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Low temperature and cold damage seriously hinder the growth, development,

and morphogenesis of cotton seedlings. However, the response mechanism of

cotton seedlings under cold stress still lacks research. In this study, transcriptome

sequencing, gas exchange parameters, and rapid chlorophyll fluorescence

parameters were analyzed in leaves of cold-tolerant upland cotton variety

“ZM36” under different temperature stress [25°C (T25, CK), 15°C (T15), 10°C

(T10), and 4°C (T4)]. The results showed that the net photosynthetic rate (Pn),

stomatal conductance (Gs), transpiration rate (Tr), PSII potential maximum

photochemical efficiency (Fv/Fm), and performance index (PIabs) of cotton

leaves significantly decreased, and the intercellular CO2 concentration (Ci) and

Fo/Fm significantly increased under cold stress. The transcriptome sequencing

analysis showed that a total of 13,183 DEGs were involved in the response of

cotton seedlings at each temperature point (T25, T15, T10, and T4), mainly

involving five metabolic pathways—the phosphatidylinositol signaling system,

photosynthesis, photosynthesis antenna protein, carbon fixation in

photosynthetic organisms, and carotenoid synthesis. The 1,119 transcription

factors were discovered among all the DEGs. These transcription factors

involve 59 families, of which 15.8% of genes in the NAC family are upregulated.

Through network regulatory analysis, the five candidate genes GhUVR8

(GH_A05G3668), GhPLATZ (GH_A09G2161), GhFAD4-1 (GH_A01G0758),

GhNFYA1 (GH_A02G1336), and GhFAD4-2 (GH_D01G0766) were identified in

response to cold stress. Furthermore, suppressing the expression level of

GhPLATZ by virus-induced gene silencing led to the reduction of low

temperature resistance, implying GhPLATZ as a positive regulator of low

temperature tolerance. The findings of the study revealed a piece of the
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complex response mechanism of the cold-tolerant variety “ZM36” to different

cold stresses and excavated key candidate genes for low temperature response,

which provided support for accelerating the selection and breeding of cotton

varieties with low temperature tolerance.
KEYWORDS

cotton, low-temperature stress, photosynthetic parameters, transcriptomic analysis,
DEGs, VIGS
1 Introduction

Cotton (Gossypium hirsutum L.) is sensitive to temperature

during its growth and development (Shan et al., 2007). Xinjiang is

the main cotton-producing region in China. In the past 40 years, the

frequency of cotton cultivation in Xinjiang has been 30% under cold

stress. The frequency of “late spring cold” weather especially is very

high, which leads to hindered growth, decreased uniformity, and

delayed growth and development of cotton seedlings, greatly

affecting the yield and quality of cotton (Rihan et al., 2017; Li

et al., 2020a). Therefore, in-depth analysis of the response

mechanism of cotton seedlings to low temperature cold damage is

of great significance to improve their cold tolerance.

The adaptation mechanism of plants to cold stress involves

complex and intricate physiological and molecular regulatory

networks (Raju et al., 2018; Kidokoro et al., 2022). On the

physiological level, it manifests as decreased enzyme activity,

damage to the membrane system, decreased photosynthetic

efficiency, and cell dehydration. At the molecular level, the most

extensively studied pathway is the DREB/CBF low temperature

stress regulation pathway (Chinnusamy et al., 2007), which can

bind to the A/GCCGAC dehydration response element (DRE) in

the low temperature response gene (COR) promoter, thereby

activating the expression of the COR gene. The COR gene

encodes a developmental stress protein (LEA), which can enhance

plant tolerance to low temperature, dehydration, or abscisic acid

stress (Yamaguchi-Shinozaki and Shinozaki, 1994; Stockinger et al.,

1997). Simultaneously, some transcription factor family members

also play key roles in cold stress, such as AP2/ERF, NAC, bHLH,

MYB, WRKY, etc. They can also regulate plant tolerance to low

temperature by binding to the promoters of related genes (Sun et al.,

2018; Xie et al., 2018; Diao et al., 2020; Li et al., 2020b; Ritonga et al.,

2021). In addition, hydrogen peroxide (H2O2), superoxide anion

(O2-), and hydroxyl radicals (OH-) in the reactive oxygen species

(ROS) signal can activate the MAPK cascade, transcription factors,

and redox reactive proteins, thereby participating in plant responses

to cold stress (Davletova et al., 2005; Colcombet and Hirt, 2008; Xu

et al., 2019). Although the molecular mechanism of cold stress in

other plants has been preliminarily analyzed, the molecular genetics

analysis of cotton’s low temperature tolerance lags far behind model

plants such as Arabidopsis and rice. GhNHL69 is co-expressed with
02
various transcription factors related to cold stress, leading to the

