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The genus Macadamia in the Proteaceae family includes four species native to

Australia. Two of the four species,M. integrifolia andM. tetraphylla, have recently

been utilized to generate domesticated macadamia varieties, grown for their

edible nuts. To explore diversity in macadamia genetic resources, a total of 166

wild genotypes, representing all four species, were sequenced. The four species

were clearly distinguished as four separate clades in a phylogenetic analysis of

the nuclear genome (based upon concatenated nuclear gene CDS and SNPs).

The two larger species (M. integrifolia andM. tetraphylla) formed a clade, that had

diverged from a clade including the smaller species (M. ternifolia andM. jansenii).

The greatest diversity in nuclear and chloroplast genomes was found in the more

widely distributed M. integrifolia while the rare M. jansenii showed little diversity.

The chloroplast phylogeny revealed a much more complex evolutionary history.

Multiple chloroplast capture events have resulted in chloroplast genome clades,

including genotypes from different species. This suggests extensive reticulate

evolution in Macadamia despite the emergence of the four distinct species that

are supported by the analysis of their nuclear genomes. The chloroplast

genomes showed strong associations with geographical distribution reflecting

limited maternal gene movement in these species that have large seeds. The

nuclear genomes showed lesser geographical differences, probably reflecting

the longer distance pollen movement. This improved understanding of the

distribution of diversity in Macadamia will aid in the conservation of these rare

species now found in highly fragmented rainforest remnants.
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1 Introduction

Phylogenetics, the study of evolutionary relationships among

organisms, has become a powerful tool in a variety of biological

disciplines (Liu et al., 2022). Over the last few decades, substantial

effort has been made to understand the phylogenetic associations

among angiosperms through the application of DNA sequence data

(Jansen et al., 2006). Next-generation sequencing (NGS) has

brought a transformation in sequence analysis by making it more

affordable and increasing access to complete chloroplast and

nuclear genome data (Zhou et al., 2021). There has been an

emphasis by breeders to exploit wild germplasm, but a significant

portion remains underutilized (Zhang and Batley, 2020). The lack

of genomic data on wild germplasm is one barrier to its effective use

in plant breeding efforts, and as a result, the integration of genes

from wild germplasm into cultivated varieties has been limited.

Recent advancements in genomics and bioinformatics have

provided opportunities to unlock the hidden potential within wild

germplasm (Tanksley, 1997) by extending this technology to less-

studied plant species. This has opened new avenues to incorporate

materials from wild germplasm (Zhang and Batley, 2020).

Macadamia is an evergreen perennial rainforest tree of the family

Proteaceae and is indigenous to Australia (Hardner et al., 2009;

Walton, 2011; O’Connor et al., 2019). The genus Macadamia is the

only angiosperm that has been domesticated as a large-scale

commercial food crop in Australia (Aradhya et al., 1998). In

accordance with the present classification of Proteaceae (Mast et al.,

2008), the genus Macadamia has been classified into four species,

namely, M. integrifolia (Maiden & Betche), M. tetraphylla (L.A.S.

Johnson),M. ternifolia (F. Muell), andM. jansenii (C.L. Gross & P.H.

Weston), using molecular and morphological data, while many

species previously classified as Macadamia have been transferred to

other genera. Among the four species, M. integrifolia has the widest

natural distribution, extending from southeast Queensland to the

New South Wales border. Two overlapping distributions lead to

natural hybridization between M. integrifolia and M. tetraphylla and

betweenM. integrifolia andM. ternifolia (O’Connor et al., 2019; Topp

et al., 2019).M. tetraphylla is mostly distributed in New SouthWales,

while M. ternifolia is distributed north of Brisbane, extending from

the Samford Valley to Gympie (Topp et al., 2019). M. jansenii is the

most geographically isolated species and is found only in Bulburin

National Park north of Bundaberg, 180 km from the closest M.

integrifolia population (Topp et al., 2019; Mai et al., 2020). The genus

Macadamia displays diversity in several morphological

characteristics. These include the number of leaves per whorl,

mature leaf size and shape, color of new leaves, presence of petiole,

leaf margin serration, and differences in floral and fruit morphology

(Peace, 2005). These characteristics are used for differentiating

Macadamia species. However, some of these characteristics, such as

leaf serration, can overlap across species and can be observed only at a

certain stage (i.e., juvenile or adult) of the life cycle of some species.

