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Aboveground biomass (AGB) is regarded as a critical variable in monitoring crop

growth and yield. The use of hyperspectral remote sensing has emerged as a viable

method for the rapid and precise monitoring of AGB. Due to the extensive

dimensionality and volume of hyperspectral data, it is crucial to effectively reduce

data dimensionality and select sensitive spectral features to enhance the accuracy of

rice AGB estimation models. At present, derivative transform and feature selection

algorithms have become important means to solve this problem. However, few

studies have systematically evaluated the impact of derivative spectrum combined

with feature selection algorithm on rice AGB estimation. To this end, at the Xiaogang

Village (Chuzhou City, China) Experimental Base in 2020, this study used an ASD

FieldSpec handheld 2 ground spectrometer (Analytical Spectroscopy Devices,

Boulder, Colorado, USA) to obtain canopy spectral data at the critical growth stage

(tillering, jointing, booting, heading, and maturity stages) of rice, and evaluated the

performance of the recursive feature elimination (RFE) and Boruta feature selection

algorithm through partial least squares regression (PLSR), principal component

regression (PCR), support vector machine (SVM) and ridge regression (RR).

Moreover, we analyzed the importance of the optimal derivative spectrum. The

findings indicate that (1) as the growth stage progresses, the correlation between

rice canopy spectrumandAGBshows a trend fromhigh to low, amongwhich the first

derivative spectrum (FD) has the strongest correlation with AGB. (2) The number of

feature bands selected by the Boruta algorithm is 19~35, which has a good

dimensionality reduction effect. (3) The combination of FD-Boruta-PCR (FB-PCR)

demonstrated the best performance in estimating rice AGB, with an increase in R² of

approximately 10% ~ 20% and a decrease in RMSE of approximately 0.08% ~ 14%. (4)

The best estimation stage is the booting stage, with R2 values between 0.60 and 0.74

and RMSE values between 1288.23 and 1554.82 kg/hm2. This study confirms the

accuracy of hyperspectral remote sensing in estimating vegetation biomass and

further explores the theoretical foundation and future direction for monitoring rice

growth dynamics.
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rice, AGB, remote sensing, hyperspectral data, derivative transform, machine
learning algorithm
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1 Introduction

Rice (Oryza sativa), a herbaceous plant belonging to the genus

Oryza, has a long history of cultivation and a broad planting region

(Krishnan et al., 2011). Aboveground biomass (AGB) serves as a

critical indicator for describing crop growth (Wang et al., 2016).

Applying scientific methods to estimate rice AGB to improve crop

yields is crucial for human food security and increased economic

benefits (Spiertz and Ewert, 2009; Devia et al., 2019; Cao et al.,

2021b). The conventional method for acquiring AGB primarily

involves field sampling, which is both time-consuming and

laborious (Gnyp et al., 2014). In contrast, remote sensing

technology provides a fast and nondestructive method, providing

a scientific basis and technical support for accurate estimation of

AGB (Schino et al., 2003). Among them, satellite remote sensing

platforms is commonly used for AGB estimation in large areas, such

as forests (Lucas et al., 2020), grasslands (Fang et al., 2018; Yang

et al., 2018), However, it is easily affected by spatial conditions and it

is difficult to obtain satisfactory results at small field scales (Yue

et al., 2019). UAV remote sensing platforms can perform low-

altitude operations and obtain high-resolution images of crops, but

the spectral resolution is low, which is not conducive to in-depth

exploration of the spectral response of crops (Bansod et al., 2017).

In comparison, near-ground hyperspectral remote sensing is not

only suitable for small-scale crop monitoring, but can also acquire

fine spectral data with high resolution and a broad spectrum of

wavelengths, encapsulating abundant crop phenotype information

and thereby offering increased opportunities for estimating the

physical and chemical parameters of vegetation (Galvão et al.,

2005; Atzberger et al., 2015).

To enhance the AGB estimation performance via hyperspectral

remote sensing, the original spectral data are typically preprocessed

to reduce noise and increase the accuracy of the data (Mishra et al.,

2020). The Savitzky–Golay (SG) smoothing algorithm and

derivative transform are the principal methods for preprocessing.

The SG smoothing algorithm helps to mitigate interference signals

within spectral data and minimize random errors, thereby

improving data reliability (Savitzky and Golay, 1964; Liu et al.,

2014). Derivative transform spectrum emphasizes the absorption

and reflection characteristics of the subject matter and augments the

differentiation in spectral information (Gerretzen et al., 2015). For

instance, Wang et al. (2004) demonstrated that the derivative

spectrum can lessen the impact of noise, exhibits a high

correlation with rice AGB, and performs effectively in estimating

rice AGB. However, spectral data still face challenges such as

excessive information redundancy and high dimensionality after

preprocessing. There is a need for a reliable method that can reduce

the dimensionality of spectral data and eliminate high correlations

between bands.

