerance found in natural environments.

Additionally, establishing positive soil legacy effects through the

introduction of specific plant species and plant functional groups is

crucial (Figure 2).

4.1.1 The use of salt-tolerant biological resources
One feasible approach is to utilize the ability of halophytes and

salt-tolerant plants in the natural environment. Firstly, some

halophytes can absorb salt ions, and they are effective in reducing

surface soil salinity while fighting against the increase in ion levels in

tissue cells through leaf succulence (Song and Wang, 2015).

Halophytes also dissolve calcium in the soil through root

respiration, where calcium ions replace sodium ions in the cation-
Frontiers in Plant Science 05
exchange complex, and ultimately improve soil physical properties in

the plant’s root zone (Qadir et al., 2005). Desalinated soils resulting

from these processes contribute favorably to the subsequent growth

of plants. Secondly, both halophytes and salt-tolerant plants boast

robust root systems with strong penetration and water-holding

capacity, thus enhancing soil structure (Silva et al., 2016). This

improvement increases soil permeability and water retention post-

planting, with the positive effects on soil structure persisting over an

extended period (Liang and Shi, 2021). Finally, certain salt-tolerant

plants, such as the forage crop sweet sorghum, can develop salt

tolerance through hormonal signaling and secondary metabolites

(Chen et al., 2022). Notably, stress-induced plant secondary

metabolites have demonstrated legacy effects on succeeding plant

growth by manipulating the composition of soil microbiome (Hu

et al., 2018). Consequently, the utilization of halophytes and salt-

tolerant plants presents opportunities to desalinate saline farmlands,

improve soil conditions, or directly leverage the soil legacy effects

created by the metabolites they produce to enhance crop resilience

to salinity.
FIGURE 2

Effects of salt stress on crops and how to create soil legacy effects as well as improve crop salt tolerance in saline farmlands. The harmful effects of
salt stress on crops include weakening crop photosynthesis, increasing osmotic stress, reducing crop nutrient uptake, adding ionic toxicity, and
declining rhizosphere microbial diversity. By using halophytes, salt-tolerant plants, and plants of different functional groups, and developing the
cropping patterns of rotating, intercropping, and mixed cropping with crops, the interactions between above- and below-ground parts of the plants
can achieve the regulation of soil nutrients in saline farmlands, the desalination of surface soils, the secretion of salt-tolerant metabolite, and thus
regulating the balance of soil microorganisms, as well as triggering the interactions between plants and insects. The improvement of salt tolerance in
crops can also be achieved by screening for salt-tolerant microorganisms, inoculation with beneficial microbiota or entire soil inoculation. At the
same time, new cultivation techniques could be used to combine the beneficial microorganisms directly with the plants and to transmit the
tolerance. Crops with improved tolerance continue to produce salt-tolerant root secretions and to recruit beneficial microorganisms, thus creating
an effective recycle of crop salt tolerance. All of these processes can create positive soil legacy effects through beneficial interactions between the
above-ground and below-ground parts of the crop and influence succeeding crop.
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4.1.2 Introducing plant functional groups into
crop rotation systems

The soil legacy effects observed in natural ecosystems, facilitated

by specific functional groups of plants, can significantly impact

succeeding plants (Bezemer et al., 2006). This insight has inspired

the development of effective cropping patterns for saline farmlands,

especially considering that traditional monoculture patterns have

contributed to soil resource depletion and decreased farmland

productivity (Guo and Zhou, 2022). Grasses, have a solid research

base in the field of ecology, known for carbon sequestration,

nutrient cycling and improved soil stability (Franzluebbers, 2012;

Hanamant et al., 2022). As the understanding of grassland

ecosystem functioning continues to improve, forbs, representing a

large proportion of species and functional richness, have also been

recognized for their stress tolerance, indication of overgrazing, and

maintenance of insect diversity (Siebert et al., 2021). Legumes, aside

from being high-quality food and forage resources, are consistently

recognized for sequestering nutrients and increasing diversity in

cropping systems (Stagnari et al., 2017).

The crop rotation system of grasses and crops increased soil

organic matter and earthworm numbers, resulting in improved soil

structure compared to conventional crop rotations (Van Eekeren

et al., 2008). This legacy effect of the grasses’ influence on soil

properties, then, increased the yield and seed nitrogen content of

succeeding crops (Christensen et al., 2009). Legumes are even more

beneficial to agricultural production by providing diverse services.

