
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Michael Moustakas,
Aristotle University of Thessaloniki, Greece

REVIEWED BY

Gert Schansker,
Private Scholar, Baiersdorf, Germany
Robert L. Burnap,
Oklahoma State University, United States

*CORRESPONDENCE

Hui Lyu

hui_lyu@foxmail.com

Ying-Chao Lin

linyingchao@outlook.com

RECEIVED 05 March 2024
ACCEPTED 27 May 2024

PUBLISHED 13 June 2024

CITATION

Lyu H, Lin Y-C and Liakopoulos G (2024)
Screening rate constants in the simulation of
rapid kinetics of chlorophyll a fluorescence
using the Morris method.
Front. Plant Sci. 15:1396309.
doi: 10.3389/fpls.2024.1396309

COPYRIGHT

© 2024 Lyu, Lin and Liakopoulos. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 13 June 2024

DOI 10.3389/fpls.2024.1396309
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the Morris method
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1School of Biological Science and Agriculture, Qiannan Normal University for Nationalities,
Duyun, China, 2Guizhou Academy of Tobacco Science, Guiyang, China, 3Laboratory of Plant
Physiology and Morphology, Department of Crop Production, Agricultural University of Athens,
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Chlorophyll a fluorescence, a sensitive and cost-effective probe, is widely used in

photosynthetic research. Its rapid phase, occurring within 1 second under intense

illumination, displays complex O-J-I-P transients, providing valuable insights into

various aspects of photosynthesis. In addition to employing experimental

approaches to measure the rapid Fluorescence Induction (FI) kinetics,

mathematical modeling serves as a crucial tool for understanding the

underlying mechanisms that drive FI dynamics. However, the significant

uncertainty and arbitrary nature of selecting model parameters amplify

concerns about the effectiveness of modeling tools in aiding photosynthesis

research. Therefore, there is a need to gain a deeper understanding of how these

models operate and how arbitrary parameter choices may influence their

outcomes. In this study, we employed the Morris method, a global Sensitivity

Analysis (SA) tool, to assess the significance of rate constants employed in an

existing fluorescence model, particularly those linked to the entire electron

transport chain, in shaping the rapid FI dynamics. In summary, utilizing the

insights gained from the Morris SA allows for targeted refinement of the

photosynthesis model, thereby improving our understanding of the complex

processes inherent in photosynthetic systems.
KEYWORDS

chlorophyll a fluorescence, the Morris method, sensitivity analysis, rate constant,
photosynthesis model
Abbreviations: SA, Sensitivity Analysis; FI, Fluorescence Induction; Chl, Chlorophyll; OEC, Oxygen Evolving

Complex; PSII, Photosystem II; Cytb6/f, Cytochrome b6/f; PSI, Photosystem I; FNR, Ferredoxin-NADP+-

oxidoreductase; CBB, Calvin-Benson-Basham; QA and QB, primary and secondary quinone electron

acceptors in PSII; Plastoquinone, PQ; Plastocyanin, Pc; Fd, Ferredoxin; TEG, Two-Electron-Gate; ODE,

Ordinary Differential Equation; FAST, Fourier Amplitude Sensitivity Test; eFAST, extended Fourier

Amplitude Sensitivity Test; I820, relative transmittance signal measured at 820 nm; DBMIB, 2,5-dibromo-

3-methyl-6-isopropyl-p-benzoquinone; MV, 1,1´dimethyl-4,4´-bipyridinium-dichloride; OAT, One-At-a-

Time; EE, Elementary Effect; PFD, Photon Flux Density; MCA, Metabolic Control Analysis.
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1 Introduction

When a dark-adapted photosynthetic sample is exposed to high

light intensity, chlorophyll (chl) a fluorescence is emitted mainly

from the antenna of Photosystem II (PSII). Roughly 2% to 8%

(Trissl et al., 1993) of the total absorbed light energy is converted

into chl a fluorescence, while the remaining energy is utilized for

photochemical reactions and dissipated as heat. Chl a fluorescence

is not exclusively emitted from PSII, but Photosystem I (PSI) also

contributes in shaping the fluorescence intensity (Trissl et al., 1993;

Pfündel, 1998). Chl a fluorescence has long been a widely employed

probe for investigating diverse aspects of photosynthesis because

fluorescence measurements are non-invasive, highly sensitive, and

easy to implement (Oxborough and Baker, 1997; Baker, 2008). Most

importantly, the chl a fluorescence signal contains information

from nearly every facet of photosynthesis (Valcke, 2021). Under

continuous illumination, the measured Fluorescence Induction (FI)

curve exhibits a rapid initial increase within a second, followed by a

decrease over the course of a few minutes. This rapid phase in FI

kinetics during intense light regime is generally denoted as O-J-I-P,

with the O-J rise being considered as the photochemical phase and

the subsequent J-I-P phase being considered as the thermal phase

(Strasser et al., 1995; Strasser, 1997). Here, O stands for the origin

when QA, which is the primary quinone electron acceptor of PSII, is

completely oxidized at the beginning of measurements. J and I

denote intermediate levels, while P denotes the peak, which, under

saturating light conditions, corresponds to the maximum

fluorescence (FM).

Despite about four decades of measuring the FI curve, the

interpretation of its rapid phase still remains a complex task [for

comprehensive reviews, see (Stirbet and Govindjee, 2012; Murchie

and Lawson, 2013; Schansker et al., 2014; Stirbet et al., 2014, 2020;

Bhagooli et al., 2021; Valcke, 2021; Janeeshma et al., 2022)]. This

complexity may arise from the interrelationship of various

photosynthetic processes, contributing to the characteristic

variations observed in FI curves. Undoubtedly, the oxidized QA is

widely recognized as the quencher for chl a fluorescence [for

comprehensive reviews, see (Govindje, 1995; Stirbet and

Govindjee, 2012; Stirbet et al., 2014, 2020; Janeeshma et al.,

2022)]. Also, the oxidized molecules in the PQ pool have been

shown to be responsible for quenching chl a fluorescence (Vernotte

et al., 1979). This observation has been incorporated into various

theoretical investigations (Stirbet et al., 1998; Tomek et al., 2001;

Zhu et al., 2005; Lazár, 2009). Moreover, the redox states of the

Oxygen-Evolving Complex (OEC) (Delosme and Joliot, 2002;

Jablonsky and Lazar, 2008; Jablonsky et al., 2008), in conjunction

with the activity of Cytb6/f (Johnson and Berry, 2021) and PSI

(Schreiber and Krieger, 1999; Schansker et al., 2003; Schansker and

Strasser, 2005; Schansker et al., 2005), have been shown to influence

the thermal phase (J-I-P rise) of the rapid FI curve.