In previous research, Some researchers have used a single

vegetation index to estimate rice AGB and achieved good results.

However, the vegetation indices is usually a combination of several

sensitive wavelengths, ignoring a large volume of spectral

information. In the 2020s, some scholars adopted complex

dimensionality reduction methods to improve the utilization

efficiency of rice spectral data. For example, Jia et al. (2022) used
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the continuous projection algorithm (SPA) to reduce the

hyperspectral dimension and identified 12 characteristic bands to

estimate the soil plant analysis development (SPAD) content of rice.

Yu et al. (2020) utilized principal component analysis (PCA) to

extract five principal components for the inversion of rice leaf

nitrogen deficiency. The above studies used different dimensionality

reduction methods to reduce spectral data redundancy, which is of

positive significance for applying hyperspectral remote sensing

technology to estimate rice AGB accurately. However, they

present limitations. The objective of SPA is to eliminate

combinations of variables that exhibit low collinearity and include

distinctive information; however, this approach might omit some

initial characteristics in the spectral data (Cao et al., 2021a). PCA is

capable of using several independent principal components to

depict the original data, yet this technique is confined to linear

projection and exhibits inadequate performance in managing

nonlinear data relationships (Moore, 1981; Abdi and Williams,

2010). Consequently, the effectiveness of the monitoring model in

practical scenarios may be affected by different dimensionality

reduction methods (Fu et al., 2020). Given these considerations,

selecting a suitable dimensionality reduction method is essential for

accurately identifying sensitive bands and enhancing the accuracy

of the estimation model.

As a data dimensionality reduction method, the core of Boruta

algorithm is to find all feature bands related to the dependent

variable. Compared with other commonly used feature screening

algorithms, Compared with other commonly used feature screening

algorithms (Kursa and Rudnicki, 2010; Kursa et al., 2010). The

algorithm was originally used in biological and medical fields and

has since been used in agricultural research as well. For instance, Li

et al. (2022) demonstrated that filtering spectral indices from winter

wheat canopy hyperspectral data using the Boruta algorithm

enhances data validity and establishes an accurate yield

estimation model. The Boruta algorithm has great potential in

physical and chemical parameter estimation. To further evaluate

the ability of the Boruta algorithm to estimate rice AGB, this study

also selected the RFE feature selection algorithm for comparison.

RFE, an adaptive feature selection algorithm, iteratively removes the

least important feature variables and ranks feature importance until

the optimal feature subset is identified. This approach minimizes

the effects of random fluctuations and interference information

(Tunca et al., 2023). Yoosefzadeh-Najafabadi et al. (2021) applied

RFE to determine the optimal wavelengths from hyperspectral data

for soybean yield prediction. This indicates that these feature

selection methods are effective in improving estimation models’

accuracy. However, relatively few studies have utilized the Boruta

algorithm and the RFE algorithm for feature selection of derivative

spectra to construct rice AGB estimation models.

Therefore, this study used the Boruta and RFE algorithms to

eliminate interference information, identify sensitive bands, and

integrate partial least squares regression (PLSR), principal

component regression (PCR), support vector machine (SVM) and

ridge regression (RR) to develop an AGB estimation model.

Additionally, this study compares the estimation effects of various

combinations of dimensionality reduction algorithms and machine

learning models to identify the most accurate estimation results.
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The research objectives were to (1) compare the correlations

between derivative spectrum of different orders and rice AGB to

determine the optimal order; (2) evaluate the effectiveness of the

Boruta algorithm and RFE algorithm in selecting feature bands to

determine the best dimensionality reduction method; (3) evaluate

the estimation capability of machine learning algorithms combined

with feature selection algorithms on rice AGB; and (4) identify the

optimal combination of models and the most suitable

estimation stage.
2 Materials and methods

2.1 Experimental design

The study was conducted in Xiaogang village, Fengyang

County, Chuzhou city, Anhui Province, China (longitude 117°46′
7″E, latitude 32°48′52″N) (Figure 1A), which is characterized by a

subtropical monsoon climate, an average annual temperature of

15.4°C, and an average annual precipitation of 1179.2 mm. The soil

predominantly consists of clay with medium fertility on flat terrain.

The experimental area included 36 plots, measuring 2 m × 8m each.

