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Identifying stages of a species invasion in a new habitat (i.e., colonization,

establishment, and landscape spread) and their primary determinants in

biological invasion warrants attention, as it provides vital insights for preventing

non-native species from becoming pervasive invaders. However, delineating

invasion stages and their associated factors can pose significant challenges due

to the ambiguous distinctions between these stages. Alliaria petiolata, one of the

most noxious weeds in woodland habitats, has recently been introduced to

Korea and observed in a few distant locations. Although the plant’s spread has

been relatively slow thus far, rapid spread is highly likely in the future, given the

high invasive potential reported elsewhere. We indirectly diagnose the current

status of A. petiolata invasion in Korea through the assessment of genetic

diversity and phylogenetic inferences using genome-wide molecular markers

and cytological data. We analyzed 86 individual samples collected from two

native and six introduced populations, employing 1,172 SNPs. Our analysis

estimated within- and among-population genetic diversity and included two

clustering analyses. Furthermore, we investigated potential gene flow and

reticulation events among the sampled populations. Our data unraveled that

Korean garlic mustard exhibits a hexaploid ploidy level with two distinct

chromosome numbers, 2n = 36 and 42. The extent of genetic diversity

measured in Korean populations was comparable to that of native populations.

Using genome-wide SNP data, we identified three distinct clusters with minor

gene flow, while failing to detect indications of reticulation among Korean

populations. Based on the multifaceted analyses, our study provides valuable

insights into the colonization process and stressed the importance of closely

monitoring A. petiolata populations in Korea.
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1 Introduction

Biological invasion poses great threats to biodiversity,

ecosystem integrity, human health, and the economy worldwide

(Usher, 1988; Westbrooks, 1998; Nuzzo, 1999; Kolar and Lodge,

2001; Hulme, 2006; Cuthbert et al., 2022; Fantle-Lepczyk et al.,

2022). It is a complex process consisting of four consecutive stages

(transport, colonization, establishment, and spread) that vary

spatially and temporally (Theoharides and Dukes, 2007). On each

stage, a series of environmental filters and eco-evolutionary factors

act as critical determinants of invasion success (Simberloff, 2009;

Dlugosch et al., 2015; Blackburn et al., 2019; Sherpa and Després,

2021; Gioria et al., 2023). Identifying the stages, thus, can provide

valuable insights into the primary determinants during the species

colonization. Detecting early stages of invasion before the final stage

(spread) can grant us critical information to prevent invaders from

further spreading. However, it can be very challenging as there is

often no clear distinction between the stages (Theoharides and

Dukes, 2007). Detecting the invasion stages can be further

complicated if one of the stages is delayed, leading to a lag phase.

After transport, propagule pressure, i.e. the number of

introduced individuals or sources during biological invasion

(Kolar and Lodge, 2001), significantly affects the success of

colonization stage (Lockwood et al., 2005; Theoharides and

Dukes, 2007). High propagule pressure can greatly contribute to

ameliorating reductions in genetic diversity, a significant barrier to

biological invasion, particularly in the early stages. Colonizers may

possess well-maintained genetic variation to cope with abiotic

filters, such as climate and resource availability, which are

determinants of colonization success (Sakai et al., 2001; Tilman,

2004; Leishman and Thomson, 2005; Theoharides and Dukes,

2007). Self-compatibility of an invader can also be advantageous

in colonization since it facilitates finding mates and getting

established in novel condition (Baker, 1955). In the third stage,

“establishment”, biotic filters are the most critical barrier to the

invasion success. Invaders often face competition with native plants

and other invaders during the stage. Along with allelopathic agents,

polyploidy plays important roles in the success of the stage through

mechanisms such as heterosis, hybrid vigour and prevention from

the effects of deleterious recessive mutations (Te Beest et al., 2012;

Suda et al., 2015; Mairal et al., 2023).

Successful invaders may ultimately spread into varying

landscapes, expanding their distribution (Theoharides and Dukes,

2007). During the spread, the invader’s dispersal ability and habitat

connectivity are major determinants (Theoharides and Dukes,

2007). In addition, a lag phase can often be observed between

establishment and spread, but the stage is extremely hard to detect

due to the lack of clear and observable distinctions from

establishment (Theoharides and Dukes, 2007). Previous studies

utilizing simulation and modeling have documented the

significant challenge in predicting the lag phase, which is crucial

for weed management (Crooks, 2005; Coutts et al., 2018). This stage

often reflects a low level of genetic variation in the invader

population or the time required for the population to reach a size

conducive to spreading (Sakai et al., 2001; Barney, 2006). The stage
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also can indicate a lack of suitable habitat for the invader (Pysěk and

Hulme, 2005). Therefore, the lag phase deserves more attention in

the study of invasion. A study on weeds in New Zealand revealed

that some lag phases, e.g. Cytisus scoparius and Sambucus nigra can

extend nearly 100 years, while another study on exotic plants of

USA documented the lag times ranging from 3 to 140 years (Aikio

et al., 2010; Larkin, 2012; Coutts et al., 2018).