On the other hand, traits like nut and leaf size can vary within species

depending on the environment and may not always be useful in

distinguishing between the species (Peace, 2005; Hardner et al., 2009).

Genomic information on the representative accessions of these four
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species can be instrumental in understanding the diversity and

species distribution of Macadamia.

Although genomic investigation in macadamia commenced a

decade ago, only a few studies have been conducted to date. Several

types of polymorphic molecular markers have been used to assess

the genetic diversity in Macadamia (Peace, 2005; Mast et al., 2008;

Ahmad Termizi et al., 2016; Alam et al., 2018; O’Connor et al., 2019;

Mai et al., 2020). However, few studies have been employed to

characterize the genetic makeup of wild germplasm (Mai et al.,

2020). In 2005, Peace et al. studied a large number of wild

germplasm accessions using low-throughput RAF (randomly

amplified DNA fingerprinting) and RAMiFi (randomly amplified

microsatellite fingerprinting) markers (Peace, 2005). Another study

by Mast et al. (2008) investigated the relationships between the four

Macadamia species and their closely related wild relatives. They

examined chloroplast DNA regions, such as matK, atpB, and ndhF

and nuclear DNA genomic regions, such as waxy loci 1 and 2 and

PHYA. By analyzing these markers, their aim was to gain insights

into the complex relationships within theMacadamia genus and its

wild relatives (Mast et al., 2008). However, these markers gave low

genome coverage and provided poor marker density (Alam et al.,

2018; Nock et al., 2020). Ahmad Termizi et al. (2016) analyzed

individuals from wild M. integrifolia population using 516 single-

nucleotide polymorphisms (SNPs) and reported the unique

chlorotypes for each of the 12 samples (Ahmad Termizi et al.,

2016). Furthermore, a recent study (Mai et al., 2020) examined the

genetic relationships among 302 wild germplasm accessions using

2,872 SNPs and 8,415 in silico DArT markers and identified the

species status of 94 unknown wild accessions. Although these

studies examined the phylogenetic relationships among wild

macadamia accessions, no previous study has resolved the

phylogeny of the four Macadamia species.

In Macadamia, as in other plants, uniparentally inherited

chloroplast DNA has been used to infer the phylogenetic patterns.

However, many studies have documented the occurrence of reticulate

evolution of chloroplast in other plant species (Nge et al., 2021). The

phenomenon of reticulate evolution may result in the replacement of

chloroplast genomes of one species with another (Kawabe et al., 2018)

due to hybridization events. In many plants, reticulate evolution has

caused a discordance between the molecular data derived from the

chloroplast and the nuclear genome (Nge et al., 2021), resulting in

conflicting topologies for phylogenetic trees (Rieseberg and Soltis,

1991). Therefore, reticulate evolution can have an impact on

phylogenetic analyses that rely only on the chloroplast genomes or

their genes (Kawabe et al., 2018). However, studies to date have not

explored phylogenetic relationships in Macadamia based on both

nuclear and complete chloroplast genomes.

Here, we focused on uncovering the diversity and relationships

in wildMacadamia populations by using both chloroplast genomes

and nuclear gene coding sequences (CDS). This is the first whole-

genome sequencing data report for a large Macadamia population.

To support improved conservation and utilization of the wild

genetic resources, we sequenced whole chloroplast and nuclear

genomes to better understand diversity within and relationships

between species and populations of Macadamia in Australia.
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2 Materials and methods

2.1 Plant materials, DNA extraction,
and sequencing

A total of 166 wild macadamia accessions representing all four

species [M. integrifolia (n = 49),M. tetraphylla (n = 56),M. ternifolia

(n = 23), andM. jansenii (n = 23)] and one related rainforest species

from the Proteaceae, Lasjia whelanii, were selected for sequencing.

Within the macadamia populations, 161 wild accessions, which were

collected previously from multiple locations across the natural

distribution of the four species, were grown and maintained at

Nambour arboretum and ex situ germplasm centers at Nambour

and Tiaro in Queensland and Alstonville in NSW (Hardner et al.,

2004) and five from a private collection at Limpinwood, NSW

(Supplementary Table 1) in Australia. Fully expanded young

macadamia leaves, of accession within these ex situ collection sites,

were collected in perforated labeled cellophane bags and immediately

placed under dry ice until stored in a −80°C freezer at The University

of Queensland, Brisbane, Australia.