The rice varieties tested were Runzhuxiangzhan (V1),

Runzhuyinzhan (V2), and Hongxiangnuo (V3), with each plot

replicated three times. Four nitrogen gradient treatments were

applied with nitrogen application rates of N0 (0 kg/hm²), N1 (100

kg/hm²), N2 (200 kg/hm²), and N3 (300 kg/hm²). Phosphorus (90

kg/hm²) and potash (135 kg/hm²) fertilizers were applied once as

basal fertilizer (Figure 1B). The experiment spanned from June 2020

to October 2020. The plants experienced no drought or flooding

during the seedling stage and favorable conditions of abundant

sunshine and moderate temperatures during the mid-growth stage,

which are conducive to rice growth and development. Field

management practices followed local cultivation methods and

pest control technologies.
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2.2 Data acquisition

2.2.1 Ground data acquisition
Rice samples were collected on July 25 (tillering stage), August

13 (jointing stage), August 23 (booting stage), August 31 (heading

stage) and September 20 (maturity stage). The sampling time was

consistent with the hyperspectral data acquisition time. Rice

samples were collected from three holes in each plot, and the

locations of the sampling points were marked after each sampling

to avoid duplicate sampling.

Rice samples were subsequently sent to the laboratory, after

which stem, leaf, and ear separation was performed (Figure 1C).

The sample was placed in an oven, dried for 0.5 h after the

temperature increased to 105°C, and then adjusted to 75°C for

more than 24 h until the mass was constant. The dry mass of the

sample was obtained by summing the dry mass of the stem, leaves

and ears of the plant. Finally, the aboveground biomass of the rice

plants in each plot was obtained through the dry mass of the sample

and the row spacing during rice planting.
2.2.2 Hyperspectral data collection
Hyperspectral data on the rice canopy spectra were collected

using a handheld ground spectrometer (ASD FieldSpec®
HandHeld™2) covering a wavelength range from 325 to 1075

nm with a resolution of 1 nm. Measurements were conducted

between 10:00 a.m. and 2:00 p.m. for each test. Prior to each

measurement session, the instrument was calibrated against a

standard radiation white plate and recalibrated after every two

blocks to ensure accuracy. The data were collected at three evenly

distributed points along the diagonal of each plot, with the

spectrometer positioned vertically 0.5 m above the rice canopy

(Figure 1C). The spectral data from the same plot were processed

collectively, and the average spectral reflectance of the plot

was calculated.
A B C

FIGURE 1

Rice experimental area (A, B) and data collection (C).
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2.3 Hyperspectral data processing

2.3.1 SG smoothing and derivative transform
The Savitzky−Golay (SG) smoothing algorithm, a digital signal

processing technique proposed by Savitzky and Golay, is employed

to enhance signal frequency and eliminate data noise (Savitzky and

Golay, 1964). The smoothing effect of the algorithm, which varies

with the window length, preserves the original shape and peak

heights of the wave signal (Schafer, 2011). To minimize data

fluctuations, capture the overall trend of the spectral curves, and

accurately analyze the spectral characteristics of rice, this study

applied SG smoothing to the canopy spectral curves from 325 to

1075 nm recorded during the growth stage (Chen et al., 2020; Shi

et al., 2021). However, due to the influence of noise, only the 400 to

900 nm range was selected for analysis.

Derivative transform serves to diminish background signals,

with the FD highlighting absorption peaks and shoulders in the

original spectrum (OS) (Demetriades-Shah et al., 1990; Becker et al.,

2005). By differentiating peaks and valleys, more precise spectral

reflectance data can be obtained (Ji et al., 2022; Zhao et al., 2022).

The second derivative spectrum (SD) facilitates the accurate

identification of absorption peak and shoulder positions within

the OS, enhancing spectral reflectance differentiation and

eliminating baseline offsets in spectral reflectance data (Yang

et al., 2011). This study utilized the derivative function within the

Origin software’s data processing menu (Origin 2018) for

these transformations.

2.3.2 Feature selection
Feature selection algorithms play a pivotal role in optimizing

datasets prior to model construction. In this investigation, both the

Boruta algorithm and the RFE algorithm were employed for

feature selection.

The Boruta algorithm (Prasad et al., 2019) is an innovative

feature selection method derived from the random forest approach.

It identifies all characteristic bands in spectral data that are related

to dependent variables, thereby elucidating the relationship between

spectral characteristics and rice AGB. The foundational concept

involves shuffling the original parameters to create shadow

parameters, which are then combined with the original

parameters into a feature matrix for training. Based on the

importance scores from the random forest, the shadow

parameters are ranked by importance, with the highest value

designated the Z score. Original parameters more significant than

the Z score are labeled “most important”, while those below are

deemed “unimportant” and thus eliminated. Ultimately, the most

important original parameters are selected as the optimal

combination for constructing the inversion model.

Recursive feature elimination (RFE) (Guyon et al., 2002) is a

wrapper-based selection method that starts with the construction of

an initial model, ranking all feature bands by their importance, and

iteratively removing the least significant features. By retraining the

model with the remaining features and repeating this process, it

gradually identifies the most critical subset of features. This

algorithm excels by iteratively evaluating the contribution of each
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feature band to the model, thereby identifying the optimal feature

subset to reveal the underlying structure and patterns within

the data.
2.4 Model construction method

To thoroughly investigate the relationships between the

independent and dependent variables, four machine learning

models were selected for comparison: PLSR, PCR, SVM, and RR.