Garlic Mustard, Alliaria petiolata (Bieb.) Cavara & Grande

(Brassicaceae), is a biennial herb, occasionally being a perennial,

native to Europe and Southwestern Asia (Welk et al., 2002; Prati

and Bossdorf, 2004; Cho and Kim, 2012). In the first year, plants

germinate and form basal rosettes, which persist through the winter,

while in the next year, they flower and produce seeds (Cavers et al.,

1979). Alliaria petiolata adopts both cross- and self-fertilization,

with selfing being the predominant breeding system (Durka et al.,

2005; Mullarkey et al., 2013). The plant primarily relies on insect-

mediated pollination, by flies and bees (Cruden et al., 1996).

Notably, according to Baker’s law, self-compatibility contributes

to the success of invasion, explaining the prevalence of self-

compatible traits among weeds (Baker, 1955). Alliaria petiolata

reproduces and disperses exclusively by seeds (Nuzzo, 1999), with

individual plants capable of producing hundreds of seeds (Nuzzo,

1993). Seed dispersal occurs naturally up to distances of 100 meters

or more, facilitated by various animals, including humans (Lhotská,

1975; Cavers et al., 1979; Nuzzo, 2000). Alliaria petiolata was likely

introduced to North America in the 19th century, either for

medicinal and culinary purposes or inadvertently as a byproduct

(Grieve, 1959; Nuzzo, 1993; Meekins and McCarthy, 1999). For

decades, the plant has rapidly invaded deciduous forests in the

northern United States and southern Canada (Meekins and

McCarthy, 1999; Nuzzo, 1999). As one of the most notorious

invaders of woodland habitats, A. petiolata has aggressively

displaced native plants in introduced regions, consequently

prompting the implementation of biological control programs

(Blossey et al., 2001). Previous studies have highlighted

competitive ability and allelopathy as the primary mechanisms

driving the successful invasion of this species (Kelley and

Anderson, 1990; Meekins and McCarthy, 1999). Alliaria petiolata

can adversely affect soil microbiota and native plants by producing

secondary compounds such as glucosinolates and their degradation

products (Vaughn and Berhow, 1999; Cipollini et al., 2012; Cipollini

and Cipollini, 2016). High seed production may also be attributable

to the invasive success of A. petiolata (Anderson et al., 1996).

Notably, both diploids (2n = 14) and hexaploids (2n = 36, 42)

have been identified within the species (Frisch and Møller, 2012;

Alabi et al., 2021). Diploids are reported from Western Asia, while

hexaploids are found in Central/Western Europe and North

America (Weiss-Schneeweiss and Schneeweiss, 2003; Esmailbegi

et al., 2018; Alabi et al., 2021). Based on the observed chromosome

numbers in the species, a haploid chromosome number of n = 7 has

been assumed. Interestingly, a small number of accessions with 2n =

36 occurred in the Netherlands and Sweden, indicating the

existence of n=6 in the species (Gadella and Kliphuis, 1963, 1966;

Frisch and Møller, 2012). In a previous phylogenetic study, A.

petiolata populations from Asia, Europe and North America
frontiersin.org
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formed two distinct clades, representing the existence of two

different ploidy levels within the species (Esmailbegi et al., 2018).

To date, the origin of the hexaploid cytotype, including whether

hexaploid in the species is autopolyploid or allopolyploid, remains

largely unexplored (Frisch and Møller, 2012; Bayat et al., 2021).

However, recently, allopolyploid origin of hexaploid A. petiolata

was suggested based on the reconstruction of genome structure

(Bayat et al., 2021).