Additionally, Ferredoxin-NADP+-oxidoreductase (FNR),

usually inactive in plants during dark-adaption, can become

active during the rapid phase of FI curve, thereby influencing the

electron transport around PSI and hence the thermal phase in

specific plants (Ilıḱ et al., 2006). Furthermore, conformational

changes that impact fluorescence yield have also been proposed to
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occur during the rapid phase of FI curves (Magyar et al., 2018; Sipka

et al., 2019, 2021; Magyar et al., 2022; Sipka et al., 2022).

In addition to experimental studies aimed at exploring the

origin of FI curves, the application of mathematical models has

proven to be a valuable approach for suggesting the mechanisms

underlying the characteristic changes in FI curves. To simulate

rapid FI curves, Renger and Schulze (1985) (Renger and Schulze,

1985) initially employed a “structure-based” Two-Electron Gate

(TEG) model to simulate and fit various fluorescence transients

measured under different low light intensities. The term “structure-

based” indicates that the model was constructed using widely

accepted structural and/or functional information of the

photosynthetic system. Following that, many extended TEG

models have been proposed [e.g (Stirbet et al., 1998; Lebedeva

et al., 2002; Lazár, 2003; Zhu et al., 2005; Lazár, 2009; Belyaeva et al.,

2016; 2019)], incorporating numerous biochemical reactions related

to photosynthesis that can influence the rapid kinetics of FI curves.

These “structure-based” FI models generally involve a system of

interconnected ordinary differential equations (ODEs). By assigning

initial values for parameters and incorporating rate constants

obtained from published literature into the model, authors can

determine the temporal evolution of variables under investigation.

Certainly, models can quantitatively suggest the impact of

parameters on the variables of interest by adjusting parameter

values or setting them directly to zero (Lazár et al., 1997, 1998;

Lazár and Pospıśǐl, 1999; Lazár, 2003; Lazár et al., 2005; Lazár, 2009,

2013). However, when the output of a variable influenced by one

parameter (e.g., the rate constant in an FI model) shows more

variation than its response to another rate constant, it is easy to

identify which rate constant has a more pronounced impact. On the

contrary, when the variable outputs induced by both rate constants

are essentially indistinguishable, it becomes challenging to

determine which rate constant exerts a greater influence on the

investigated variable. In such a scenario, the ability of models to

decipher the rapid FI curves can be limited.

In this study, we conducted Sensitivity Analysis (SA) on

parameters, particularly those associated with the entire electron

transport chain, of a previously published FI model (Lazár, 2009),

employing the Morris method (Morris, 1991). The Morris SA

method examines how the uncertainty of input parameters affects

the output of model variables and is especially applicable to models

with a large number of parameters (Morris, 1991; Campolongo

et al., 2007). This global SA technique is widely applied in various

research areas, including pasture management (Ben Touhami et al.,

2013), water supply (King and Perera, 2013), waste treatment

(Langergraber and Ketema, 2015), nuclear science (Wang et al.,

2020), and space exploration (Sohier et al., 2014, 2015). Notably, we

have observed examples where authors (Lazár et al., 2005; Ebenhoh

et al., 2011; Zhu et al., 2013) utilized a basic local derivative-based

SAmethod to screen the significance of FI parameters. This local SA

technique assesses the sensitivity of model inputs solely at a specific

point in the input space. Although this method is simple and

computationally inexpensive, it is most informative only if the

model is linear. In many cases, particularly for complex nonlinear

models with numerous factors, the application of this local SA

method may lead to incorrect conclusions (for comprehensive
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reviews, see (Borgonovo and Plischke, 2016; Qian andMahdi, 2020)).

In addition to the Morris method, other global SA techniques such as

Sobol, FAST (Fourier Amplitude Sensitivity Test), and eFAST

(extended Fourier Amplitude Sensitivity Test) fall under the

variance-based category. These approaches prove effective for

models with a moderate number of parameters. However, as the

number of parameters increases, the computational complexity rises

with the expanding dimensionality of the input space, leading to a

significant increase in computational costs (Qian and Mahdi, 2020).

In this study, our primary objective is to address a fundamental

challenge faced by fluorescence modelers: identifying which

parameters, especially those linked to the electron transport

chain, exert significant influence on fluorescence dynamics once

the model outcomes are obtained, and ranking the importance of

these parameters based on their sensitivity.
2 Theoretical description

2.1 Simulation of rapid kinetics of
chlorophyll a fluorescence

In this study, the Morris method was used to analyze the

photosynthesis model developed by Lazár (2009) [27]. Lazár’s

model (2009) has several features as presented below:

1, the model consists of 43 variables, 34 rate constants, and a set

of mutually coupled 43 nonlinear differential equations. This

configuration clarifies the sequence of electron transport

reactions, starting at OEC and progressing through PSII, the

Plastoquinone pool (PQ pool), Cytb6/f complex, PSI, and

terminating at FNR. Notably, the model integrates the

functionality of FNR and the cyclic electron transport reactions

from F−D (reduced ferredoxin) back to Cytb6/f or PQ pool, providing

a description of the entire electron transport reactions from OEC

to FNR;

2, the model has the capability to simultaneously simulate the

rapid phases of FI curves and 820 nm transmittance signals (I820)

measured in pea leaves, not only under controlled conditions but

also in samples treated with DBMIB (2,5-dibromo-3-methyl-6-

isopropyl-p-benzoquinone, capable of interrupting the electron

transport from the PQ pool to the Cytb6/f complex) and MV

(1,1´dimethyl-4,4´-bipyridinium-dichloride, capable of accepting

electrons originating from PSI). Furthermore, the model has the

capability to simulate the rapid phases of FI curves and I820 signals

under varying light intensities.