GhNHL69-silenced plants having more severe dehydration and

damage. GhNHL69 may be related to the expression of abiotic

stress-related genes, thereby altering cotton’s cold tolerance (Guo

et al., 2023). Overexpression of GhKCS13 can alter sphingolipids

and glycerides of leaves and the fluidity of cell membrane JA

synthesis in chloroplasts, thereby creasing the sensitivity of cotton

plants to cold stress (Wang et al., 2020a). AfterGhCBF4 andGhZAT10

were silenced by virus-induced gene silencing (VIGS), the silent plants

exhibit significant low temperature sensitivity (Li et al., 2023a).

At present, based on a single temperature stress, researchers

have discovered some genes and pathways related to cold stress in

cotton (Cheng et al., 2020; Kaur Dhaliwal et al., 2021; Wang et al.,

2021). However, the mechanism by which cotton perceives and

transmits low temperature signals, thereby activating transcription

factors and responding to low temperature, is still unclear. There is

limited understanding of the functions of key genes that can

respond to different cold stresses. The analysis of cotton under

cold stress based on RNA seq research methods can help to explore

cold resistance genes, elucidate the regulatory mechanisms of low

temperature response, study cold resistance mechanisms, and select

cold-resistant varieties (Wang et al., 2009; Wang et al., 2020b). Our

research group has found that Zhongmian 36 (ZM36) is a cold-

tolerant variety (Ma, 2023). Therefore, this study analyzed the

changes in the photosynthetic physiological indicators of ZM36

and explored the regulatory pathways and key genes involved in

different responses to cold stress by transcriptome sequencing

technology (RNA seq). It can provide a more comprehensive

understanding of the molecular mechanisms underlying cotton’s

response to cold stress.
2 Materials and methods

2.1 Plant materials and experimental design

ZM36 is provided by the Cotton Molecular Breeding

Laboratory of Shihezi University. Cotton seedlings are cultured in

an artificial climate box. These are cotton seeds that have undergone

germination in a nutrient bowl. The substrate is peat and

vermiculite, with a ratio of 3:1. The plants were cultivated under
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24/22°C (day/night) and a photoperiod scheme of 16/8 h of light/

darkness. Seedlings at the two-leaf stage were processed at low

temperature in an incubator with adjustable temperature settings.

The processing method is as follows: cotton seedlings with

consistent growth are grown for 24 h at 25°C (T25, control), 15°C

(T15), 10°C (T10), and 4°C (T4), then sampled, frozen, and stored

at -80°C. The experiment setup had three replicates, with five

identical cotton seedlings as one replicate, and each treatment

setup had three biological replicates.
2.2 Photosynthetic performance index and
fluorescence parameters

Portable photosynthetic instrument LI-6400XT (LI-COR, USA)

is used to measure the photosynthetic performance parameters,

with the instrument’s built-in red and blue light source selected and

the light intensity set to 1,000 m Mol m-2 s-1. HandyPEA-100 (UK)

was used to measure the fluorescence parameters, and these were

measured at the same leaf position of seedlings with similar growth.

The conductivity meter method was used to measure the relative

conductivity, and the acidic ninhydrin colorimetric method was

employed to measure the proline content.
2.3 RNA library construction
and sequencing

RNA Purification Kit (Tiangen, Beijing) was used to isolate RNA

from the leaves of 12 samples (ZM36) according to the manufacturer’s

instructions. The RNA isolated from each sample was then used to

construct RNA-seq libraries using NEBNext Ultra RNA Library Prep

Kit. RNA-seq was conducted on an Illumina Hiseq 4000 platform

with 150-bp paired-end reads (Novogene, Tianjin, China).
2.4 Quantitative RT-PCR analysis

qRT-PCR was carried out by using SYBR Green (Roche,

Rotkreuz, Switzerland) on Light Cycler 480II (Roche) with default

parameters. All primers used for the validation experiments were

designed with Primer5 software and are shown in Supplementary

Table S1. The GhUBQ7 (DQ116441.1) gene served as an internal

control to normalize differences between samples. The qRT-PCR

conditions were as follows: initial denaturation at 96°C for 5 min,

denaturation at 96°C for 15 s for a total of 41 cycles, annealing at 62°C

for 16 s, and extension at 70°C for 18 s. The relative expression levels

of genes from three biologically independent experiments were

calculated using the 2-DDCTmethod (Livak and Schmittgen, 2001).
2.5 Identification and functional annotation
of DEGs