One aspect is that the nitrogen-fixing capacity of legumes can

continually increase the nitrogen yield of succeeding crops

(Fox et al., 2020). Moreover, the growth process of legumes releases

organic acids and other compounds, directly activate nutrients and

indirectly promote the activity of soil microorganisms, thus

increasing crop yields and soil fertility (Latati et al., 2016). Studies

have shown that the deposition of rhizosphere nitrogen in legumes

accounts for 70% of the total plant nitrogen (Fustec et al., 2010).

These deposited nitrogens have mechanisms for transfer to other

crops, affecting agricultural production potential. Although there are

fewer practices on the involvement of forbs in crop rotation, studies

have shown that forbs are rather less affected by changes in nutrient

conditions than grasses due to their ability to store nutrients in their

roots (Herz et al., 2017). Forbs are also important for maintaining the

diversity of arthropods in the environment and some forb

communities are more resistant to herbivores (Potts et al., 2010;

Van Coller et al., 2018). Therefore, introducing these plant functional

groups, such as grasses, forbs, and legumes, during crop rotation can

strategically change soil nutrient levels or indirectly regulate the biotic

and abiotic environment of saline farmlands.

Moreover, grasses and forbs exhibit different abiotic stress

tolerance mechanisms and growth strategies. Due to obvious

differences in growth, development and physiological structure

between grasses and forbs, applying knowledge of forbs to

improve salt tolerance in major cereal crops becomes challenging

(Tester and Bacic, 2005). Meanwhile, the ability of grasses to

accumulate salt ions in shoots and leaves may be weaker than

that of forbs due to fewer salt glands (Semenova et al., 2010). So,

although the planting of forbs like Suaeda salsa can effectively
Frontiers in Plant Science 06
reduce soil salinity, it is difficult to apply the mechanism of salt ion

accumulation and succulence in shoots of forbs to crops of grasses.

However, Poaceae, particularly within the functional group

of grasses, has a unique history of salt tolerance, including

major halophytic taxa identified as sources of halophytes

(Flowers et al., 1986). Compared to the forbs, grasses usually

maintain ion levels in aboveground tissues by limiting sodium

uptake, having high potassium/sodium selectivity, and efficient

potassium utilization, essential for survival under saline conditions

(Flowers and Colmer, 2008). Many wild-type grasses are naturally

tolerate to salt stress (Landi et al., 2017). For example, the study found

that its close wild relatives Tripsacum dactyloides and Zea perennis

both showed strong salt tolerance compared to maize (Li et al.,

2023b). The leaf surface of wild rice, Porteresia coarctata, can excrete

salts, maintaining intercellular ion concentrations and lower sodium

to potassium ratios (Sengupta and Majumder, 2010). Grasses have

been reported to produce positive soil legacy effects by altering soil

microbial communities, influencing nutrient transfer, and even

triggering interactions between above-ground plants and insects

(Kos et al., 2015; Cortois et al., 2016; Schmid et al., 2021). Also, the

ionic changes that occur in grasses during salt tolerance are closely

related to their rhizosphere microorganisms (Hamdia et al., 2004;

Paul and Lade, 2014). Thus, by introducing plant functional groups

into the crop rotation system and combining their different ecological

functions and salt-tolerate characteristics, positive soil legacy effects

can be generated. This provides broader thinking for the improving

the soil environment in saline farmland and enhancing of crop

salt tolerance.

4.1.3 Introducing plant functional groups into
crop intercropping system

The combination of plant functional groups within the same

time and space can exert a significant influence on succeeding crops.

One notable example is the legume and grass forage matching

system, a typical forage mixing approach where the growth of

grasses synergistically enhances both the symbiotic nitrogen

fixation of legumes and the competitive nitrogen uptake of

grasses (De Deyn et al., 2012; Suter et al., 2015). Beyond

improving soil nutrient use efficiency, the extended growing

period of mixed legumes and grasses also helps suppress topsoil

salt accumulation, thereby enhancing soil quality (Li et al., 2021b).