PLSR (Geladi and Kowalski, 1986) is a multivariate linear

statistical method that focuses on finding a hyperplane that

minimizes the variance between the response and independent

variables. It projects predictor and observed variables into a new

space to derive a linear regression model, known as a bilinear factor

model, due to the presence of both data X and Y in this new space.

PCR (Kawano et al., 2018) employs PCA for predictive data

mining, transforming original variables into principal components

that are linear combinations of the original variables and mutually

independent. Regression analysis is then performed on these

principal components to derive the regression equation, which is

subsequently applied to the original variables.

SVM (Suykens and Vandewalle, 1999) operates as a supervised

learning model utilized for analyzing data in classification and

regression analysis. The core concept involves identifying the

optimal classification hyperplane for two types of samples in the

original space when they are linearly separable. In instances where

linear separability is not achievable, the samples are projected into a

high-dimensional feature space where an optimal hyperplane is

determined. This hyperplane classifies the samples, aiming to

minimize the distance within similar classes and maximize the

distance between distinct classes.

RR (Ivanda et al., 2021) serves as a technique for estimating the

coefficients of a multiple regression model in scenarios where the

independent variables exhibit high correlation. This is achieved by

incorporating an L2 regularization term into the OLS loss function.

The L2 regularization term is calculated as the product of the sum of

the squares of the coefficients and a regularization parameter

l (lambda).
2.5 Accuracy evaluation

In this study, 70% of the sample data (n=25) were selected as the

modeling set for each growth stage, and 30% of the sample data

(n=11) were used as the validation set to construct the rice AGB

estimation model. The coefficient of determination (R²), root mean

square error (RMSE), and mean absolute error (MAE) were used to

evaluate the model accuracy. The closer R² is to 1, the lower the

RMSE and MAE are, and the higher the accuracy of the estimation

model is. R², RMSE and MAE are calculated using Equations 1–3,

respectively:

R2 = 1 −o
n
i=1(xi − yi)

2

on
i=1(xi − x̂ )2

(1)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − xi)
2

n
 

s
(2)

MAE = o
n
i=1 yi − xij j

n
(3)

Note: xi, yi, and x̂ are the actual measured value, predicted value

and average value of the measured data, respectively; n is the

number of samples.
3 Results

SG smoothing was applied to the spectral curves within the 400

to 900 nm range, The processing results of OS, FD and SD at

different growth stages are shown in Figure 2.

The processing results for the OS reveal the characteristic

spectral profile of the rice canopy, marked by typical green plant

reflectance features, with spectral reflectance values ranging from 0

to 0.5. Notably, a reflection peak and an absorption valley are

observed near wavelengths of 550 nm and 680 nm, respectively,

both of which are situated within the visible light spectrum. The

spectral reflectance of rice rapidly increases within the 680 to 750

nm range, creating a “red edge” phenomenon (Gitelson et al., 1996).

The first peak of the FD curve appears at 500 ~ 550 nm. The band

range of 680 ~ 750 nm shows a drastic change that first rises and

then falls. The SD curve exhibits continuous fluctuations across the

500 to 690 nm band range, with two notable peaks within the 700 to

800 nm band range.
3.1 Correlations between different orders
of derivative spectrum and rice AGB

To fully explore the sensitivity of the different orders of

rice canopy spectra and to compare the effects of spectral

transformations on AGB, FD and SD transformations were

carried out on the basis of OS, and their correlations with rice

AGB were investigated (Figure 3).

During the full growth stage, the correlation between OS and

AGB showed a consistent trend from negative to positive as the

band increased, with the maximum correlation at 720 nm.
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The correlation curve between FD and AGB shows a continuous

fluctuation trend in the 400 ~ 900 nm band, among which the 680 ~

750 nm band has the highest correlation, with a correlation

coefficient between 0.60 ~ 0.85. The correlation curve between SD

and AGB was similar to that between FD and AGB, but the

fluctuations were more severe.

In summary, the derivative spectrum of the different orders were

compared with the maximum absolute value of the AGB correlation

coefficient (Figure 4). Except for the tillering stage, the maximum

values in the other four periods all occurred at FD. Comprehensive

analysis revealed that the FD could better reflect the growth status of

rice, so the FD was used as the input variable of the feature screening

algorithm for subsequent construction of the AGB estimation model.
3.2 Feature band selection

An AGB estimation model utilizing PLSR, PCR, SVM, and RR

was developed to evaluate the effectiveness of the band screening

algorithms. This model incorporated characteristic bands selected

by both the Boruta algorithm and the RFE algorithm, as well as the

full band as input variables. The diversity and scope of the

characteristic bands selected by these feature screening algorithms

during different growth stages are summarized in Table 1. Detailed

feature selection results are shown in Appendix 2.