Clean reads were mapped to the reference genome of G.

hirsutum (Hu et al., 2019) using TopHat (v2.0.12). The level of
Frontiers in Plant Science 03
gene expression was measured by fragments per kilobase of exon

model per million mapped fragments (FPKM) (Trapnell et al.,

2010). DESeq2 (v1.18.0) (Wang et al., 2010) was used to identify

differentially expressed genes (DEGs) with the criteria of an

adjusted log2 (fold change) ≥3. The STEM software was used to

classify the gene expression patterns at various points into

differential clusters. Using the cluster Profiler package (version

3.18.1), DEG enrichment analysis was conducted using Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG).
2.6 Construction of DEG PPI protein
interaction network

We used Blast (blast x) for the sequences of DEGs with the

genomes of related species to obtain the predicted PPI for these

DEGs (the protein interactions exist in the STRING database:

http://string-db.org/. Then, the PPI of these DEGs was visualized

using Cytoscape (Shannon et al., 2003).
2.7 Virus-induced gene silencing

Tobacco rattle virus (TRV) vectors, pTRV1 and pTRV2, were

used in the VIGS experiments, and TRV:: GhCHLI was used as a

positive control as previously reported (Li et al., 2023b). A 300-bp

fragment specific to GhPLATZ (GH_A09G2161) was amplified by

PCR from low-resistance ZM36 with gene-specific primers

(Supplementary Table S2). VIGS was performed with the same

procedures as previously described (Gao et al. , 2013).

Approximately 12 days after infiltration, the leaves of five

TRV::00 and TRV:: GhPLATZ plants were collected to analyze the

expression level of GhPLATZ by qRT-PCR. A total of 60 TRV::00

and TRV:: GhPLATZ plants at the two-leaf-stage were subjected to

low temperature treatment to compare their phenotypic response.
3 Results

3.1 Photosynthetic physiology of ZM36
under cold stress

ZM36 was tested for Pn, Gs, Ci, Tr, Fv/Fm, Piabs, Fv/Fo, and

Fo/Fm in four different temperature points (T25, T15, T10, and T4)

(Figure 1A). Pn, Gs, Tr, Fv/Fm, Fv/Fo, and Piabs significantly

decreased, but Ci and Fo/Fm significantly increased under cold

stress. The highest value of Pn is 12.75 at T25, the minimum is 1.18

at T4, reduced by 10.8 times; Gs decreased by 26.28 times from T25

(0.3278) to T4 (0.0124); Tr decreased by 20.75 times from T25

(4.9022) to T4 (0.2362); Fv/Fm was 0.7951 and 0.311 at T25 and at

T4, respectively, reduced by 2.56 times; and Piabs decreased by

37.81 times from T25 (4.2996) to T4 (0.1137). However, Ci

increased by 1.64 times from T25 to T4, and Fo/Fm also

increased by 3.25 times from T25 (0.2049) to T4 (0.6659)

(Figure 1B; Supplementary Table S2). This fully demonstrates that
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low temperature can have a significant impact on cotton growth,

photosynthesis, and yield of cotton, thereby affecting its yield

and quality.
3.2 Identification of DEGs in response to
cold stress

The number of raw reads of the samples was between

40,476,800 and 49,397,772, and the number of clean reads after

filtering was 20,238,400–24,698,886 (Supplementary Table S3). The

GC percentage of each sample was between 43.46% and 44.34%,

while Q30 was between 90.16% and 95.04% (Supplementary Table

S3). Pearson correlation coefficient was used to perform a

correlation test on the samples, and the correlation between the

three replicates was greater than 0.9, indicating the reliability of the

data (Supplementary Figure S1A). Principal component analysis

(PCA) was used to test the similarity between samples. The first

principal component (PC1) accounted for 43%, while the second

principal component (PC2) accounted for 26.3% (Supplementary

Figure S1B). The volatility of log10FPKM is similar across all samples

(Supplementary Figure S1C), indicating that the sequencing quality

was high and suitable for subsequent analysis. Using fold change ≥3

and FDR <0.05 as the threshold, 6,096 DEGs (2,430 upregulated

and 3,666 downregulated), 8,545 DEGs (4,473 upregulated and

4,072 downregulated), and 3,322 DEGs (1,659 upregulated and

1,663 downregulated) were screened in T15 vs. T25, T10 vs. T25,

and T4 vs. T25, respectively, indicating that gene expression levels
Frontiers in Plant Science 04
in cotton varied after different low temperature treatments