In South Korea, A. petiolata was initially spotted in Samcheok

(Gangwon-do), the eastern coastal region, during a floristic survey

in 2012 (Cho and Kim, 2012). A small number of populations in

this region are situated along forest edges, easily accessible to

people as they spread along roadsides. Subsequently, the species

was detected in Incheon, Suwon, and Dangjin, the westernmost

areas of South Korea (Figure 1). In particular, the population in

Dangjin was only recently observed, in 2022. The invasion of the

species in Korea is not yet severe, as it has only colonized a few
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restricted areas with a limited number of populations. Given the

absence of rapid population growth or range expansion, the

current status of invasion can be considered to be in a lag

phase, although further investigations are needed to make a

more precise determination of the invasion stage. With the

aforementioned backgrounds, the specific objectives of our

research were: (1) to reestablish the identity of Korean A.

petiolata, (2) to assess and compare the genetic structure,

genetic diversity, and genetic divergence between the native and

introduced populations, (3) to infer the stage of A. petiolata

invasion in Korea. To address these goals, we used a large

number of molecular markers across the whole genome and

collected samples from the majority of available populations in

Korea. Population-level genetic studies offer valuable insights for

understanding, reconstructing, and managing invasions (Ficetola

et al., 2008; Stewart et al., 2009; Estoup and Guillemaud, 2010;

Cristescu, 2015; Lee and Son, 2022).
B

C

A

FIGURE 1

Distribution of Alliaria petiolata sampling sites and occurrences in the introduced region (South Korea). (A) Distribution of Alliaria petiolata in Korea.
(B) Sampled populations in France, the native region. (C) Four populations sampled in Gangwon-do. All filled circles indicate sampling sites.
Population acronyms are listed in Table 1.
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2 Materials and methods

2.1 Sample collection and
chromosome counting

We collected 108 samples in the summer of 2022 from 6

populations distributed in Korea (Figure 1). Nearly all A.

petiolata populations in Korea reported at the time of sampling

were included. We, additionally, collected 20 samples originated

from two native populations (Table 1). We carefully chose the

individual samples to avoid collecting multiple samples of a single

plant by distancing more than 10m among the sampled plants.

Young leaf tissues were picked and preserved at room temperature

in a sealed plastic Ziplock bag with silica desiccant.

Garlic mustards can both be diploids (2n=14) and hexaploids

(2n=36, 42; Frisch and Møller, 2012; Alabi et al., 2021). Thus, we

determined the ploidy level of the plant with chromosome counting.

We collected a whole plant including roots from 6 Korean

populations and cultivated the roots for 2 weeks in a tap water.

The chromosome counting was carried out following Dematteis and

Fernández, (1998) with well-developing roots. We prepared slides

and analyzed at least 3 metaphase cells that were showing well-

spread chromosomes for chromosome counting. Chromosome
Frontiers in Plant Science 04
numbers were determined under Leica DM3000 LED microscope

(Leica Microsystems, Wetzlar, Germany) and photographed by

Dhyana 400DC (Tucsen Photonics sCMOS, Fuzhou, China).
2.2 DNA extraction, library preparation
and genotyping

Total genomic DNA was extracted from the preserved tissues

using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), using

the manufacturer’s protocol. The isolated genomic DNA was then

checked for quality by visualizing in a 1% agarose gel.

Quantification was assessed by Qubit 4 Fluorometer (Thermo

Fisher Scientific, MA, USA) and stored at -20°C.

We employed 3RAD (Bayona-Vásquez et al., 2019) approach to

genotype the collected samples, which improves the adapter ligation

efficiency by employing a third restriction enzyme to cleave adapter

dimers. We prepared the library following Bayona-Vásquez et al.

(2019) with a few adjustments. Three enzymes, EcoRI-HF

(common cut), XbaI (rare cut), and third enzyme NheI for the

dimer cleaving (all enzymes from Thermo Fisher Scientific) were

applied to digest the genomic DNAs. After a series of adapter

ligation, clean-ups and amplifications, we targeted and selectively
TABLE 1 Summary of collection sites and within-population genetic diversity estimates across 8 populations of Alliaria petiolata.

Location
Population
acronym

GPS
N Ne

Ne
[SE]

NBOT
NBOT
[SE]

Na
Rare

Na
Rare
[SE]

He
He
[SE]

Ho
Ho
[SE]X Y

Uji-dong,
Samcheok-si,
Gangwon-do

SF 37.46138 129.15583 14 21 0.599 6 0.056 1.44 0.014 0.212 0.007 0.410 0.014

Uji-dong,
Samcheok-si,
Gangwon-do

SO 37.44793 129.15407 12 31 0.601 5 0.05 1.4 0.014 0.197 0.007 0.384 0.014

Uji-dong,
Samcheok-si,
Gangwon-do

SS 37.456 129.149 12 14 0.409 5 0.056 1.4 0.014 0.197 0.007 0.386 0.014

Uji-dong,
Samcheok-si,
Gangwon-do

ST 37.4563 129.1443 14 16 0.288 6 0.025 1.4 0.014 0.197 0.007 0.387 0.014

Ha-dong,
Yeongtong-gu,
Suwon-si,

Gyeonggi-do

SW 37.282029 127.065605 15 23 0.599 11 0.226 1.42 0.014 0.206 0.007 0.405 0.014

Hang-dong,
Jung-

gu, Incheon
IC 37.445 126.59805 8 53 1.76 11 0.226 1.41 0.014 0.198 0.007 0.357 0.013