Frozen leaves were coarse pulverized under liquid nitrogen

using a mortar and pestle and further fine pulverized under

cryogenic conditions using a Qiagen tissue lyser (MM400, Retsch,

Germany). A modified version of the cetyltrimethylammonium

bromide (CTAB) DNA extraction protocol described by Furtado

(2014) was used to extract genomic DNA. The quality and quantity

of the DNA samples were evaluated using a Nanodrop

spectrophotometer (Nanodrop Technologies, Wilmington, DE,

USA) by recording the absorbance ratios at 260/280 and 260/230

followed by running a 0.7% agarose gel with SYBR safe staining

(Thermo Fisher Scientific). Whole-genome short-read sequencing

was undertaken by BGI Hong Kong. A PCR-free library was

generated and sequencing at 150-bp paired-end reads was

undertaken on the DNBSEQ-G400 sequencing platform from

MGI (MGI Tech Co., Ltd, Shenzhen, China) at an expected data

yield/sample of at least 25× genome size (800 Mb genome)
2.2 Chloroplast genome assembly
and annotation

All sequence data were analyzed in CLC Genomics Workbench

23.0.05 (CLC-GWB, CLC-Bio, QIAGEN, Denmark, http://

www.clcbio.com) using the short-read pipeline. Quality

control (QC) was performed for all short-read data. Reads were

trimmed using a quality score limit of 0.01 with default parameters

(more than 98% of the resulted trimmed reads had a Phred score

>25). A subset of quality trimmed short reads (2–13 GB) was used

for chloroplast genome assembly. All chloroplast genomes were

assembled using the GetOrganelle toolkit (Jin et al., 2020) exploiting

SPAdes v.3.15.3, Bowtie2 v.2.4.5, and Blast v.2.11.0 as dependencies.

The correct configuration of the chloroplast genome was selected

with respect to the M. integrifolia (sequence: NC_025288.1) (Nock

et al., 2014) available at the National Center for Biotechnology

Information (NCBI) (http://www.ncbi.nlm.nih.gov/) using clone

manager software (Sci Ed, USA).
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The chloroplast genomes were annotated using the GeSeq

online tool (https://chlorobox.mpimp-golm.mpg.de/geseq.html)

with M. integrifolia (sequence: NC_025288.1) as the genome

(Tillich et al., 2017). Chloroplast genomes were annotated with

the following settings: Annotation options: Annotate plastid

inverted repeat (IR), Annotated plastid trans spliced rps12,

Annotation support: Support annotation by Chloe, Annotation

revision: Keep best annotation only, BLAT search–protein search

identity: 25, rRNA, tRNA, and DNA search identity: 85, HMMER

profile: CDS+rRNA, ARAGORN v1.2.38- Genetic code: Bacterial/

plant chloroplast, Max intron length: 3,000, tRNAscan-se v2.0.7-

sequence source: organellar tRNAs, MPI-MP reference set:

chloroplast land plants (CDS + rRNA) and Chloe v0.1.0-

annotate- CDS + tRNA + rRNA. All genomes were imported to

Geneious 2023.2.1 software (Biomatters Ltd, USA) to determine the

number of genes, CDS, transfer RNAs (tRNAs), and ribosomal

RNAs (rRNAs) in each sample.
2.3 Concatenated nuclear gene
CDS sequences

Previously published annotated sequences of the nuclear genome

of M. integrifolia (Nock et al., 2020) were selected as reference

sequences to generate accession-specific consensus CDS of nuclear

genes. CDS of M. integrifolia (GCF 013358625.1) were downloaded

and imported to CLC-GWB to generate a local Blast database. The

CDS of 106 Arabidopsis thaliana single-copy genes identified by Li

et al. (2017) was subjected to tblastn against the M. integrifolia CDS

database. We selected 56 tblastn hits with a singleM. integrifolia CDS

matching an A. thaliana CDS as these hits represented single-copy

genes in the M. integrifolia genome. From these selected single hits,

corresponding M. integrifolia CDS sequences were extracted and

used as a reference to extract consensus sequences from each of the

macadamia accessions and from L. whelanii. BLAST analysis using

the 56 extracted M. integrifolia CDS and the CDS sequences of L.

whelanii as a database resulted in the selection of 53 L. whelanii CDS

as single hits that represented single-copy genes in L. whelanii.