(Figures 2A, C). Using Wayne analysis, a total of 13,183 DEGs

were found, of which 2,365 DEGs were specifically responsive to 15°

C, 4,600 DEGs were specifically responsive to 10°C, and 1,972 DEGs

were specifically responsive to 4°C (Figure 2B). The DEGs were

divided into eight significant clusters by K-means clustering

analysis (Figure 2D). The genes of clusters 1, 2, and 3 showed a

trend of rising first and then remaining unchanged or decreasing

slightly in response to low temperature stress. However, the genes of

clusters 5, 6 and 7 had an expression trend opposite to that of

clusters 1, 2, and 3. The genes of cluster 4 showed a decreasing

trend, and cluster 8 had an expression trend opposite to that of

cluster 4 (Figure 2D). The DEGs of these clusters would be expected

to be linked to the low temperature resistance of ZM36.
3.3 Validation of differentially expressed
genes by qRT-PCR

The expression patterns of 12 genes were validated using qRT-

PCR, including six significant downregulation expressed genes

(Gh_D09G2404, Gh_A02G0898, Gh_A06G0948, Gh_D10G2061,

Gh_A07G1351, and Gh_D10G1486), six significant upregulation

expressed genes (Gh_D05G2845, Gh_D06G1877, Gh_A12G1885,

Gh_A13G1204, Gh_A01G1052, and Gh_A05G1366). All these

genes showed the same expression trend between qRT-PCR

(Figure 3) and RNA-Seq (Figure 3) at T25, T15, T10, and T4,

confirming the reliability of the RNA-seq result.
B

A

FIGURE 1

Phenotype and photosynthetic level of ZM36. (A) Phenotype of ZM36 in four temperature points (T25, T15, T10, and T4). (B) Photosynthetic gas
exchange parameters and rapid chlorophyll fluorescence parameters of ZM36 in four temperature points (T25, T15, T10, and T4). Data are the mean
± standard error of three independent biological replicates. Different lowercase letters (a, b, c) indicate a significant difference (P < 0.05) between
groups determined using Student’s t-test.
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3.4 Gene ontology analysis of DEGs

GO enrichment analysis of DEGs was performed to determine

the functions of the distinct transcripts differentially expressed in

ZM36 after low temperature stress. In T15 vs. T25, the GO terms

such as response to ATP binding (GO:0005524), response to

oxygen-containing compound (GO:1901700), cell wall

organization (GO:0071555), microtubule-based process

(GO:0007017) were commonly enriched (Figure 4A). The GO

terms such as response to ubiquitin–protein transferase activity

(GO:0004842), protein ubiquitination (GO:0016567), response to

external stimulus (GO:0009605), ubiquitin protein ligase activity

(GO:0061630), and response to water deprivation (GO:0009414)
Frontiers in Plant Science 05
were commonly enriched in T10 vs. T25 (Figure 4B). In T4 vs. T25,

the DEGs are mainly enriched in ATP binding (GO:0005524),

plasma membrane (GO:0005886), transcription factor activity,

sequence-specific DNA binding (GO:0003700), protein kinase

activity (GO:0004672), and regulation of transcription, DNA-

templated (GO:0006355) (Figure 4C).
3.5 KEGG pathway analysis of DEGs

The KEGG enrichment analysis of all the DEGs resulted in

2,454 pathways. There were many significant changes in pathways

related to circadian rhythm—plants, beta-alanine metabolism,
B

C D

A

FIGURE 2

Number of differentially expressed genes (DEGs) upon cold stress at three temperature points (T15 vs. T25, T10 vs. T25, and T4 vs. T25). (A) Number
of upregulated and downregulated genes at three temperature points (T15 vs. T25, T10 vs. T25, and T4 vs. T25). (B) Venn diagram showing the
number of DEGs at three temperature points (T15 vs. T25, T10 vs. T25, and T4 vs. T25). (C) Heat map of DEGs at four temperature points (T25, T15,
T10, and T4). (D) Trend analysis of the co-expression patterns of DEGs at four temperature points (T25, T15, T10, and T4).
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zeatin biosynthesis, fatty acid metabolism, biosynthesis of amino

acids, MAPK signaling pathway–plant, glutathione metabolism,

and plant–pathogen interaction (Figures 5A–C), which are mainly

associated with plant growth and development and response to

stresses. The KEGG pathways enriched in T4 vs. T25 included

MAPK signaling pathway–plant, plant–pathogen interaction,

photosynthesis–antenna proteins, photosynthesis, flavonoid

biosynthesis, and plant hormone signal transduction (Figure 5C).