The Boruta algorithm demonstrated remarkable stability, with

the number of characteristic wavelengths in each growth stage not

exceeding 40. In contrast, the RFE algorithm showed more

significant fluctuations, with 3 characteristic wavelengths

identified at both the tillering and booting stages and 439 at the

maturity stage, indicating substantial variance in the number of

wavelengths identified across different growth stages. Notably, the

characteristic wavelengths identified by both screening algorithms

predominantly fall within the “red edge” spectral range,

highlighting their importance in estimating rice AGB.
3.3 Establishment and evaluation of the
rice AGB estimation model based on FD

This study employs three types of model input variables: first

derivative full band (FD-FB), the characteristic bands selected by
A B C

FIGURE 2

Derivative transformation spectral curves of rice canopy at different growth stages. (A) original spectrum, (B) first derivative spectrum, (C) second
derivative spectrum.
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the Boruta algorithm (FD-Boruta), and the characteristic bands

selected by the RFE algorithm (FD-RFE). Sixty AGB estimation

models were developed for various growth stages using four

machine learning algorithms (PLSR, PCR, SVM, RR), with R²

(Figure 5), RMSE (Table 2) and MAE (Appendix 1) serving as

the model evaluation metrics.
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Initially, the AGB estimation abilities of different feature

selection algorithms were compared within the same model

framework. In the PLSR model, the estimation precision for FD-

Boruta and FD-RFE was found to be comparable, with R² values

ranging from 0.43 to 0.70, and RMSE values between 464.34 and

2515.77 kg/hm² and 493.81 and 2407.61 kg/hm², respectively. These
FIGURE 3

Correlation between rice canopy spectra and AGB at different growth stages. (A-E) The correlation between OS and AGB; (F-J) the correlation
between FD and AGB; (K-O) the correlation between SD and AGB.
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results are more accurate than those obtained using FD-FB, with R²

values improving by 0 to 0.06 and RMSE values decreasing by 29.47

to 148.91 kg/hm². Among the PCR models, FD-Boruta exhibited

the highest estimation accuracy, followed by FD-RFE, with FD-FB

showing the least accuracy. The R² accuracy of FD-Boruta improved

by 0.03, 0.19, 0.02, 0.01, and 0.04, respectively, compared to FD-

RFE. In contrast, the R² accuracy of FD-RFE improved by 0.02, 0.05,

0.07, and 0.01 compared to FD-FB. The outcomes for the SVM and

RR models were analogous, although the performances of the three

algorithms varied significantly. R² ranged from 0.58 to 0.71 for FD-

Boruta, 0.22 to 0.74 for FD-RFE, and 0.19 to 0.60 for FD-FB.

Second, the estimation accuracy of AGB by different models

under the same feature selection algorithm was compared. For the

model constructed with FD-Boruta inputs, when the estimation
Frontiers in Plant Science 07
accuracy was similar, FD-Boruta-PCR demonstrated more stable

performance. The estimation outcomes of models based on FD-RFE

varied significantly. FD-RFE-PLSR and FD-RFE-PCR provided

more precise estimates of rice AGB, whereas the FD-RFE-SVM

and FD-RFE-RR models exhibited overfitting in certain stages. The

models based on FD-RFE generally showed poor performance, with

model R² values below 0.65, and the accuracy of the FD-FB-SVM

and FD-FB-RR models varied greatly.

Finally, the performance of all model combinations was

assessed for estimating AGB effects across different growth stages.

In the tillering stage, FD-Boruta-SVM yielded the best estimation,

with an R² of 0.66 and an RMSE of 34.33 kg/hm². During the

jointing stage, FD-Boruta-SVM achieved the highest estimation

accuracy, with an R² of 0.65 and an RMSE of 985.55 kg/hm², while

FD-FB-SVM showed the lowest accuracy, with an R² of 0.32 and an

RMSE of 1412.37 kg/hm2. In the booting stage, the estimation

accuracies R² of models using FD-FB and FD-RFE inputs were both

above 0.7, with FD-RFE-SVM and FD-Boruta-PCR performing the

best, achieving R² values of 0.74 and 0.72, respectively, and RMSE

values of 1311.04 kg/hm² and 1290.24 kg/hm², respectively. At the

heading stage, FD-Boruta-PCR had the highest estimation accuracy,

with an R² of 0.71, while FD-FB-SVM had the lowest accuracy, with

an R² of 0.30. In the maturity stage, the AGB estimation accuracy of

all the models decreased, with R² values ranging from 0.19 to 0.53.