While there are fewer studies on crop tillage systems and salt

tolerance, similar to forage mixes, crop intercropping can weaken the

negative impacts of saline farmland and may have legacy effects on

succeeding crops. Firstly, intercropping systems increase the

biodiversity of farmland ecosystems by direct introducing

companion plants, such as differential crops or salt-tolerant plants,

which provide services for saline farmland and the main crop (Yang

et al., 2021). The introduction of different plants diversifies the

rhizosphere environment, and the recruited microbial community

can promote nutrient cycling, salt transformation, and degradation in

the soil, thereby alleviating the damage of the saline environment to

the crops. For example, the introduction of legumes can improve

intercropping system resilience and resource use efficiency by

enhancing crop growth and tolerance to abiotic stresses through
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root distribution, vegetative cover, and nutrient activation (Chamkhi

et al., 2022). Furthermore, the intercropping of the halophyte Suaeda

salsa with maize significantly transferred more sodium ions to the

rhizosphere of Suaeda salsa, thereby reducing the salt content of the

maize rhizosphere (Wang S. et al., 2021). Regarding the rhizosphere

enrichment by intercropping systems, it was shown that legume-grass

crop intercropping (maize/faba bean) increased the abundance of

rhizobia and reduced pathogens in the soil. The soil legacy effects it

produced could be one of the reasons for the observed yield advantage

in intercropping systems (Wang et al., 2020). Particularly under salt

stress, the beneficial microorganisms recruited by the intercropping

system (sorghum/peanut) achieved increased crop tolerance by

altering the composition and content of metabolites (Shi et al.,

2023). Therefore, the potential positive soil legacy effects of salt-

tolerant forage mixtures and salt-tolerant crops of different functional

groups can help to develop efficient intercropping systems for

saline farmlands.
4.2 The use of soil microorganisms to
synergistically create soil legacy effects

The presence of soil microorganisms in natural ecosystems

depends on the soil environment, chemical signals provided by

plants and nutrient resources (Bai et al., 2022). In response to the

direct release of stress-responsive signals and compounds in plants,

the associated soil microorganisms undergo specific changes

(Hartman and Tringe, 2019). These changes are closely related to

plants, especially alterations in rhizosphere microorganisms, and are

critical to support the growth and recovery potential of plants under

stress (Park et al., 2023). Salt-tolerant microorganisms capable of

thriving and multiplying in high-salt environments, directly aiding

plants in tolerating salt stress through their salt-tolerance

mechanisms (Sharma et al., 2015; Wang R. et al., 2021). Plants in

traditional environments, when confronted with salt stress, also

respond by directly recruiting beneficial microorganisms through

root secretions (Kumar et al., 2023). Furthermore, the mechanism by

which soil microorganisms regulate plant salt tolerance also involves

osmotic regulators, nutrients and soluble salts they provide to plants.

These pathways can indirectly influence plant hormones and

metabolism, stimulate plant growth and help plants overcome salt

stress (Glick, 2012; Shrivastava and Kumar, 2015). These actions not

only alleviate the negative effects of salinity but also establish soil

legacy effects that confer tolerance to succeeding plants (see Figure 2;

Zhalnina et al., 2018; Otlewska et al., 2020). Considering this, the

question arises: How can we apply the direct and indirect effects of

soil microorganisms on plant salt tolerance to saline farmland? What

measures can be taken to sustain these positive effects in

the farmland?

4.2.1 Direct utilization of soil microorganisms
Soil microorganisms play a crucial role in defending against saline

stress, and saline soils serve as a significant source of salt-tolerant

microorganisms (Zhang et al., 2023). Current research has successfully

isolated several culturable salt-tolerant strains. For instance, 70% of the

culturable strains of the root endophyte from the coastal perennial
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grass Festuca rubra exhibit salt tolerance (Pereira et al., 2019). The

core microorganisms of the rhizosphere of Suaeda salsa have been

found to harbor genes encoding salt stress adaptation and nutrient

solubilization processes (Yuan Z. et al., 2016). Microbial inoculation is

a direct method of utilizing these specialized salt-tolerant microbial

resources, which can be applied to enhance plant salt stress adaptation

and promote growth. Studies have demonstrated that inoculation with

the salt-tolerant endophyte Sphingomonas prati significantly increases

the salt tolerance of Suaeda salsa by improving the antioxidant

enzyme system (Guo et al., 2021). Curvularia sp., isolated from

Suaeda salsa, can establish a beneficial symbiotic relationship with

poplar and promote its growth (Pan et al., 2018). Moreover, the

inoculation of salt-tolerant microorganisms has been gradually

extended to major crops, including soybean, maize, wheat, and

peanut. Its positive effect in mitigating salt stress has been

consistently verified in numerous indoor simulation experiments

(Ramadoss et al., 2013; Goswami et al., 2014; Zerrouk et al., 2016;

Khan et al., 2019; Shabaan et al., 2022).