The enriched pathways also suggested that genes related to MAPK

cascade signaling might be related to the cotton response to low-
Frontiers in Plant Science 06
temperature stress. The pathways related to MAPK signaling

pathway–plant were enriched in two temperature points (T10 and

T4) (Figures 5B, C). The genes involved included those

encoding MAPKKK18 (GH_A03G0386), serine/threonine protein

kinase OXI1 (GH_A07G2243), abscisic acid receptor PYR1

(GH_A12G2288), ultraviolet-B receptor UVR8 (GH_A05G3668),

and PLATZ transcription factor family protein (GH_A09G2161).

The above-mentioned results indicated that the response of cotton

to low temperature stress is governed by a complex gene network

that regulates multiple metabolic pathways.
FIGURE 3

Histogram showing the relative expression level of the 12 selected genes in cotton leaves at the four temperature points after cold stress by
qRT-PCR and RNA-seq analysis. The 12 selected genes are six significant downregulation expressed genes (Gh_D09G2404, Gh_A02G0898,
Gh_A06G0948, Gh_D10G2061, Gh_A07G1351, and Gh_D10G1486), six significant upregulation expressed genes (Gh_D05G2845, Gh_D06G1877,
Gh_A12G1885, Gh_A13G1204, Gh_A01G1052,and Gh_A05G1366). FPKM, fragments per kilobase of exon model per million mapped fragments.
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3.6 Transcription factor prediction

In T15 vs. T25, T10 vs. T25, and T4 vs. T25 groups, 471 transcription

factors (49 transcription factor families), 767 transcription factors (59

transcription factor families), and 341 transcription factors (41

transcription factor families) were found to be involved in the

response to different degrees of cold stress, respectively. To predict the

transcription factors of all DEGs, 1,119 transcription factors were found

in 59 transcription factor families (Supplementary Figure S2A). Among

them, different members of major gene families such as AP2/ERF-ERF

(133 genes), MYB (108 genes), bHLH (78 genes), and NAC (73 genes)

were upregulated or downregulated under different cold stresses

(Supplementary Figures S2B–E).
3.7 Phosphatidylinositol signaling system
analysis of DEGs

The phosphatidylinositol signaling system regulates many

physiological processes, such as growth, cytoskeleton rearrangement,

and membrane transport. The DEGs of the phosphatidylinositol

signaling system (ko04070) were identified to be 32 genes (21

upregulated, 11 downregulated), 40 genes (29 upregulated,
Frontiers in Plant Science 07
11 downregulated), and 22 genes (18 upregulated, four downregulated)

in T15, T10, and T4, respectively (Supplementary Figure S3). Among

them, all others were upregulated except for GH_D10G0541 in two 1-

phosphatidylinositol-3-phosphate 5-kinase (FAB1) after cold stress

(Supplementary Figure S3A). GH_A10G0515 was upregulated

4.60, 3.88, and 5.66 times after T15, T10, and T4, respectively

(Supplementary Figure S3A). Six phosphatidylinositol-specific

phospholipases (PLCD) were downregulated except for GH_A06G1884

(Supplementary Figure S3A). Three diacylglycerol kinases (DGK) were

upregulated under different cold stresses, except for GH_A12G2233, and

GH_D12G2002 was upregulated 4.40, 15.03, and 2.40 times after T15,

T10, and T4, respectively (Supplementary Figure S3B). Most of the 25

calmodulin (CALM) genes were upregulated, especially GH_A04G1762

and GH_D12G1967. They were upregulated by 104.81, 17.55, 4.12 times

and 74.50, 76.91, and 2.80 times after T15, T10, and T4, respectively

(Supplementary Figure S3B).
3.8 Photosynthetic-related pathway
analysis of DEGs

Photosynthesis is sensitive to cold stress. KEGG indicate that

many DEGs are involved in photosynthesis metabolic pathways. In
A B C

FIGURE 5

KEGG analysis of differentially expressed genes (DEGs) associated with the response to cold stress in T15 vs. T25, T10 vs. T25, and T4 vs. T25.
(A) KEGG categories of DEGs in T15 vs. T25. (B) KEGG categories of DEGs in T10 vs. T25. (C) KEGG categories of DEGs in T4 vs. T25.
B CA