Jardin
botanical
garden,

Paris, France

FRA 48.844667 2.361972 5 – – – – 1.58 0.0145 0.273 0.007 0.388 0.014

Lac
Daumesnil,
Paris, France

FRB 48.829944 2.4125 4 – – – – 1.44 0.0145 0.204 0.007 0.406 0.014
frontier
N, sample size; Lat and Lon, geographic coordinates in decimal degrees; Ne, effective population size; NBOT, effective size of bottlenecked population; Na_Rare, mean number of alleles adjusted
by population size across 1,172 SNPs; He, mean expected heterozygosity across 1,172 SNPs; Ho, mean observed heterozygosity across 1,172 SNPs and SE, standard error.
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collected 500-bp fragments (+/− 10%) using Pippin Prep (Sage

Science, MA, USA). The library preparation was completed with a

final amplification. We then evaluated the prepared library on

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA) and sent it to Macrogen Inc (Korea). The final library was

sequenced on Illumina HiSeq X-10 platform with 2 × 150 paired-

end sequencing.

The raw sequence data were first demultiplexed and trimmed

using -t 141 in Stacks v. 2.41 (Rochette et al., 2019). We used

process_radtags function to filter out bad quality reads with high

error rate (threshold Phred score 10 and sliding window size 0.15).

The filtered reads were then mapped to a reference genome

(GCA_020283515.1) using Bowtie v. 2.2.3 with MAPQ < 30

(Langmead and Salzberg, 2012). Given the multiple ploidy levels

(diploid and hexaploid) observed within the species (X= 6 and 7;

2n= 36 and 42; Figure 2), we assembled the reads and called SNPs

on ipyrad v.0.9.93 (Supplementary Information 1; Eaton and

Overcast, 2020). Initially, we assembled the catalogs with a clust

threshold of 90% and a minimum depth of 6 reads for base calling.

Additionally, we implemented a threshold allowing a maximum of

6 alleles per site to accommodate the potential hexaploid sampled

during the final cluster filtering.

To ensure independence among called SNPs, we only included

the first SNP per locus by using u option during step 7 of ipyrad

pipeline. SNP loci significantly departing from Hardy-Weinberg

Equilibrium (HWE, P < 10e-6; Li, 2011; Hess et al., 2012) were also

filtered to exclude loci with extreme heterozygosity that were likely

resulting from assembly errors in Plink v. 1.9 (Purcell et al., 2007).

We finalized our data to 1,172 SNPs for 86 genotypes by

additionally purging genotypes with more than 30% missing calls

and SNP loci with minor allele frequency of ≤ 0.05 using Tassel 5.0

(Glaubitz et al., 2014).
Frontiers in Plant Science 05
2.3 Data analysis

Three genetic diversity parameters, expected heterozygosity

(He), observed heterozygosity (Ho) and number of alleles (Na)

were estimated in GENALEX v. 6.5 (Peakall and Smouse, 2012).

Due to unequal sample sizes across regional populations, Na values

were adjusted using rarefaction curves (Table 1; Kalinowski, 2004)

in HP-Rare (Kalinowski, 2005). We computed pairwise population

differentiation (FST) among 8 populations using 1,000

permutations to estimate the statistical support in Arlequin v. 3.5

(Excoffier and Lischer, 2010). A Mantel test was conducted to

examine a significant isolation by a geographic distance. For the

Mantel test, we used log-transformed Euclidean distances as

predictors and linearized FST [FST =FST/(1- FST)] values as

regressors in GENALEX (Rousset, 1997).

We utilized a simulation-based approach implemented in

FASTSIMCOAL2 (Excoffier et al., 2013) to calculate the effective

population size (Ne) under various demographic scenarios for 6

populations sampled in the introduced region (Korea). To reduce

model complexity, we examined three simple models focusing on a

single population. These models are detailed as follows: 1) null

model with constant population size, 2) population bottleneck

model and 3) population bottlenecks and rebound model. For

each demographic model, we adopted a mutation rate of 7 × 10^-

9 estimated from Arabidopsis thaliana (Krasovec et al., 2018). We

computed folded site frequency spectra (SFS) for SNP loci

separately for the seven local populations to mitigate the effect of

missing sequence data. In the composite likelihood computation,

we conducted 400,000 simulations and 80 ECM (Expectation

Conditional Maximization) cycles. This process was repeated 100

times for each demographic model with a stopping criterion of

0.001 (Excoffier and Foll, 2011; Excoffier et al., 2013). We identified
FIGURE 2

Acetocarmine-stained mitotic metaphase chromosome counts of root meristem in two Alliaria petiolata populations (SS and SF; see population
details in Table 1) of Korea showing two hexaploid karyotypes (2n = 36 and 42).
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the optimal run for each demographic model based on maximum

likelihood and subsequently calculated the AIC scores. The best

demographic model for each population was selected based on the

AIC values.