Until now, Lazár’s model (2009) can be considered as one of the

classical models that comprehensively incorporates the entire

electron transport reactions from OEC to FNR. Additionally,

various other models, providing an overview of the entire

photosynthetic system, have also been developed (Laisk et al.,

2006; Nedbal et al., 2007; Zhu et al., 2013; Lyu and Lazár, 2017).

Notably, a series of models developed by Rubin and coworkers

(Lebedeva et al., 2002; Belyaeva et al., 2016; 2019) are characterized

by their consideration of the impact of transthylakoid electric

potential difference on regulating the rate of electron transport
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reactions. In this study, our focus is on identifying the reactions

within the entire electron transfer chain that significantly impact

fluorescence output. Therefore, Lazár’s model was chosen for our

case study as it meets our specific requirements. For a more detailed

theoretical description of Lazár’s model, readers can refer to the

author’s original paper (Lazár, 2009).
2.2 The Morris method

The Morris method employs a One-At-a-Time (OAT) design

that proves to be cost-effective when dealing with models with a

large number of inputs. The Morris method enables the derivation

of the Elementary Effect (EE) for a specific factor of interest through

a finite difference scheme. For a given X = (X1,···,Xi,···,Xj), the EEi of

Xi can be determined using the following formula:

EEi =
f (X1,⋯,Xi + D,⋯,Xj) − f (X1,⋯,Xi,⋯,XjÞ

D
(1)

In Equation 1, the function f(X) represents the output generated

by the simulation; the value of D is typically set as (p-2)/(p-1), and p

is the number of levels.

In summary, an “elementary effect” refers to the extent of

variation in output observed by incrementally perturbing

individual parameters. Unlike traditional methods that alter one

parameter at a time, Morris employs a continuous and incremental

perturbation approach to explore the parameter space. This method

allows for acquiring information about model parameter sensitivity

at a relatively low computational cost without the need for prior

sampling of the parameter space. Due to its simple and iterative

nature, the Morris SA tool is widely employed for understanding

model behavior and optimizing parameter selection.

2.2.1 Trajectory-based sampling strategy
Morris (1991) (Morris, 1991) initially introduced the trajectory-

based sampling strategy, which involves generating m trajectories,

each consisting of k+1 points in the input space, where k represents

the number of input factors. In each trajectory, k elementary effects

are determined, with one EE corresponding to each input factor.

This results in a total of m × (k+1) sample points. Conceptually, a

trajectory can be considered as a matrix that initiates with a “base”

value X* for the vector X. This X* is randomly chosen as the initial

point for generating an entire trajectory. The trajectory matrix B’

can be constructed as follows:

B0 = Jk+1,1X* + DB   (2)

In Equation 2, the term Jk+1,1 denotes a matrix of dimensions

(k+1) × 1, comprising exclusively of 1’s, X* is a randomly chosen

“base value” for the vector X, and B is a strictly lower triangular

matrix of 1’s.

B’ is considered as a potential candidate for the desired trajectory

matrix. However, it has the limitation that the k elementary effects it

generates are not randomly selected. To overcome this limitation,

modifications have been made, leading to the creation of a properly

randomized sampling matrix (Morris, 1991):
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B* = (Jk+1,1X* + (D=2)½(2B − Jk+1,k)D* + Jk+1,k�)P* (3)

In the given formula, Jk+1,k is a (k+1) × k matrix consisting of

1’s, D* is a k-dimensional diagonal matrix where each element is

randomly assigned either +1 or -1 with equal probability, and P* is a
k × k random permutation matrix.

2.2.2 The Morris measures
In most cases, both the mean value (mi) and standard deviation

(si) can be determined through repetitive calculations for each

input parameter. A high mi value indicates a significant impact on

the output exerted by the input parameter, while a low mi value
suggests minimal influence. Furthermore, a high si value signifies

nonlinear effects on the output and/or potential interactions with

other parameters. These statistical measures are calculated using

Equations 4, 5:

mi =
or

k=1EE
k
i

r
  (4)

si =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
or

k=1(EE
k
i − mi)

2

r − 1

s
(5)

However, the mi value fails to account for situations in which

elementary effects with opposite signs cancel each other, leading to a

Type II error. This error represents the failure to identify a factor of

considerable influence on the model. To overcome this limitation,

Campolongo et al. (2007) (Campolongo et al., 2007) introduced a

new index as expressed in Equation 6:

m*i = o
r
k=1 EEk

i

�� ��
r

(6)

The index m∗
i can provide more comprehensive information

about the SA when combined with mi and si.

2.2.3 An application example of the Morris
SA method

Overall, the Morris SA offers a systematic approach to evaluate

the influence of input parameters on model outputs. In its

application, the first step involves identifying the key input

variables within the model. Following this, the input ranges for

each parameter are defined, encompassing plausible real-world

values. Subsequently, sample sets are generated, comprising

various combinations of input values across the defined ranges.

These samples are then used to run the model, producing

corresponding output data. The elementary effects of each

parameter are then calculated, reflecting the change in output

resulting from small variations in individual inputs while holding

others constant. By averaging these elementary effects, parameters

are ranked based on their sensitivity, elucidating which inputs exert

the most significant impact on model outcomes. Interpretation of

these results provides valuable insights into the dynamics of the

model, guiding further refinements or informing decision-making

processes. Here, we present an application example of the Morris

SA method on a simple set of differential equations:
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dx1
dt

= ax1 + bx2 (7)

dx2
dt

= ax1 � bx2 (8)

We will explore the impact of variations in x1 or x2 on the

output of y = x1 + x2. Here, x1 and x2 can be thought as rate

constants in the fluorescence model, while y represents the

simulated variable fluorescence emission. We set the initial values

of x1 and x2 to 1, a and b to 5, with both a and b scaled at 20%. The

time interval t is set from 0 to 1 s, p is set to 4, and D to 2/3.