FIGURE 4

Gene ontology enrichment analysis for the differentially expressed genes identified in T15 vs. T25, T10 vs. T25, and T4 vs. T25. (A) Enriched GO terms
at T15 vs. T25 in ZM36. (B) Enriched GO terms at T10 vs. T25 in ZM36. (C) Enriched GO terms at T4 vs. T25 in ZM36. Count means the number of
genes included in the GO term.
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this study, 34 differentially expressed genes were enriched under

different cold stresses in photosynthesis (ko00195) (Figure 6A). One

psaA, one psaL, and one psaO gene were found in the photosystem I

complex. Among them, psaA (GH_D03G0877) was upregulated

1.93, 1.20, and 2.99 times after T15, T10, and T4, respectively. Two

psbA, one psbD, three psbB, and one psbH gene in the photosystem

II complex were upregulated after T15, T10, and T4, while four

psb27 genes were downregulated. One petB gene and one petA gene

were found in the cytochrome b6-f complex, which were
Frontiers in Plant Science 08
upregulated under T4 for 3.13, 3.52, and 4.61 times, respectively.

Seven DEGs related to photosynthetic electron transfer were

downregulated after T15, T10, and T4, indicating that cold stress

has a significant inhibitory effect on electron transfer in

photosynthesis. The 27 DEGs (five LHC I and 22 LHC II) were

found in the photosynthesis antenna proteins (ko00196)

(Figure 6B). Except for three Lhcb4 genes that were

downregulated after T15 and T10 and upregulated after T4, most

genes were upregulated after T15 and T10 and downregulated after
B

C

D

A

FIGURE 6

Photosynthetic-related pathway analysis of differentially expressed genes (DEGs). (A) Enrichment analysis of 34 DEGs related to photosynthesis
(ko00195). (B) Enrichment analysis of 27 DEGs (five LHC I and 22 LHC II) related to the photosynthesis antenna proteins (ko00196). (C) Enrichment
analysis of 34 DEGs related to carbon fixation in photosynthetic organisms (ko00710). (D) Enrichment analysis of 35 DEGs related to the carotenoid
biosynthesis (ko00906).
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T4. The 24 genes were upregulated after T15 and T10 and

downregulated after T4, and three Lhcb4 genes were exactly the

opposite. A total of 34 DEGs were found in carbon fixation in

photosynthetic organisms (ko00710) pathway (Figure 6C). The

C4 pathway is enriched to 15, and the Calvin cycle is enriched to

19. Among them, one ribose 5-phosphate isomerase A

(GH_A01G1655) in the Calvin cycle was upregulated by 2.00,

2.75, and 6.72 times after T15, T10, and T4 stress, respectively,

and one phosphoglycerate kinase (GH_A03G0406) was upregulated

2.03, 20.07, and 4.49 times after T15, T10, and T4 stress,

respectively. At the same time, we also discovered 35 DEGs

(Figure 6D). Six genes were in carotenoid biosynthesis (ko00906)

b. Most of the beta carotene isomerase (DWARF27) was

upregulated, especially GH_A07G2351 and GH_D07G2294, which

were upregulated 4.99, 8.27, and 4.70 times and 4.06, 6.08, and 7.14

times after T15, T10, and T4 stress, respectively. Beta carotene 3-

hydroxylase (crtZ) was upregulated in expression. Three zeaxanthin

epoxidase (ZEP) genes were upregulated, with GH_D01G1934

upregulated 7.35, 40.20, and 1.51 times after T15, T10, and T4

stress, respectively. Four 9-cis-epoxycarotene dioxygenase (NCED)

genes were upregulated, with GH_D13G1744 upregulated 12.84,

58.35, and 2.99 times after T15, T10, and T4 stress, respectively.
3.9 Analysis of co-expressed
DEG interactions

The 526 DEGs were detected under three different cold stress

conditions, indicating that the DEGs may have been involved in

adapting to stress at different low temperature points, and
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participating in the same pathway. Therefore, we defined 526 co-

expressed DEGs as key cold-resistant genes. Further utilizing the

STRING database to predict the interrelationships between 526

proteins, Cytoscape software was used for visualization processing,

and five hub genes were identified based on the criteria of

degree value ≥16 (Figure 7). Four genes were significantly

upregulated under cold stress (GH_D01G0766, GH_A05G3668,

GH_A01G0766, and GH_A09G2161), while one gene was

significantly downregulated under cold stress (GH_A02G1336).
3.10 Silencing of GhPLATZ reduces the
resistance of cotton to cold stress