We determined assignment patterns among 8 populations using

two differing approaches, Principal coordinate analysis (PCoA) and

Bayesian model-based assignment test. PCoA was performed based

on Nei’s genetic distance calculated from 86 genotypes in GENALEX.

The number of randomly mating clusters (K) was determined using

STRUCTURE v. 2.3.4 (Pritchard et al., 2000) as implemented in

ipyrad. We conducted all STRUCTURE analyses using an admixture

model with a burn-in period of 100,000 steps, followed by 1,000,000

Markov Chain Monte Carlo (MCMC) iterations. The allele frequency

model was set to the independent model, which is widely applied and

assumes distinct allele frequencies for different populations. Values of

K ranging from 1 to 8 were tested, with each K run repeated 10 times

for robustness and consistency. We employed Structure Harvester

version 0.6.93 (Earl and VonHoldt, 2012) to determine the optimal K

values using both the delta K method (Evanno et al., 2005) and the

approach outlined in Pritchard et al. (2000). The latter selects the K

value at the point where the natural logarithm of the likelihood of the

data given K (lnK) plateaus. In cases where the optimal K values

conflicted between the two methods, we prioritized the former

method, unless delta K values exceeded 2. This decision was based

on findings suggesting that the delta K method tends to

underestimate the optimal value of K (Janes et al., 2017). To

summarize and visualize the ancestry coefficients inferred for the

optimal K, we used clumpp v. 1.1.2 (Jakobsson and Rosenberg, 2007)

as implemented in ipyrad.

We reconstructed a phylogenetic network using NeighborNet

algorithm implemented in SplitsTree v. 4.17.1 (Huson and

Bryant, 2006) to examine potential reticulation events among the

86 genotypes. We used the 1,172 loci to estimate genetic distance

among the 86 genotypes. Genetic distance was estimated with K2P

model and applied to infer the phylogenetic network. We also

explored gene flow among the sampled populations in TreeMix v.

1.13 (Pickrell and Pritchard, 2012). The 1,172 SNP data were

converted into the TreeMix input file using populations function

in Stacks program. We rooted trees with the genotypes of IC

population (-root) since those genotypes exhibited the most

distant genetic relations with the rest of the samples (Table 2;

Figures 3, 4). To estimate the covariance matrix, 500 bootstrap

replicates were generated with a SNP block size of 100 (-K) per

migration edge. Gene flow among populations was tested using 0 ~

5 migration edges (m = 0 ~ 5). We employed R package OptM

(Fitak, 2021) to find the optimal number of migration events.
3 Results

We initially tried to count the chromosome numbers for at least

one sample from all six populations collected from Korea. However,

due to difficulties in root sample preparations, we failed to

successfully count the chromosome numbers for four of the six
Frontiers in Plant Science 06
samples used in the chromosome counting. The chromosome

numbers for samples from SF and SS populations (see Table 1 for

population acronyms and the detailed location information) were

only appropriately counted. The chromosome number of SS

population was 36, whereas that of SF population was 42,

indicating a clear difference between the two populations in the

basic chromosome number (Figure 2).

The library produced 41.9 Gbp with 279 million raw

reads (270,820-6,726,414 reads per sample). The average GC

content was 43.9% differing from the reference genome (37%,

GCA_020283515.1). The average mapping rates differed across

populations ranging from 49.8 (SF) to 56.1 (FRA). We initially

isolated 153,272 SNP loci but, after a series of filtering processes,

1,172 SNPs with low missing rates (< 10%) remained for the

downstream analyses. The final transition/transversion rate of

SNP matrix was 1.617. Overall, the genetic diversity of A.

petiolata was consistent across 8 populations. The number of

alleles rarefied were between 1.40 to 1.58 (mean Na_Rare = 1.44),

and the expected heterozygosity (He) was ranged from 0.197 to

0.273 (mean He = 0.211; Table 1). Notably, we found much higher

variation in observed heterozygosity (mean Ho = 0.4) comparing to

He (Table 1). As opposed to our expectation, no significant

difference in genetic diversity measures was observed between the

native and the introduced populations.