Following Equation 3, we set the values of B, D∗, J, P∗, and X∗.

Ultimately, we generate four matrices for sampling both a and b:

Trajectory 1 : 

7:3 6

6 6

6 7:3

2
664

3
775

Trajectory 2 : 

6 5:3

4:6 5:3

4:6 6:6

2
664

3
775

Trajectory 3 : 

6:6 4:6

5:3 4:6

5:3 6

2
664

3
775

Trajectory 4 : 

5:3 4

4 4

4 5:3

2
664

3
775

By solving the system of differential equations (Equations 7, 8),

we obtained two EE values for a and b based on trajectory 1 and

other initial conditions. We repeated this process for all four

trajectories, resulting in four sets of EE values for a and b,

respectively. These sets were then averaged at each time point,

and the mean (m*) and standard deviation (s) were calculated

across all time points according to Equations 5, 6. Finally, m* and s
of a were found to be 1910 and 3830, respectively, while those of b

were 156 and 230, respectively. These findings suggest that

variations in parameter ‘a’ exhibit a higher sensitivity towards the

output ‘y’, and also unveil a more pronounced interaction and/or

potentially nonlinear relationship between ‘a’ and the system

variables. For detailed computational procedures of this

application example, please refer to the MATLAB (MathWorks

Inc., USA) programs provided alongside this article, named

“myMorrisExample.m” and “myMorrisExampleODE.m”.
3 Results and discussion

In this study, the Morris SA was performed on 18 forward rate

constants (all detailed in Table 1) and 14 backward rate constants
frontiersin.org
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(all detailed in Table 2) within Lazár’s model under low and intense

illumination conditions. The SA procedure can be clarified through

three main steps as follows:

1. Optimal values for the model rate constants under each

illumination condition can be determined by comparing the

simulation results with the experimental curves.

2. Construction of X*. In this study, p is set to be 4. Therefore, D
equals to 2/3. Consequently, X* is formed by randomly selecting

values from the range (0, 1/3, 2/3, 1). Further, four trajectories (i.e.,
Frontiers in Plant Science 05
m = 4) are generated by randomly choosing four distinct values

from this space. In this FI model, the calculation of Morris measures

involves determining the mean (m*) and standard deviation (s)
across all time points. The use of four trajectories in our study can

meet the requirements for analyzing the FI model. However, it is

worth noting that improved results are not necessarily obtained, as

suggested by previous studies (Saltelli et al., 2006; Campolongo

et al., 2007, 2011), when more trajectories are employed

in simulations.
TABLE 1 Description of forward rate constants used in Lazár’s model (2009) and their corresponding values used in simulations presented in Figure 1.

Rate
Constant

Description &
Electron Transport Reaction

Value
(s-1)

k1f Rate constant for light-induced charge separation between P680 and QA, leading to the formation of P680+ and Q−
A

P680(Pheo)QA→P680+(Pheo)Q−
A

2000

k2 Rate constant for the electron donation from the S0 state of the OEC to P680+ through Y+
Z during the S0-to-S1 transition

S0P680+→S1P680

20000

k3 Rate constant for the electron donation from the S1 state of the OEC to P680+ through Y+
Z during the S1-to-S2 transition

S1P680+→S2P680

10000

k4 Rate constant for the electron donation from the S2 state of the OEC to P680+ through Y+
Z during the S2-to-S3 transition

S2P680+→S3P680

3330

k5 Rate constant for the electron donation from the S3 state of the OEC to P680+ through Y+
Z during the S3-to-S0 transition

S3P680+→S0P680

1000

k6f Rate constant governing the electron transfer from
Q−

A to QB

Q−
AQB→QAQ

−
B

3500

k7f Rate constant governing the electron transfer from
Q−

A to Q−
B

Q−
AQ

−
B→QAQ

2−
B

1750

k8f Rate constant for exchange involving the doubly reduced QB (Q2−
B ) with an oxidized PQ molecule from the PQ pool

QAQ
2−
B +PQ+2H+→QAQB+PQH2

250

k9f Rate constant for the oxidation of reduced PQ on the luminal side of cyt b6/f, leading to the transfer of one electron to haem bL and
one to haem f

PQH2+fbL→PQ+f−b−L+2H
+

100

k10f Rate constant governing the electron transfer from
b−L to either oxidized or singly reduced haem bH

b−LbH→bLb
−
H or b−Lb

−
H→bLb

2−
H

2300

k11f Rate constant for the reduction of oxidized PQ

on the stromal side of cyt b6/f by b2−H
b2−H +PQ+2H+→bH+PQH2

100

k12f Rate constant for the oxidation of reduced haem f by Pc+

f−Pc+→fPc
100

k13f Rate constant for the reduction of either oxidized or singly reduced bH by Fd−

bH+Fd
−→b−H+Fd or b−H+Fd

−→b2−H +Fd

100

k14f Rate constant for the reduction of either oxidized or singly reduced PQ by Fd–

PQ+Fd−→PQ−+Fd or PQ−+Fd−+2H+→PQH2+Fd
1

k15f Rate constant for light-induced charge separation between P700 and FB, leading to the formation of P700+ and F−B
P700FB→P700+F−B

2000

k16f Rate constant governing the electron transfer from Pc to P700+

Pc+P700+→Pc++P700
200

k17f Rate constant governing the electron transfer from F−B to Fd
F−B+Fd→FB+Fd

−

200

k18f Rate constant governing the electron transfer from F−d to either actively oxidized or singly reduced FNR
F−d+FNR→Fd+FNR− or F−d+FNR

−→Fd+FNR2−
5

f
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Construction of B*, calculation of EE, and calculation of the

Morris measures. Following Equation 3, B* can be obtained based

on X*. At this stage, values in the B* space do not represent the true

values of rate constants. Mapping B* values to the real space of each

rate constant involves scaling rate constants by 10%, 20%, and 30%

(30% is only used in the SA for forward rate constants under the low

light condition). For instance, scaling a rate constant by 10% creates

an interval from 90% of the original value to 110% of the original

value. After mapping B* to the real value interval of rate constants,

in each trajectory, EE for each rate constant can be calculated.