To get insight on the potential function of GhPLATZ, we

knocked down the expression level of GhPLATZ in ZM36 using

VIGS with cotton seedlings treated by TRV:: GhCHLI as positive

control of the VIGS experiment (Figure 8A). Compared to

TRV2::00 plants, TRV:: GhPLATZ plants had a significantly low

expression level of GhPLATZ (Figure 8B; Supplementary Table S4),

suggesting the successful inhibition of GhPLATZ by VIGS. After

about 10 days of cold stress, the TRV:: GhCHLI plants showed a

yellowing phenotype (Figure 8A), indicating that the VIGS system

was functioning properly. To confirm the effectiveness of the

silencing system, cotton seedlings were subjected to 15°C (low

temperature treatment) to verify the resistance of cotton to low

temperature stress after inhibiting GhPLATZ expression. After 48 h

of treatment at 15°C, it was found that TRV:: GhPLATZ plants were

more sensitive to low temperature compared to TRV::00 plants,

with more significant leaf wilting and dehydration (Figure 8C;
FIGURE 7

Co-expression network analysis results of the hub genes. Each circle represents a hub gene. Circle size and col vs. or represent the degree.
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Supplementary Table S4), indicating that inhibiting the expression

of GhPLATZ would reduce cotton’s resistance to low temperature.

The electrical conductivity of TRV : GhPLATZ plants was 49.82% ±

0.03, significantly higher than that of TRV:00 plants (Figure 8D;

Supplementary Table S4). Consequently, the proline of TRV :

GhPLATZ plants was higher than that of TRV:00 plants at 87 and

56 ug-1 g, respectively (Figure 8E; Supplementary Table S4).
4 Discussion

4.1 Changes in photosynthetic
characteristics under cold stress

Cold stress can induce photoinhibition, reducing the absorption

and capture capacity of the light system, electron transfer efficiency, and
Frontiers in Plant Science 10
fixed quantum efficiency of carbon dioxide. In this study, the

photosynthetic system was significantly damaged, inhibiting the

normal progress of photosynthesis and leading to the generation of

photoinhibition effects. Especially under 4°C, the photoinhibition effect

wasmore severe. The downregulation of LHCA and LHCB genes under

cold stress reduces the ability to absorb and capture light energy (Wilson

et al., 2006). The downregulation of key enzyme activity and gene

transcriptional expression levels in the Calvin cycle may be the reason

for the decrease in plant carbon assimilation efficiency and RuBP

regeneration rate caused by low temperature (Hussain et al., 2021). In

this study, 27 DEGs were enriched in the photosynthesis antenna

protein pathway under cold stress, while LHCA and LHCB genes

were upregulated, whichmay be an adaptive protective response. The 34

DEGs are involved in the carbon fixation pathway in photosynthetic

organisms, of which 19 are related to the Calvin cycle. The DEGs related

to photosynthetic electron transfer are downregulated, indicating severe
B

C

D E

A

FIGURE 8

Knockdown of GhPLATZ in cold stress-resistant ZM36 reduced low temperature point resistance. (A) Observation of the expected yellowing leaf phenotype
in TRV:: GhCHLI plants. (B) GhPLATZ expression in the TRV:00 and TRV:: GhPP2C52 plants. (C) Cold phenotypes of the TRV:: 00 and TRV:: GhPLATZ plants
at 10 day. (D) Comparison of electrical conductivity from the TRV:: 00 and TRV:: GhLATZ plants at 10 day. (E) Comparison of proline between TRV:00 and
TRV:: GhPLATZ plants at 10 day. The data are three independent biological replicates, Significance analysis using T test (** P < 0.01).
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damage to the photosynthetic system, and reduce the efficiency of

carbon assimilation under cold stresses. However, some DEGs were

upregulated, although the Pn and Fv/Fm values decreased in T4. It is

speculated that ZM36 can resist low temperature stress and alleviate

oxidative damage by regulating the expression of photosynthetic-related

genes. In addition, proline is a common osmoregulatory substance in

plants, which can maintain the osmotic balance between the protoplast

and the environment, thereby alleviating the damage caused by low

temperature. Plants accumulate higher levels of proline when subjected

to stress (Charest and Ton Phan, 1990; Shen et al., 2020). This study

found that the proline content in silenced plants decreased by 30.1%

compared to the control plants after low temperature stress, indicating a

significant decrease in the cold tolerance of silenced plants. This suggests

that enhancing the expression of photosynthesis-related genes is not

enough to maintain a certain level of photosynthetic ability under cold

stress. The specific mechanism values need further in-depth research.
4.2 Transcription factors AP2/ERF, MYB,
and NAC regulate cotton cold tolerance