On average, populations highly diverged from each other

(average FST = 0.314). Pairwise FST largely varied across

populations ranging from near zero (SW/SF, SS/ST, SS/SO and

SO/ST pairs) to 0.441 (SW/IC pair; Table 2). All FST values were

statistically significant except for the four population pairs with

extremely low FST. Notably genetic divergence among some local

population pairs were comparable or even greater than the one

between the introduced and the native populations (Table 2). For

instance, IC population largely diverged from the remaining five

domestic populations in Korea (FST = 0.301 - 0.422). The values

were, in fact, comparable or much greater than the FST estimates for

the population pairs of the native populations (FRA or FRB) with

the six Korean populations (FST = 0.28 – 0.41; Table 2). According

to the Mantel result, the genetic divergences among 6 domestic
TABLE 2 Mean pairwise FST values estimated from 1,172 SNPs among 8
Alliaria petiolata populations in Korea.

SF SO SS ST SW IC FRA FRB

SF 0.000

SO 0.411 0.000

SS 0.412 0.003 0.000

ST 0.411 0.004 0.002 0.000

SW 0.005 0.417 0.418 0.417 0.000

IC 0.422 0.395 0.396 0.397 0.441 0.000

FRA 0.277 0.283 0.283 0.283 0.289 0.301 0.000

FRB 0.319 0.406 0.406 0.407 0.342 0.402 0.231 0.000
frontier
All values except for the values in shaded area were statistically significant at P < 0.01 level.
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populations were not significantly related to the geographic

distances (Figure 3; r = 0.33, P > 0.5).

We further assessed the Ne for six populations sampled in

Korea using FASTSIMCOAL with three demographic models. The

model that best explained our SNP data for all six populations was

the population bottlenecks and rebound model. According to the

model, the six populations in Korea initially underwent population

bottlenecks followed by population growth. The estimated Ne at the

bottleneck point ranged from 5 (SO) to 11 (SW, IC), while the Ne of

the current populations, rebounding from the decline, ranged from

14 (SS) to 53 (IC; see Table 1).
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PCoA plot with the axes PC1 and PC2, where PC1 explains about

49% of the total variance and PC2 about 20%, identified four clusters

(Figure 4). PC1 separated the 8 populations into 4 groups, while PC2

split the populations into two groups (Figure 4). The populations SO,

SS, and ST in Samcheok clustered together on the left side of the plot,

and were separated from the second cluster composed of SF

(Samcheok) and SW (Suwon), on the right side (Figure 4). Along

PC1 axis, in the middle of these two clusters, IC population from

Incheon was located (Figure 4). The two native populations from

France were clustered together in the middle of the PC plot (Figure 4).

STRUCTURE results exhibited similar clustering pattern. The best K
FIGURE 4

Plot for principal components analysis of 86 Alliaria petiolata genotypes from 8 populations. The first two PC axis were plotted. Refer Table 1 for
acronyms of population locations and sample sizes.
FIGURE 3

Relationship between the genetic and geographic distances among the six Korean Alliaria petiolata populations assessed by a Mantel test (r = 0.33,
p < 0.05). The test employed the logarithm of Euclidean distance (km) and Slatkin’s linearized FST (FST/(1 − FST)) values.
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determined based on delta K was K=3 (Figure 5A). When K=3, all

genotypes from the populations SO, SS, and ST (Samcheok) were

assigned to cluster 1 represented in red, whereas all genotypes from

SF (Samcheok) and SW (Suwon) were assigned to cluster 2 in green

except for one genotype in SF (Figure 5B). The IC population was

assigned to another cluster 3 in red (Figure 5B). Native populations

showed admixed patterns among all three clusters (Figure 5B).

We further explored potential reticulation among the 8

introduced and native garlic mustard populations via Neighbor-Net

algorithm. Consistent with the two clustering results, four major

clades were identified in the network tree (Figure 6). The three

Samecheok populations (SS/SO/ST) and the SF/SW populations were

closely related forming two major clades, whereas IC was distantly

positioned from these two clusters (Figure 6). We found no clear

reticulation signal among these three clusters except for a weak
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interconnection between the two clades (SF/SW and SO/SS/ST;

Figure 6). However, genetic relationships among the genotypes of

the two native populations were more complex showing intertwined

relations. We also investigated potential gene flow among the 8

populations through TreeMix analysis. The overall topology of

maximum likelihood (ML) tree inferred from TreeMix was

congruent with the clustering patterns of Neighbor-Net and the

two clustering analyses (Figure 7). Based on the long branch

lengths among clades, strong drift effect can be presumed since

each clade diverged from one another. Compared to no migration

which explains 99.4% of the genetic covariance, adding one migration

edge greatly improved the fit of the tree to the data (99.9% of the total

covariance explained). On the population graph, we observed one

migration (migration weight = ~ 0.2) from SO/SS/ST cluster to SF/

SW cluster (Figure 7).
A

B

FIGURE 5

Population genomic structure of 8 Alliaria petiolata populations. (A) Plot of delta K estimated, following Evanno et al. (2005), to determine the
optimal K numbers. (B) Bar plot visualizes group assignments for 86 genotypes of the optimal K (K = 3). Populations are separated by the vertical
black lines. Refer Table 1 for acronyms of population locations and sample sizes.
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4 Discussion