Subsequently, the mean (m*) and standard deviation (s) of these
Morris measures can also be computed. The MATLAB code related

to the Morris method of this study has been pushed to the open-

source program platform at www.gitee.com. Readers can access

and/or download these programs from the following website link:

https://gitee.com/hui-lyu/sa-dl-code.

Upon the conditions of intense illumination (PFD: 3255

photons m-2 s-1) and low illumination (PFD: 325.5 photons m-2 s-1),

Figure 1 illustrates a comparison between model outputs and

experimental curves. In the condition of high illumination, the

experimental curve shows distinct O-J-I-P transitions, where the J

point occurs at around 2 ms, I at around 20 ms, and P at around 200

ms. Notably, the simulated curve agrees well with the experimental

curve, with the J (~ 2 ms), I (~ 20 ms), and P (~ 200 ms) points

occurring at similar time intervals. However, the simulated curve

exhibits a more pronounced plateau at the J inflection point

compared to the experimental curve, whilst the I inflection point is
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much less evident. Additionally, the amplitude at the O point in the

simulated curve exceeds that of the experimental curve, indicating a

higher simulated fluorescence intensity immediately upon light

activation. In the condition of low illumination, the J inflection point

in the experimental curve occurs much faster (~ 0.3 ms) but with a

significantly reduced amplitude compared to the curve measured

under intense illumination. Simultaneously, the I inflection point

disappears in the experimental curve, and the P point emerges at

approximately 200 ms. In the simulated curve, there is also a noticeable

reduction in the amplitude of the plateau at the J inflection point, which

agrees well with the pattern observed in the experimental curve.

However, it is worth noting that the plateau occurs at a delayed time

point (~ 2 ms) in the simulated curve. Similar to the observed pattern

in the measured curve, the simulated curve also illustrates the

disappearance of the I inflection point, and the occurrence of the

P point is also delayed. In general, the simulated curves can

qualitatively reproduce the characteristic features observed in the

experimental curves.

It’s worth noting that achieving a precise reproduction of

variables of interest measured during photosynthesis remains a

challenge for any photosynthetic model. This challenge may arise

from the complexity of the models and the limited number of

experimentally validated determinations for rate constants, which

makes the models highly underdetermined. Moreover, despite their

complexity, most models likely do not include enough detail about

real physiological processes that could dynamically modify the

parameter values. Another possibility is that our understanding of

the fundamental properties of chl a fluorescence remains

insufficient, thereby impeding accurate simulation of experimental

data by models. These suggest that the simulated results may only

qualitatively reproduce the characteristics of experimental FI

curves, even in comprehensively constructed photosynthesis

models that encompass nearly the entire leave-based
TABLE 2 Description of backward rate constants used in Lazár’s model
(2009) and their corresponding values used in simulations presented
in Figure 1.

Rate
Constant*

Electron Transport Reaction Value
(s-1)

k1b P680+(Pheo)Q−
A→P680(Pheo)QA 5000

k6b QAQ
−
B→Q−

AQB 175

k7b QAQ
2−
B →Q−

AQ
−
B 35

k8b QAQB+PQH2→QAQ
2−
B +PQ+2H+ 250

k9b PQ+f−b−L+2H
+→PQH2+fbL 10

k10b bLb
−
H→b−LbH or bLb

2−
H →b−Lb

−
H 7

k11b bH+PQH2→b2−H +PQ+2H+ 10

k12b fPc→f−Pc+ 10

k13b b−H+Fd→bH+Fd
− or b2−H +Fd→b−H+Fd

− 100

k14b PQ−+Fd→PQ+Fd− or PQH2+Fd→PQ−

+Fd−+2H+
1

k15b P700+F−B→P700FB 10000

k16b Pc++P700→Pc+P700+ 10

k17b FB+Fd
−→F−B+Fd 10

k18b Fd+FNR−→F−d+FNR or Fd+FNR2

−→F−d+FNR
−

5

*Rate constants ending with the letter ‘b’ represent the reverse processes of those characterized
by rate constants ending with the letter ‘f’.
FIGURE 1

Comparison of experimental data with simulated rapid phases of
Fluorescence Induction (FI) curves under both intense (PFD: 3255
photons m-2 s-1) and low (PFD: 325.5 photons m-2 s-1) illumination
conditions. PFD represents Photon Flux Density. The experimental
data are from Strasser et al. (1995).
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photosynthetic reactions, as shown in studies by Laisk et al. (2006)

(Laisk et al., 2006) and Zhu et al. (2013) (Zhu et al., 2013).

The screening of 18 forward rate constants under intense

illumination is presented in Figure 2. Rate constants scaled by

10% of their original values are shown in Figures 2A, B, and those

scaled by 20% of their original values are shown in Figures 2C, D.