In addition to the salt-tolerant microbial resources associated

with saline soils and halophytes, salt stress is alleviated by the

recruitment of beneficial microorganisms to the rhizosphere of

plants when they face with salt stress in normal environments

(Ilangumaran and Smith, 2017; Santoyo, 2021). For example, it has

been shown that 1-aminocyclopropane-1-carboxylate (ACC), a

stress-related amino acid in plants, can reshape the soil

microbiome, enhancing plant tolerance to salinity stress (Liu

et al . , 2019). In addition, rice influences rhizosphere

microorganisms by producing metabolites such as salicin and

arbutin, enabling rhizosphere microorganisms associated salt

stress tolerance (Lian et al., 2020). Moreover, beneficial

rhizosphere microorganisms in plants can not only enhance salt-

tolerant properties but also synergistically improve plant responses

to salt stress by altering physiological growth processes, including

seed germination, morphological structure, and biomass

accumulation and partitioning (Pan et al., 2020). Regarding the

inoculation of beneficial microbial strains to help crops tolerant

salinity, studies have demonstrated that inoculation with

Pseudomonas flavescens D5 strain effectively increased the

biomass and antioxidant enzyme activities of barley, while

reducing the adverse effects of salt stress on barley (Ignatova

et al., 2022). Inoculation of candidate strains of Azotobacter has

also been found to increase the potassium-sodium ratio, polyphenol

and chlorophyll content, and decrease proline concentration in

maize, thereby alleviating salt stress in maize by integrating multiple

mechanisms (Rojas-Tapias et al., 2012).

Indeed, successful microbial inoculation often requires a

combination of strains rather than a single strain to enhance the

sustainability of its impact on (Verbruggen et al., 2012; Finkel

et al., 2017). Notably, double inoculation with Rhizobium and

Pseudomonas has been observed to elicit positive adaptive responses

in alfalfa under salt stress (Younesi et al., 2013). Similarly, dual

inoculation of plant growth-promoting bacteria with Bradyrhizobium

strains has proven more effective in enhancing salt tolerance in

soybean, reducing salt-induced ethylene production, and improving

nutrient uptake (Win et al., 2023). Further studies have found that

inoculation with species-specific microbiomes or whole-soil
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inoculation can assist plants in coping with various biotic and abiotic

stresses (De Vries et al., 2020; Ma et al., 2020; Trivedi et al., 2020). The

introduction of microbiomes or the whole-soil achieves more complex

ecological functions by coordinating microbial interactions (Pineda

et al., 2019; Trivedi et al., 2021), and it avoids the potential issue of

single strains struggling to survive inoculation into foreign soil

(Mallon et al., 2018). However, it is crucial to acknowledge the

possibility that introducing exotic microbial communities may

reshape functions within the native microbial community

(Amor et al., 2020). Recent evidence suggests that the beneficial

effects of microbial inoculation on plant growth are best explained as

changes in native microorganisms rather than direct effects on plants

(Hu et al., 2021). This underscores the importance of understanding

the intricate interactions occurring within the microbial community

and their influence on plant health and resilience.

While practical examples of microorganism inoculation for saline

farmland improvement are limited, the concept of soil legacy effects

suggests that enhancing saline farmland and crops can be achieved

through microbial-mediated processes. By inoculating salt-tolerant

microbial strains and communities of beneficial microorganisms, and

even inoculating the entire soil including most microorganisms, it

becomes possible to modulate crop responses to salt stress and

enhance salt tolerance. Concurrently, synergistic changes with the

inoculated microorganisms involve stress response-related

metabolites and alterations in the crop rhizosphere environments.

These changes encompass crop rhizosphere secretions, microbial

metabolites, and native microbial communities. Their persistent

influence on succeeding crop growth in the form of soil legacy

effects contributes to ongoing salt stress mitigation in saline

farmland. Thus, the application of microbial interventions holds

promise for sustainable improvements in saline farmland and crop

resilience (Cuddington, 2011; Trivedi et al., 2020).