Corresponding (same as selected) 53 CDS sequences from M.

integrifolia and from L. whelanii were selected for further analysis.

The 53 CDS fromM. integrifolia (Supplementary Table 2) were used

as reference sequences in the read mapping approach to generate

corresponding CDS consensus sequences for each of the macadamia

accessions. Essentially, short reads trimmed data of each macadamia

accession were mapped separately to each of the 53 selected M.

integrifolia CDS sequences to extract consensus sequences. Finally,

consensus CDS sequences, were extracted for each macadamia

accession, and were concatenated in the same sequential order to

obtain the final nuclear gene CDS sequence.
2.4 Phylogenetic evaluation

Phylogenetic evaluation of macadamia was conducted by

utilizing complete chloroplast genome sequences and single-copy

concatenated nuclear gene CDS sequences. For phylogenetic analysis,
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we selected 138 wild macadamia accessions representing all four

species. To maintain precision and clarity within our analysis, we

exclude accessions from planted wild germplasm, accessions known

to be natural hybrids, admixtures, accessions of unknown origin, and

unidentified macadamia accessions (Supplementary Table 3). The

phylogenetic trees were also generated for four species:M. integrifolia

(n = 44), M. tetraphylla (n = 49), M. ternifolia (n = 22), and M.

jansenii (n = 23) separately based on chloroplast genomic data and

single-copy nuclear gene sequences. L. whelanii was used as an

outgroup. All selected sequences were aligned along with the

outgroup using MAFFT alignment with default parameters in

Geneious 2023.2.1 software (Biomatters Ltd, USA).
2.4.1 Chloroplast phylogenetic analysis
Chloroplast genomes are widely used in plant phylogenetic

analysis (Yanfei et al., 2023). Therefore, phylogenetic trees were

constructed using complete chloroplast genome sequences to

investigate the relationships in genus Macadamia. To better

determine the relationships within the Macadamia species, we

first constructed Maximum Likelihood (ML) trees and Bayesian

trees for all four species separately using L. whelanii as an outgroup.

Chloroplast phylogenetic reconstructions were performed using

PAUP*v 4.0 software (Swofford and Sullivan, 2003) with the maximum

likelihood (ML) method and MrBayes v. 3.2 software (Ronquist et al.,

2012) in Geneious for Bayesian inference (BI) method. For PAUP*

trees, the Akaike Information Criterion (AIC) in the jModel test was

performed in Cyberinfrastructure for Phylogenetic Research (CIPRES)

Science Gateway (https://www.phylo.org/) to find out the best-fitting

nucleotide substitution model (Miller et al., 2010). ML analysis was

performed with 1,000 bootstrap replicates. GTR + Gamma was used

in BI analysis. The chloroplast ML tree for theM. integrifolia andM.

tetraphylla populations were generated by the TPM1uf+I+G model

and chloroplast ML tree for M. ternifolia were generated by the

TVM+G model. The topological structures of trees were evaluated

based on bootstrap support and Bayesian posterior probabilities.

The Interactive Tree of Life (iTOL) v.5 tool (Letunic and Bork,

2021) (https://itol.embl.de/about.cgi) was used to visualize

the phylogenies.

To further evaluate the phylogenetic relationship between the

four species of macadamia, we constructed Bayesian tree methods

(GTR + Gamma model) by taking 138 complete macadamia

chloroplast genomes using L. whelanii as an outgroup.
2.4.2 Nuclear gene phylogenetic analysis
2.4.2.1 Concatenation based phylogeny

Concatenated 53 nuclear gene CDS sequences of Macadamia

species and L. whelanii were used to evaluate the phylogenetic

relationships in the genus Macadamia. The nuclear gene

phylogenetic trees were generated by using Randomized

Axelerated Maximum Likelihood (RAxML) version 8 (Stamatakis,

2014) with the ML method and the BI method in MrBayes v. 3.2

software (Ronquist et al., 2012) in Geneious 2023.2.1 software

(Biomatters Ltd, USA). ML trees were analyzed using the GTR +

GAMMA nucleotide model with 1,000 bootstrap replicates. The BI

trees were analyzed using the GTR + GAMMA model. The
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phylogenetic trees were visualized with the iTOL v.5 tool (Letunic

and Bork, 2021). The topological structure of trees produced by

RAxML and MrBayes software was compared to identify

discrepancies between them.