Figures 2A, C are the 3D versions of the corresponding 2D

presentations. The sorting results for those scaled by 20% are also

depicted in bar charts as shown in Figure 3A. Different scales are

used to the SA to reduce the pronounced impact of certain rate

constants, especially when the scale is very small. This is because the

effects of rate constants on shaping the FI curve would be saturated

when the scale is increased. Therefore, this treatment can help

reveal the genuine importance of rate constants. By employing the

Morris SA, for both 10% and 20% scales, we can sort all the forward

rate constants based on their importance, as derived from the values

of m*. The rate constants are sequenced in descending order as

follows: (1) k1f, describing the reaction rate of P680(Pheo)QA →

P680+(Pheo)Q−
A; (2) k5, describing the rate constant for electron

donation from the S3 state of the OEC to P680+ during the S3−to

−S0 transition; (3) k8f, describing the rate constant for exchange

involving the doubly reduced QB with an oxidized PQ molecule

from the PQ pool; (4) k15f (10%), describing the rate constant for

electron transfer from Plastocyanin (Pc) to P700+ or k16f (20%),

describing the rate constant for light-induced charge separation

between P700 and FB, thereby leading to the formation of P700+

and reduced FB; (5) k16f (10%) or k15f (20%); (6) k11f, describing

the rate constant for the reduction of PQ on the stromal side of

Cytb6/f by doubly reduced haem bH; (7) k12f, describing the rate
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constant for the oxidation of reduced haem f by Pc+; (8) k6f,

describing the rate constant for electron transfer from reduced

QA to QB; (9) k4, describing the rate constant for electron donation

from the S2 state of the OEC to P680+ during the S2−to−S3

transition; (10) k17f, describing the rate constant for electron

transfer from reduced FB to Fd; (11) k7f, describing the rate

constant for electron transfer from reduced QA to singly reduced

QB; (12) k13f, describing the rate constant for the reduction of

either oxidized or singly reduced haem bH by Fd–; (13) k9f,

describing the rate constant for the oxidation of reduced PQ on

the luminal side of Cytb6/f, thereby leading to the transfer of one

electron to haem bL and one to haem f; (14) k3, describing the rate

constant for electron donation from the S1 state of the OEC to

P680+ during the S1−to−S2 transition; (15) k14f, describing the rate

constant for the reduction of either oxidized or singly reduced PQ

by Fd–; (16) k18f, describing the rate constant for electron transfer

from Fd– to either actively oxidized or singly reduced FNR; (17) k2,

describing the rate constant for electron donation from the S0 state

of the OEC to P680+ during the S0−to−S1 transition; and (18) k10f,

describing the rate constant for electron transfer from reduced

haem bL to either oxidized or singly reduced haem bH.

Conceivably, k1f, which represents the primary charge

separation in PSII, is the most significant parameter in the entire

photosynthetic system. Moreover, the importance of donor-side-

based k5, representing rate constant for the electron donation from

the S3 state of the OEC to P680+ through Y+
Z during the S3-to-S0

transition, is higher than that of acceptor-side-based k8f, which

represents the rate constant for exchange involving the doubly

reduced QB (Q
2−
B ) with an oxidized PQ molecule from the PQ pool.
A B

DC

FIGURE 2

Screening of 18 forward rate constants scaled by 10% (B) and 20% (D) of their original values under intense illumination. (A, C) represent the 3D
versions of the corresponding 2D presentations.
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Following k8f, the importance of k15f, representing the rate

constant for light-induced charge separation between P700 and

FB, exceeds that of k16f, which represents the rate constant

governing the electron transfer from PC to P700+. Interestingly,

around PSI, the importance of donor-side-based k16f is also higher

than that of acceptor-side-based k17f, which represents the rate

constant governing the electron transfer from reduced FB to Fd.

However, rate constants for cyclic electron reactions, such as k13f

(the rate constant for the reduction of either oxidized or singly

reduced bH by Fd–) and k14f (the rate constant for the reduction of

either oxidized or singly reduced PQ by Fd–) are shown to be less

significant than empirically suggested by some modelling studies (Li

et al., 2021). By employing the Morris SA, we can also sort all the

forward rate constants based on their linearity and/or potential

reactions with other parameters, as derived from the values of s.
Notably, k1f occupies the highest rank, followed by k5, k8f, k15f,

and k16f. This ranking corresponds to the importance sequence for

these rate constants, indicating that a rate constant with higher

significance is more likely to exhibit nonlinearity and/or interact

with other parameters.

Figure 4 represents the screening of 18 forward rate constants

under low illumination. Rate constants scaled by 10%, 20%, and

30% of their original values are respectively shown in Figures 4A–C.

The sorting results for those scaled by 20% are also illustrated in bar

charts as shown in Figure 3B. To simulate FI curve under low

illumination, we adjust the values for k1f, k1b, k15f, and k15b to

one-tenth of their original values under intense illumination, while

keeping all other values of rate constants unchanged. Surprisingly,
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the ranking sequence for 18 forward rate constants noticeably varies

when those specific rate constant values are altered. In specific, the

leading group in the ranking sequence comprises only k1f and k8f.

The composition of the less significant group varies from 10% to

20% scales, while the composition remains identical for the 30%

scale as compared to the 20% scale. This suggests that the effects of

these rate constants on shaping FI curve reach saturation at the 20%

level. The forward rate constants in the less significant group for

both 20% and 30% levels include k15f, k11f, k6f, k16f, k5, k14f, k7f,

k12f, k13f, k7f, k4, k9f, k18f, k3, k2, and k10f. These constants are

sorted based on the importance sequence derived from the values of

m* (see Figures 4B, C). It is worth noting that k1f and k8f are the

most influential rate constants when simulating FI curves under

both intense and low illumination. For the precise classification of

forward rate constants in the less significant group for 10%, refer

to Figure 4A.

Figure 5 illustrates the screening of 14 backward rate constants

scaled by 10% and 20% in panels A and B under intense

illumination, and panels C (10% scale) and D (20% scale) under

low illumination. The sorting results for those scaled by 20% are

also portrayed in bar charts as shown in Figure 3C under intense

illumination and Figure 3D under low illumination. Overall, the

impact on shaping the FI curve due to the forward rate constants is

more significant than that of backward rate constants as expected.