In conclusion, models built using the Boruta algorithm are

more reliable and exhibit greater stability, among which FD-Boruta-

PCR is the most stable, followed by FD-Boruta-PLSR. Considering

the model estimation accuracy, the booting period is the most

accurately estimated, with R² values exceeding 0.7.
4 Discussion

4.1 Correlations between OS, FD, SD
and AGB

An in-depth analysis of the correlation between spectral

information and AGB will facil itate a comprehensive

understanding of the growth status of rice. This study performed

a correlation analysis between different orders of derivative

spectrum and AGB at different growth stages of rice. Generally,

the correlation between the derivative spectrum of various orders

and AGB tended to increase and then decrease throughout the

growth stage, potentially due to the influence of the rice growth

cycle (Xu et al., 2023). From the tillering stage to heading stage, as

the chlorophyll content in rice leaves increases and the vegetation

canopy structure becomes fully developed, the canopy becomes

richer in spectral information, which can more accurately reflect

crop characteristics (Ren et al., 2018). In the mature stage, as stems

and leaves progressively wither and yellow, the chlorophyll content

drops sharply, the spectral characteristics obtained are less able to

accurately represent crop growth, leading to a decrease in the

correlation between the canopy spectrum and AGB (Yang and

Chen, 2004; He et al., 2019; Zhang et al., 2019).

Within the 680~750 nm band range, the correlation between the

canopy spectrum and AGB reached its maximum value in different
TABLE 1 Comparison of feature selection results between the Boruta
algorithm and RFE algorithm.

Feature selec-
tion algorithm

Growth
Stage

Number
Feature band
range (nm)

Boruta

Tillering 19 724 ~ 761

Jointing
35 644, 721 ~ 771,

816, 817

Booting 27 664 ~ 694, 717 ~ 774

Heading
24 414, 416, 699 ~

777,817, 873

Maturity 30 420, 498, 686 ~
759, 842

RFE

Tillering 3 742, 751, 761

Jointing 392 402 ~ 900

Booting 3 753, 754, 764

Heading
127 402 ~ 495, 507 ~ 594,

614 ~ 699, 702 ~ 900

Maturity 439 400 ~ 900
FIGURE 4

The maximum absolute value of the correlation coefficient between
different order derivative spectra and AGB.
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stages (Figure 3). This occurs because this band serves as the

transition region between the infrared and near-infrared bands,

where spectral reflectance transitions rapidly from a low negative

correlation to a high positive correlation. This shift is attributed to

strong absorption and reflection (Kanke et al., 2016; Xu et al., 2022).

The correlation between FD and AGB was generally greater than that

between OS and SD at the different fertility stages (Figure 4). This

observation aligns with the findings of Liang et al. (2018) and Tong

et al. (2023). As a method for analyzing spectral information,

derivative transform can diminish noise and enhance data accuracy

(Li and Xie, 2015). FD reflects the slope of the spectrum, while SD

represents the change in the slope of the reflection spectrum. While

SD identifies more absorption peaks, it also introduces noise and may

result in errors (Shen et al., 2022). Therefore, FD is strongly correlated

with AGB and can be effectively utilized for estimating rice AGB.
4.2 Rice AGB estimation based on different
feature selection algorithms

In the realm of feature selection, prior research has

demonstrated that employing screened feature variables for model

construction enhances the estimation power, inversion accuracy,

and utility of the original models (Gao et al., 2019; Sun et al., 2021).

For example, Yu et al. (2023) used the SPA algorithm to extract

sensitive bands in rice canopy spectral data, and combined with

PROSAIL to establish a rice AGB estimation model, achieving high

accuracy (R²=0.69). This study yielded similar findings, the

characteristic band had a greater estimation ability than the
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original band. The difference is that previous research is usually

based on OS and does not involve derivative transform. Therefore,

whether the estimation model constructed by derivative

transformed spectrum is better than OS remains to be

determined. This study performs SG smoothing and derivative

transform on OS and selects characteristic bands based on the

optimal derivative spectrum. The results show that the Boruta

algorithm is more robust than the RFE algorithm, and the

selected feature bands are more sensitive, which is conducive to

constructing subsequent rice AGB estimation model.

Under identical conditions, the most accurate AGB estimates

were achieved using feature bands selected by the Boruta algorithm.