Non-natives pass through a series of stages involving complex

biotic and abiotic filters before becoming a successful invader

(Theoharides and Dukes, 2007). While prevention is the ultimate

strategy, early detection and immediate assessment of the colonization

stages are crucial if initial screening fails, to prevent further spread

(Simberloff et al., 2013). Alliaria petiolata, one of the most noxious

alien plants in woodland habitats (Blossey et al., 2001), was first

recorded in Korea just over ten years ago (Cho and Kim, 2012).

Despite its high invasiveness reported elsewhere, the species has not

received much attention in Korea due to its rather relaxed spread rate

since the first emergence. Our study represents the first attempt to

assess the colonization status and potential spread of A. petiolata in

Korea using cytological and population-level genomic data. Our

findings suggest that multiple introductions may have greatly

influenced the garlic mustard’s invasion in Korea. In addition,

based on our molecular data and the current distribution pattern,

the currently observed slow spreading rate may be attributed to a

potential lag phase.

Contrary to our initial hypothesis, we discovered that the

cytological identity of A. petiolata introduced in Korea is rather

complex. In our chromosome counting analysis, at least two

chromosome numbers were observed (2n= 36 and 42; Figure 2).

As the basic chromosome numbers reported for the species are X= 6

or 7, the examined samples appear to be hexaploids. Species with

multiple genome copies (polyploids) likely benefit from heterosis

and hybrid vigour, making them more successful colonizers than

diploid non-natives (Te Beest et al., 2012; Suda et al., 2015; Mairal

et al., 2023). Polyploidy may indeed be playing an important role

during garlic mustard’s invasion in Korea. However, due to the
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limited sample numbers, our chromosome data should be

interpreted with great caution. Future studies may further explore

the cytological characteristics of the species with a larger sample size

to draw meaningful conclusions regarding the ploidy of A.

petiolata populations.

Surprisingly, measures of within-population genetic diversity

observed in Korean populations were comparable to those of the

two populations originating from the native region (Table 1). Given

the inevitable founder effects during early stages of biological

invasion, genetic diversity loss is commonly expected for a

recently introduced species (Dlugosch and Parker, 2008; Dlugosch

et al., 2015). Indeed, the six populations sampled from the

introduced region (Korea) have experienced population

bottlenecks although these populations are currently rebounding

from the decline. However, we did not find significant reduction in

Korean populations compared to the native populations (P < 0.05;

Table 1). The result is somewhat consistent with a previous study,

which found no pronounced population bottlenecks in introduced

populations compared to native European populations (Durka

et al., 2005). This suggests that the introduction of A. petiolata

and its successful invasion may not necessarily accompany a

bottleneck, contrary to general expectations. Alternatively, a

bottleneck may have occurred during the introduction, but there

could have been factors mitigating its impact, such as hybridization

between divergent lineages introduced through multiple

introductions (Dlugosch and Parker, 2008; Thompson et al.,

2010). Therefore, we conducted a TreeMix analysis to investigate

the potential influence of hybridization. The detection of only

minor gene flow between two divergent lineages, originating from

the three clusters, casts doubt on the potential effect of hybridization

on the observed genetic diversity pattern (Figure 7).
FIGURE 6

NeighbourNet tree illustrating the phylogenetic relationship of 86 Alliaria petiolata samples, based on uncorrected-p distance. Colored shadings
highlight clades with population samples assigned to each clade.
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Alloploidy may be an alternative explanation for the well-

maintained genetic variation. As aforementioned, garlic mustards

are predominantly hexaploids and primarily reproduce through

selfing (Durka et al., 2005; Mullarkey et al., 2013). Indeed, the level

of genetic variation was not notably high even in the native region,

except for the Ho (Table 1). Interestingly, the Ho values were

consistently high across all 8 populations investigated, with a mean

Ho of 0.4. Given the species’ high selfing rate in nature, these elevated

Ho values are even more noteworthy and deserving of attention.