This is evident in the magnitude of m* for forward rate constants

compared to backward rate constants under corresponding

illumination conditions. For intense illumination, the ranking

sequence remains identical for both the 10% and 20% scales. The
A B

DC

FIGURE 3

Bar charts illustrating the screening results of 18 forward rate constants scaled by 20% of their original values under intense illumination (A) and
under low illumination (B); bar charts illustrating the screening results of 14 backward rate constants scaled by 20% of their original values under
intense illumination (C) and under low illumination (D).
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leading group consists of k1b, k15b, k8b, and k13b, followed by a

less significant group including k11b, k14b, k16b, k17b, k6b, k12b,

k10b, k7b, k9b, and k18b. Similarly, for low illumination, the

ranking sequence also remains unchanged for both the 10% and

20% scales. The leading group consists of k1b, k8b, k15b, k6b, k13b,

k14b, k11b, and k17b, followed by a less significant group including

k12b, k16b, k10b, k7b, k9b, k18b. However, it is also observable that

the ranking sequence varies significantly under intense illumination

compared to low illumination. Moreover, it is worth noting that

k1b, k8b, k13b, and k15b are the most influential rate constants

when simulating FI curves under both intense and low illumination.

All ranking sequences for both forward rate constants and

backward rate constants under varying light conditions are

provided in Table 3.

Figure 6 illustrates trajectory-sampling-based FI simulations for

forward rate constants scaled by 10% and 20% in panels A and B

under intense illumination, andpanelsC (10%scale) andD(20%scale)

under low illumination. Additionally, the 5th, 50th, and 95th

percentiles are specifically highlighted in the simulated 19 curves

across all panels. Overall, the impact of forward rate constants, when
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uniformly scaled, ismorenoticeable in shaping the simulated FI curves

under intense illumination than low illumination. At the same time,

the effect of forward rate constants, when uniformly illuminated, is

morenoticeable in shaping the simulatedFI curves under the 20%scale

compared to the 10% scale. Specifically, for the 20%scale under intense

illumination, the simulated curves undergo changes throughout the

entire course of O-J-I-P transients. In contrast, for the 20% scale under

low illumination, the alterations in the simulated curves occur mainly

during the J-I-P phase. Furthermore, Figure 7 illustrates trajectory-

sampling-based FI simulations for backward rate constants scaled by

10%and20% in panelsA andBunder intense illumination, and panels

C (10% scale) and D (20% scale) under low illumination. In any case,

the alterations in the simulated curves are much less pronounced than

those observed for forward rate constants. Specifically, for low

illumination at10% and 20% scales, the alterations in the simulated

curves are nearly unnoticeable. Under intense illumination at 10% and

20% scales, the changes in the simulated curves primarily occur during

the J-I phase.

The Morris measure, EE, directly focuses on the net variation of

simulated FI curves resulting from a random change in a specific
A

B

C

FIGURE 4

Screening of 18 forward rate constants scaled by 10% (A), 20% (B), and 30% (C) of their original values under low illumination.
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rate constant. Figure 8 illustrates temporal variations induced by

rate constants related to the functionality of OEC, specifically

regulated by rate constants k2, k3, k4, and k5. Notably, under

intense illumination, the most significant deviation is attributed to

k5, followed by k4, k3, and k2 in sequence. The maximum deviation

induced by k5 occurs at approximately 20 ms, coinciding with the

appearance of the I point. For k4, two maximum deviations occur:

one at the J point and another at the I point. Conversely, k3 peaks at

about 1 ms, corresponding to the appearance of the J point, while k2

peaks at a slightly earlier time point. Under low illumination, nearly

all maximum deviations shift to a later time point at approximately

100 ms, aligning with the appearance of the P point. In other words,

when illumination is reduced, the turnover of the OEC can

indirectly affect the P point of the simulated FI dynamics. This

occurs because PSII-donor-side limitation can decelerate the

electron transport rate, leading to a delayed occurrence of the P

point. In some cases, the P point may not occur at all, particularly

when the FNR complex is activated within the model. However, the

deviation in k5 still maintains its status as the highest, followed

sequentially by k4, k3, and k2, similar to the pattern observed under

intense illumination. The significance in shaping the FI curve for

k1f is much higher than that of k15f under both intense and low

illumination conditions. This perspective is also supported by

Figure 9, which agrees well with the view that PSII is the major

contributor for generating the FI curve. Surprisingly, under both

intense and low illumination conditions, shaping the FI curve for

k8f is more significant than for k9f which represents the rate

limiting step in linear electron transport. The growing

significance of k8f compared to k9f suggests that k8f, representing

the rate constant for the exchange involving the doubly reduced QB
A B

DC

FIGURE 5

Screening of 14 backward rate constants scaled by 10% of their original values under both intense (A) and low (C) illumination conditions and 20%
under both intense (B) and low (D) illumination conditions.
TABLE 3 Orderings of 18 forward rate constants and 14 backward rate
constants based on their importance, as derived from values of m*.

Order Intense
light
(forward
rate
constant)

Low light
(forward
rate
constant)

Intense
light
(backward
rate
constant)

Low light
(backward
rate
constant)

1 k1f k1f k1b k1b

2 k5 k8f k15b k8b

3 k8f k15f k8b k15b

4 k16f k11f k13b k6b

5 k15f k6f k11b k13b

6 k11f k16f k14b k14b

7 k12f k5 k16b k11b

8 k6f k14f k17b k17b

9 k4 k17f k6b k12b

10 k17f k12f k12b k16b

11 k7f k7f k10b k10b

12 k13f k13f k7b k7b

13 k9f k4 k9b k9b

14 k3 k9f k18b k18b

15 k14f k18f

16 k18f k3

17 k2 k2

18 k10f k10f
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A B

DC

FIGURE 6

Trajectory-sampling-based FI simulations with forward rate constants scaled by 10% and 20% in (A, B) under intense illumination, and (C) (10% scale)
and (D) (20% scale) under low illumination. The fourth trajectory is utilized to generate these figures.
A B