This superiority of the Boruta algorithm is attributed to its ability to

identify bands of features that are genuinely relevant to the

dependent variable, thereby enhancing the prediction accuracy of

the model (Kursa and Rudnicki, 2010), a conclusion that aligns with

the findings of Degenhardt et al. (2019). However, the RFE

algorithm exhibited suboptimal performance in the jointing,

heading, and maturity stages. This could be due to the RFE

algorithm generates feature subsets with corresponding accuracy

by continuously building models. This process may result in

retaining a large number of features, leading to significant

collinearity between bands and diminishing the model’s

estimation accuracy (Paul et al., 2015; Chen et al., 2018), echoing

the research results of Lin et al. (2023). The poorest performance

was observed when the entire band was utilized as an input variable,

attributed to the presence of redundant information and increased

collinearity among bands, which impaired the model’s estimation

capability (Hansen and Schjoerring, 2003; Pan et al., 2017).
FIGURE 5

Comparison of the R² values of the different estimation models for the validation sets. PLSR, partial least squares regression; PCR, principal
component regression; SVM, support vector machine; RR, ridge regression.
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TABLE 2 Rice AGB estimation model under different machine learning algorithms (R2, RMSE).

Jointing Booting Heading Maturity

Modeling Set Validation Set Modeling Set Validation Set Modeling Set ValidationSet Modeling Set Validation Set

R² RMSE
(kg/hm²)

R² RMSE
(kg/hm²)

R² RMSE
(kg/hm²)

R² RMSE
(kg/hm²)

R² RMSE
(kg/hm²)

R² RMSE
(kg/hm²)

R² RMSE
(kg/hm²)

R² RMSE
(kg/hm²)

.68 801.67 0.57 1072.49 0.72 1096.66 0.70 1351.62 0.72 1125.80 0.67 1405.25 0.49 2017.00 0.43 2515.77

.78 635.91 0.47 1226.82 0.70 1148.63 0.70 1336.75 0.80 908.01 0.67 1398.94 0.63 1736.85 0.43 2407.61

.77 644.07 0.46 1245.08 0.81 912.34 0.64 1474.44 0.79 948.73 0.60 1547.85 0.63 1744.52 0.43 2406.05

.64 853.54 0.60 1057.88 0.72 1101.43 0.72 1290.24 0.70 1171.49 0.71 1307.01 0.45 2120.01 0.45 2392.65

.43 1067.73 0.41 1311.00 0.70 1150.33 0.70 1338.99 0.70 1180.64 0.70 1321.14 0.43 2178.91 0.41 2412.86

.41 1087.71 0.39 1332.82 0.68 1186.97 0.65 1465.01 0.59 1377.74 0.63 1541.66 0.41 2205.87 0.40 2430.66

.80 663.56 0.65 985.55 0.86 800.08 0.71 1349.87 0.82 902.99 0.66 1411.43 0.85 1135.73 0.52 2189.95

.97 329.32 0.35 1370.60 0.75 1073.13 0.74 1311.04 0.99 216.76 0.70 1430.80 0.96 716.15 0.22 2964.74

.98 276.86 0.32 1412.37 0.97 486.02 0.19 2316.48 0.98 386.45 0.30 2266.78 0.95 852.86 0.19 2980.00

.72 764.35 0.62 1009.78 0.76 1036.43 0.71 1301.00 0.81 955.61 0.68 1370.52 0.63 1827.13 0.53 2217.62

.90 513.16 0.53 1120.75 0.70 1144.30 0.72 1288.23 0.94 579.73 0.70 1318.70 0.91 1102.65 0.32 2628.54

.90 518.87 0.50 1160.32 0.94 627.07 0.60 1554.82 0.95 612.77 0.57 1588.79 0.92 1095.07 0.29 2648.03

ector machine; RR, ridge regression.
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Compared with the RFE algorithm, the Boruta algorithm

identified fewer feature bands (Table 1); however, the resulting

estimation model was more stable. This stability may be due to the

characteristic bands determined by the Boruta algorithm being

more effective and independent (Poona et al., 2016). Additionally,

when comparing feature bands screened by both the Boruta and

RFE algorithms, it was noted that their intersection predominantly

occurred in the “red edge” region. This could be due to the band

encapsulates rich crop information and is highly correlated with

AGB (Horler et al., 1983; Filella and Penuelas, 1994), consistent

with the findings of Cheng et al. (2017), who assessed the estimation

effects of eight vegetation indices on rice canopy composition AGB

and found the red edge index to be particularly sensitive to leaf

AGB, achieving the highest estimation accuracy.

Another aspect of interest is that the characteristic bands

identified by the Boruta algorithm, which are relatively evenly

distributed across the spectrum, are predominantly found at

wavelengths of 420 nm, 644 nm, 750 nm, and 842 nm. These

characteristic bands are mainly located in areas sensitive to crop

AGB response and are relatively evenly distributed. During the

tillering stage, the characteristic bands are primarily located in the

“red edge” region, which may be due to the low vegetation coverage

at this time and the spectrum response is not obvious (Kokaly and

Clark, 1999; Clevers et al., 2001). In the jointing stage, characteristic

wavelengths are observed in the near-infrared region, likely due to

the increase in rice canopy biomass, making the wavelength

response in this region more pronounced and easier to detect

during the selection process (Datt, 1998). From the heading to

the maturity stage, a few characteristic wavelengths in the blue light

region are identified, possibly because the chlorophyll content in the

leaves gradually decreases, leading to increased spectral reflectance

in the blue light region (Yan-lin et al., 2004). Thus, the Boruta

algorithm effectively mines the spectral information of the rice

canopy, and the selected characteristic bands align with the spectral

response changes in the rice canopy, thereby enhancing the

accuracy of AGB estimation.
4.3 Rice AGB estimation based on different
machine learning algorithms