4.2.2 Indirect utilization of soil microorganisms
Alongside traditional plant- and microorganism-based methods

for restoring saline farmlands, advanced modern agricultural

techniques with their high efficiency and precision have also found

application agricultural production (Varshney et al., 2011; Ahanger

et al., 2017). Research has focused on integrating and applying the

active components of rhizosphere exudates to soil microbial systems,

revealing improvements in soil physicochemical environments and

microbial communities associated with rhizosphere exudates. These

improvements are speculated to have an impact on plant growth (Shi

et al., 2011). Similar findings were observed in maize system, where a

significant increase in bacterial density and altered metabolic

potential in the maize rhizosphere after application of maize

rhizosphere exudates (Baudoin et al., 2003). In terms of enhancing

crop tolerance, research has shown that introducing the ability of

releasing volatile organic compounds (VOCs) into maize varieties

that do not release specific VOCs can reduce the threat of pests

(Degenhardt et al., 2009). This suggests that the introduction of

tolerant metabolites is not limited to rhizosphere exudates, and the

application of below-ground volatiles, as well as other tolerant signals,

offers additional possibilities for improving salt tolerance in crops on

saline farmlands. The advances in agricultural technology have also

inspired the exploration of beneficial root traits in wild relatives of
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crops, the introduction of which may solve the problems faced by

saline farmlands (Preece and Peñuelas, 2020).

In the past decade, cultivation techniques have gradually

emerged, pointing to the unique microbiome existing in plant seeds

and how it spreads from generation to generation, aiding plants in

adapting to their environment and increasing tolerance (Gopal and

Gupta, 2016; Abdelfattah et al., 2023). In this context, delivering

endophytes to the next generation of crops and ensuring the

persistence of their tolerance has been achieved by combining

relevant beneficial microorganisms with plants (Wei and

Jousset, 2017). For example, a suspension of Paraburkholderia

phytofirmans PsJN was sprayed in plots at the flowering stage of

wheat in field experiment, and thus the maturation of its progeny

plants was accelerated by the introduction of this endophytic bacteria

into the flowers of the wheat parents (Mitter et al., 2017). The

advantage of this approach lies in the ability of seed endophytes to

avoid competition with native soil microorganisms, establishing

closer interactions with the plant early on. While there is currently

limited research related to this approach concerning salt tolerance in

progeny plants, seed endophytes have long been shown to provide

plants with tolerance against a wide range of stresses, participate in

plant adaptation mechanisms, and enhance plant competitiveness

(Samreen et al., 2021). Therefore, the use of these new bioculture

techniques and the genetic mechanisms of plant microbes offer

innovative avenues for improving saline farmland. These

approaches are closely related to plant-microbe interactions and are

centered around the concept of creating positive soil legacy effects.

Inspired by the mentioned approaches, microorganisms can be

used indirectly, such as through the recruitment of microorganisms

by plant rhizosphere exudates and intergenerational dissemination

of beneficial microorganisms, to create positive soil legacy effects in

saline farmland. However, it is acknowledged that microbial-related

methods of creating soil legacy effects are imperfect, and their

processes may introduce soil pathogens or other responsive

substances, necessitating further in-depth research to explore

safer methods of creating soil legacy effects (Jing et al., 2022).
5 Conclusion and future prospects

This paper provides a summary of the ways in which plants, in

collaboration with soil microorganisms in natural ecosystems, jointly

respond to salt stress. It suggests enhancing the salt tolerance of crops in

saline farmlands through the perspective of soil legacy effects. The focus

is on meeting the salt tolerance needs of crops by creating well-

considered soil legacy effects. The paper explores both the direct use

of plants and the synergistic use of soil microorganisms to establish

positive soil legacy effects, offering innovative insights to boost

production potential and improve the ecological environment of

saline farmland. The emphasis lies on creating positive soil legacy

effects through the selection of suitable salt-tolerant crops, the

development of planting patterns with a rational match of crop

functional groups, the inoculation of functional microorganisms, the

inoculation of safe and efficacious soils, and the application of advanced

agricultural technologies and bio-cultivation methods. This approach

underscores the practical utility of crop-soil microorganism interactions
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in agricultural production. In addition to plants and associated soil

microorganisms, the role of soil animals in constructing soil foodwebs is

acknowledged. These soil animals, through direct or indirect

interactions with microorganisms and plants, contribute to the cycling

of soil nutrient resources, influencing soil ecosystem function (Du et al.,

2018). Multi-trophic interactions between mycorrhizal fungi, fungus-

eating protozoa, and nematodes in the soil can enhance crop nutrient

uptake, crop yield, and tolerance (Jiang et al., 2020). This suggests that

future studies can more precisely and directly leverage soil legacy effects

to trigger positive tolerant responses by regulating specific species or soil

fauna in the soil food web of saline farmlands, or even by controlling

certain trophic levels.
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