DC

FIGURE 7

Trajectory-sampling-based FI simulations with backward rate constants scaled by 10% and 20% in (A, B) under intense illumination, and (C) (10%
scale) and (D) (20% scale) under low illumination. The fourth trajectory is utilized to generate these figures.
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with an oxidized PQ molecule, might be the key factor, at least in

our model analysis, in regulating the electron transport from PSII to

Cytb6/f. In Figure 9B, both negative and positive peaks are

noticeable in the temporal EE curve for k8f under both intense

and low illumination conditions. Additionally, in Figure 9, both

negative and positive maximum deviations shift to occur at an

earlier time point under low illumination compared to

intense illumination.
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In the following analysis, we further explore the impact of

backward rate constants on shaping the FI curves. In Figure 10A,

the k1b EE curve displays a maximum deviation at approximately

20 ms, corresponding to the appearance of the I point during

intense illumination. Conversely, under low illumination, a

maximum deviation is observed at approximately 100 ms in the

k1b EE curve, albeit with a lower amplitude compared to that

observed under intense illumination. In Figure 10B, the k15b EE
A

B

FIGURE 8

Time courses illustrating the Elementary Effect (EE) arising from rate constants related to the functionality of OEC (k2, k3, k4, and k5) under both
intense (A) and low (B) illumination conditions. The figures are generated based on the fourth trajectory.
A

B

FIGURE 9

Time courses illustrating the Elementary Effect (EE) arising from forward rate constants k1f (A), k15f (A), k8f (B), and k9f (B) under both intense and
low illumination conditions. The figures are generated based on the fourth trajectory.
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curve exhibits a two-peak pattern in opposite directions during

intense illumination. This pattern remains consistent during low

illumination, albeit with all maximum deviations shifted to occur at

an earlier time point. Generally, the influence of k15b on shaping

the FI curves is notable during the time interval between the I point

and P point, or even beyond the P point. In Figure 10C, the k8b EE

curve exhibits a two-peak pattern in the same direction during

intense illumination. This pattern persists during low illumination

as well, although all maximum deviations are shifted to occur at an

earlier time point. The influence of k8b on shaping the FI curves is

generally observed during the time interval between the J point and

P point, or even beyond the P point. Ultimately, in Figure 10D, the

k9b EE curve exhibits a two-peak pattern in opposite directions

during intense illumination. Conversely, under low illumination, it

demonstrates a two-peak pattern in the same direction, yet with all

maximum deviations shifted to occur at an earlier time point.

Generally, the influence of k9b on shaping the FI curves is

observed during the time interval between the J point and P point.

Previously, Lazár et al. (2005) employed a method of Metabolic

Control Analysis (MCA) to evaluate the importance of photosynthetic

reactions in controlling the level of P point within a PSII model that

explores the activity of Cytochrome b559. Additionally, Ebenhöh et al.

(2011) employed a local SA to evaluate the importance of four

parameters in controlling the steady-state systematic behavior, with

a specific focus on the nonphotochemical quenching of chl a

fluorescence. Moreover, Zhu et al. (2013) also employed a local SA

to evaluate the significance of parameters in controlling the steady-

state systematic behavior of the Calvin-Benson-Basham (CBB) cycle.

Byusing the local SAmethod in thementioned studies, the authors can

onlymanually adjust the parameters of interest around a specific value
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point. On the contrary, a global SA tool such as theMorrismethod can

randomly alter the values of given parameters across the entire input

space. Nonetheless, it is important to note that theMorris method has

its own limitations. For instance, this global SA technique canhighlight

which factorhas ahigh tendency toexhibitnonlinearityand/or interact

with other parameters, but it cannot specifically identify which factor

truly correlates with the given factor. Additionally, the results of SA

employing theMorrismethodmay depend on the structural feature of

the model under investigation. In this research, Lazár’s model is used

for our case study. If another model with a different structure is used,

the SA results may vary accordingly. However, by utilizing the Morris

SA, researchers can systematically screen the shared key factors

influencing outcomes from different models, provided that all

investigated models are available. In principle, after deriving SA

conclusions for model parameters via the Morris method, we can

enhance the model itself by concentrating on highly sensitive

parameters. This could involve fine-tuning these parameters to

better match observed behaviors or trends in the output data.

Furthermore, we can employ the SA findings to prioritize additional

investigations or experiments aimed at validating themodel’s behavior

across various parameter settings. Ultimately, utilizing the insights

obtained from theMorris SA enables targeted refinement of themodel,

thereby improving its accuracy and predictive capabilities. To the best

of our knowledge, the integration of a global SA approach with a FI

model has not been explored in previous publications. In conclusion,

the Morris SA algorithm demonstrated its capability to operate under

varying conditions and produce reliable results. By utilizing these

findings, we can further enhance the accuracy and reliability of

photosynthesis models, thereby advancing our understanding of the

complex processes involved in photosynthetic systems.
A

B

D

C

FIGURE 10

Time courses illustrating the Elementary Effect (EE) arising from backward rate constants k1b (A), k15b (B), k8b (C), and k9b (D) under both intense
and low illumination conditions. The figures are generated based on the fourth trajectory.
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4 Concluding remarks

In this study, we utilized theMorris method, an efficient and widely

used SA tool, to evaluate the significance of rate constants on shaping FI

curves under varying illumination regimes. This global SA was

performed on an existing FI model, providing an in-depth

understanding of the role of reactions, particularly those related to the

electron transport chain, in shaping the fluorescence dynamics and

elucidating their impact. To determine optimal values for themodel rate

constants under different illumination conditions, we compared

simulated results with experimental data. Subsequently, we conducted

theMorrisSAto furtheranalyze these rate constants.Byusing theMorris

method to analyze Lazár’s model, we observed significant variations in

the ordering of all rate constants when specific rate constant values were

altered. Ultimately, we clarified the net variations in simulated FI curves

resulting from random changes in these specific rate constants. In

summary, our findings, derived from a global SA tool, provide a novel

outlook on screening the photosynthetic reactions that can notably

impact the rapid FI curves under various illumination conditions.
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