The performances of various models were meticulously

compared, with the PCR model emerging as the most reliable and

stable for estimating AGB. The differences between the R2 values for

the modeling set and the validation set are minimal, ranging from 0

to 0.1. Both the RMSE and MAE are lower for the PCR model than

for the other models. This superior performance of the PCR model

can be attributed to its foundation in predictive data mining

technology through principal component analysis (PCA), which

efficiently reduces the dimensionality of independent variables,

mitigates the effects of multicollinearity among variables, and

enhances the model’s adaptability (Suryakala and Prince, 2019).

In the PLSR model. Models constructed with three different input

variables all demonstrated the ability to estimate rice AGB,

particularly at the booting stage, when the R² of the validation set

exceeded 0.6. This performance is likely due to the robust
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adaptability of the PLSR algorithm, its ability to diminish the

dimensionality of spectral data, its ability to effectively handle

complex collinear relationships between independent variables,

and its overall enhancement of the model’s estimation accuracy

(Helland, 2001). In the SVMmodel, estimation models built on FD-

RFE and FD-FB inputs exhibited overfitting at the jointing, heading,

and maturity stages. Due to the excessive number of FD-RFE and

FD-FB, when fitting as sample data, the noise interference in the

model is large, resulting in an increase in estimation error. Even

some noise may be recognized as characteristic frequency bands by

machine learning algorithms, destroying the preset classification

rules and significantly affecting the accuracy of model estimation

(Cherkassky, 1997; Shafaei and Kisi, 2017; Raja et al., 2022). FD-

Boruta has a small number but high estimation potential and can

solve collinearity problems well when combined with the SVM

algorithm. Similar outcomes were also observed in the RR model.

This may be because the RR algorithm cannot automatically select

important feature variables when fitting sample data. Therefore,

when the amount of input sample data is large, it is easily affected by

outliers, thereby reducing the model’s predictive ability. It may also

be that because determining optimal ridge parameters is critical

when building an estimation model, poor parameter selection can

lead to overfitting of the model, thereby reducing its interpretability

(Smith and Campbell, 1980; Forrester and Kalivas, 2004).

Moreover, this study demonstrates that the model achieves the

highest estimation accuracy during the booting stage. This can be

ascribed to the booting stage, which is the primary period for

increases in rice chlorophyll and is characterized by high vegetation

coverage and the absence of panicles. At this juncture, noise

interference is minimized, and the spectral information collected

is purer and more precise, providing advantageous conditions for

estimating rice AGB (Chang et al., 2005; Takai et al., 2006;

Kawamura et al., 2018).
5 Conclusion

This study implements SG smoothing and derivative transform

for the preprocessing of spectral data, aiming to diminish

fluctuations and noise interference. Subsequently, the Boruta and

RFE algorithms are applied to select features from the first-order

spectrum, thereby reducing the data dimensions and information

redundancy and enhancing the data accuracy. A rice AGB

estimation model was developed from the tillering stage to the

maturity stage by integrating PLSR, PCR, SVM, and ridge

regression machine learning algorithms. The key findings of the

research are as follows:
(1) Except during the booting stage, FD exhibited the strongest

correlation with AGB across the other four growth stages,

followed by OS and then SD. As the rice growth stage

progresses, the correlation shows a trend of first increasing

and then decreasing.

(2) The performance of the Boruta algorithm is more stable,

the selected characteristic bands are more sensitive, and

effective dimensionality reduction of spectrum data is
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Fron
achieved. The number of feature strips provided by the RFE

algorithm ranges from 3 to 439, and the number of feature

strips selected by the Boruta algorithm is within 40.

(3) Among all model combinations, the characteristic band

selected by the Boruta algorithm performs best, and FD-

Boruta-PCR emerged as the superior model for estimating

rice AGB, with R² values between 0.45 and 0.72 and RMSE

values between 469.15 and 2392.65 kg/hm². The worst

performing model is the FD-FB-SVM model, with R²

values between 0.19 and 0.32 and RMSE values between

701.52 and 2980.00 kg/hm².

(4) As the progression from the tillering stage to the mature

stage occurs, the accuracy of the AGB estimation model

decreases. Among them, the booting stage was determined

to be the most accurate prediction stage, as evidenced by an

R² of 0.72 and an RMSE of 1290.24 kg/hm².
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