Although the exact cytotype remains unknown, based on the pattern

of genetic diversity, the hexaploids examined in our study likely be

allopolyploids resulting from past hybridization events. About 30% of

the 1,172 loci used in downstream analyses were heterozygotic loci

fixed for all genotypes included in the diversity analysis. The fixed

heterozygosity, determined by codominant molecular markers, is

considered evidence of allopolyploidy (Soltis and Soltis, 2000).

Furthermore, allopolyploid origin of hexaploid A. petiolata was

proposed based on the features of the reconstructed genome (Bayat

et al., 2021). Accordingly, the unexpectedly high Ho resulting from a

high rate of fixed heterozygosity in both native and introduced

regions provides further evidence supporting the allopolyploid

origin of hexaploid garlic mustard.
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We found three genetic clusters within Korean populations

through the two clustering analyses (Figures 3, 4). The clustering

patterns closely mirrored the topologies of population graph

inferred from ML algorithm and the network tree (Figures 5, 6).

Despite this consistency, the genetic affinity among the clusters did

not correspond to geographic proximity, as indicated by the Mantel

test results (see Figure 3). A notable example of the incongruence

was observed in Samchoek, where two clusters were assigned

despite being within close geographic proximity (< 2 km). The

significant discordance between geography and genetic similarity,

as evidenced by the presence of two distinct clusters within a single

city, suggests the possibility of multiple introductions during the

initial stages of garlic mustard invasion. This hypothesis gains

further support from the differing chromosome numbers found in

each cluster. According to current cytological knowledge, the cluster

represented by SF, with 42 chromosomes, likely originated from

Central/Western Europe and/or North America, while the cluster

containing SS population with 36 chromosomes likely originated

from the Netherlands or Sweden (Frisch and Møller, 2012; Alabi

et al., 2021). Alternatively, the four populations in Samcheok might

have originated from the same source but with mixed chromosome

numbers. However, because of the narrow distribution of A.
FIGURE 7

Evolutionary relationship of Alliaria petiolata samples inferred from TreeMix. Maximum- likelihood trees obtained allowing single gene flow
explaining 99.9% of the variance. The color of the arrow indicates the gene flow weight, representing the fraction of ancestry derived from the gene
flow edge.
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petiolata with 36 chromosomes in its native range, this alternative

hypothesis may be discounted.

In the meantime, the genetic similarity between the SF population

in Samcheok and the SW population in Suwon implies that the

founders of SW population might have been transported from SF

population. IC population, on the other hand, markedly diverged

from the remaining Korean populations based on both phylogenetic

inferences, Neighbor-net and ML phylogenies, suggesting the

introduction of a third source (Figures 5, 6). Given that Incheon

serves as a major port of entry to Korea, it is highly probable that IC

population in Incheon, exhibiting distinct genetic characteristics, was

introduced by this third source. This inference aligns with the

plausible invasion scenario inferred by our data. Another

interesting observation in the genetic divergence pattern among

populations was the extremely low genetic differentiations among

ST, SO, and SS populations, as well as between SF and SW

populations. The low divergence may indicate the existence of

continuous gene flow between these populations. However, seed

dispersal of A. petiolata is spatially restricted, as revealed in a

previous study (Biswas and Wagner, 2015), which limits gene flow

among populations. Consequently, the combined effect of highly

similar genotypes initially introduced into these populations and

predominant selfing might have led to the extreme genetic similarity

observed between these populations.

In North America, A. petiolata was estimated to expand across

the landscape at a rate of 6,400 square kilometers per year, clearly

demonstrating its noxious impact on the native plant community

(Nuzzo, 1993; Rodgers et al., 2008). Despite its high invasive potential,

the current stage of the A. petiolata invasion in Korea does not seem

severe; the species is colonizing only a few restricted areas with a small

number of populations (http://nature.go.kr/kbi/plant/ntrlz/

selectNtpltDtl.do) within the past decade. The rather relaxed spread

rate, despite the high invasive potential, suggests that the garlic

mustard invasion in Korea may be at a “lag phase”. Coupled with a

suit of biological features that serve as means to be a successful

colonizer, polyploidy, predominantly found in A. petiolata, may

promote the rate of success during Korean invasion. As suggested

in Bayat et al. (2021) and further supported by our data, hexaploid

accessions of garlic mustard are likely allohexaploids resulting from

apparent hybridization events in the past. Past hybridization may also

catalyze the evolution of invasiveness, contributing to garlic mustard’s

invasion success (Ellstrand and Schierenbeck, 2000; Mesgaran et al.,

2016; Gioria et al., 2023). Taken all together, our data highly suggest

that the plant is likely to further spread upon reaching the breaking

point of the lag phase, although the exact timing of the expansion

cannot be determined. Accordingly, garlic mustard populations must

be closely monitored to prevent it from becoming a noxious weed

in Korea.
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