When plants are subjected to cold stress, transcription factors (TFs)

bind to specific cis regulatory elements in the promoter to regulate target

genes related to cold resistance, thereby enhancing cold tolerance (Knight

and Knight, 2012; Zhao et al., 2015). In recent years, TF families such as

AP2/ERF,MYB, bHLH, andNAC have received widespread attention as

key regulatory factors in plant stress response (Mehrotra et al., 2020; He

et al., 2023). AP2/ERF plays a crucial regulatory role in response to low

temperature stress. In addition, AtMYB15 plays a negative regulatory

role in regulating cold resistance in Arabidopsis (Wang et al., 2019). The

NAC family is the largest specific transcription factor family in plants,

playing a crucial regulatory role in plant growth, development, and

response to abiotic stress (Tran et al., 2010). In Arabidopsis,

overexpression of HuNAC20 and HuNAC25 enhances tolerance to

cold stress by altering the expression of cold response genes in transgenic

plants (Hu et al., 2022). In this study, the number of members belonging

to the AP2/ERF transcription factor family was the highest. At the same

time, MYB transcription factors also play a crucial role in low

temperature response. Most members of the MYB family show a

downward trend under low temperature stress, and most genes in the

NAC family show varying degrees of upregulation under different low

temperature stress conditions, such as GH_D02G1383 and

GH_A03G1198, which were upregulated hundreds of times under low

temperature stress, highlighting the important role of the NAC family in

cotton’s resistance to low temperature stress.
4.3 Key genes for cold resistance and
functional validation of GhPLATZ

Cold resistance is a complex physiological and biochemical process

involving gene regulation. Plants improve cold resistance by coordinating

the expression of multiple genes (Umer et al., 2020) UVR8 is a

photoreceptor that specifically absorbs UV-B light (Kliebenstein et al.,

2002). The bZIP transcription factor HY5 is activated by UVR8 binding

to COP1, thereby inducing the expression of multiple metabolic pathway
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genes (Favory et al., 2009). The tomatoUVR8 gene participates in UV-B-

induced cold tolerance by upregulating CuZnSOD, FeSOD, and CAT1

genes (Jiang et al., 2022). UVR8 regulates plant response toUV-B light by

interacting with various transcription factors such as COP1 and HY5,

including light morphogenesis, secondary metabolism, and adaptability

to environmental stress. These transcription factors may affect the

expression of genes related to ascorbic acid synthesis and metabolism,

thereby affecting the level of ascorbic acid in plants (Lin et al., 2020;

Podolec et al., 2021). The zinc finger transcription factor PLATZ is

widely present in plants and plays an important role in regulating plant

growth and development and responding to abiotic stress. The

transgenic Arabidopsis thaliana with GhPLATZ1 may promote seed

germination and seedling formation under salt stress by increasing the

GA and ethylene content and reducing the ABA content (Han et al.,

2022). It was found that PhePLATZ23 and PLATZ27 are highly

responsive to cold stress and play an extremely important role in

regulating bamboo’s response to external environmental stimuli

(Zhang et al., 2022). UVR8 mainly involves the perception and

transduction of light signals, while the PLATZ transcription factor is

more related to plant transcriptional regulation and stress response.

Although both play important roles in plant life activities, their

mechanisms of action and biological functions are different, and there

is currently no clear evidence to suggest a direct interaction or functional

connection between them. Future research may reveal whether there are

some unknown connections between them or whether they have cross-

functional pathways in plant life activities. In this study, the five key

candidate genes in response to cold stress were identified, including

GhUVR8 (GH_A05G3668) and GhPLATZ (GH_A09G2161).

Meanwhile, it was also found that GhPLATZ was subjected to low

temperature treatment after transient silencing, and the silenced plants

weremore sensitive to low temperature and sufferedmore severe damage

than the control plants. It is speculated that GhPLATZ is positively

regulating cotton’s tolerance to low temperature.
5 Conclusions

The cold resistance of ZM36 is a complex process that involves the

synergistic effects of genes, proteins, and metabolic pathways. These

mechanisms interact with each other and together form the strong cold

resistance of ZM36, enabling it to maintain relatively normal growth

and development in low temperature conditions. In addition, network

regulatory analysis identified five hub genes, including GhPLATZ

(GH_A09G2161) highly related to the response of cotton plants to

cold stress. GhPLATZ was demonstrated to be a positive regulator of

low temperature response by VIGS. This discovery provides us with

new ideas and methods for further understanding the cold resistance

mechanism of plants.
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