2.4.2.2 Single Nucleotide Polymorphisms (SNPs)
based phylogeny

TheCDS from53 genes fromM. integrifolia (Supplementary Table 2)

were analysed by BLASTed against CDS extracted for M. integrifolia

(GWHESFF00000000), M. tetraphylla (GWHESFG00000000), M.

ternifolia (GWHESEN00000000) and M. jansenii (GWHESFI00000000)

(Sharma et al., 2023) from Genome warehouse (https://ngdc.cncb.ac.cn/

gwh/) in CLC Genomics Workbench 23.0.05 (CLC-GWB, CLC-Bio,

QIAGEN, Denmark, http://www.clcbio.com). The BLAST hits were

manually checked. We selected 45 BLAST hits with a single hit for

each species (Supplementary Table 4). Then, short reads were trimmed

using a 0.01 quality threshold. All the samples were independently

mapped to the respective reference genomes of the four species. The

mapping setting was as follows: Masking mode (No), Match score (1),

Mismatch score (2), Insertion cost (3), Deletion cost (3), Length fraction

(1.0), Similarity fraction (0.9) and Global alignment (No). To identify

variants, present in selected 45 CDS, the read mappings were then

subjected to a Fixed ploidy variant detection tool in CLC Genomics

Workbench 23.0.05 (CLC-GWB, CLC-Bio, QIAGEN, Denmark, http://

www.clcbio.com). Fixed ploidy variant detection was conducted at the

settings as follows; minimum coverage (10), minimum count (3) and

minimum frequency (%) (25%). Then, Heterozygous SNP variants were

manually filtered for a frequency range of 25 – 75% for the two alleles with

respect to the reference genomes. Homozygous SNP variants were

manually filtered for 100% frequency. Variants for outgroup

L. whelanii were identified with respect to the M. integrifolia

(GWHESFF00000000) reference genome. Individual heterozygous and

100% homozygous variant files were combined to produce a comma

separated value format (CSV) tables for each of the 45 CDS in all samples.

The CSV files with a final set of SNPs were used to reconstruct CDS

sequences for each sample using a Python script (https://github.com/

Aeyohan/aght). Reconstructed CDS sequences were then aligned with the

outgroup using MAFFT alignment with default parameters in Geneious

2023.2.1 software (Biomatters Ltd, USA). Individual gene trees were

generated using RAxML version 8 (Stamatakis, 2014) with the ML

method in Geneious 2023.2.1 software (Biomatters Ltd, USA). ML trees

were analysed using the GTR +GAMMA nucleotide model with 1000

bootstrap replicates. Then, individual gene trees were used to construct

ASTRAL tree (Zhang et al., 2018). The Interactive TreeOf Life (iTOL) v.5

tool (Letunic and Bork, 2021) (https://itol.embl.de/about.cgi) was used to

visualize the phylogeny.
2.5 Assessment of phylogeography

Geographical maps of origin were created for all four

macadamia species based on the chloroplast phylogenetic clade

separation. Geographic ranges were mapped using Esri National

Geographic in the QGIS Geographic Information System (Version

3.32.1-Lima) (http://qgis.osgeo.org). Geographical coordinates of

each accession are listed in Supplementary Table 3.
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3 Results

3.1 Characterization of
chloroplast genomes

Following paired-end sequencing (150 bp), a total of

140,789,058–260,592,896 reads were obtained for 166 Macadamia

accessions (Supplementary Table 5) with sequence depth of 18.23×

and 50×. The sequence depth of trimmed paired-end reads at a

quality score limit of 0.01 ranged between 16.47× and 43.98×. Two

assembled sequences were obtained from GetOrganelle analysis

indicating the presence of two structural haplotypes of the

chloroplast genome that occurs in plants related to the

orientation of the single-copy region. The correct configuration of

the chloroplast genome was selected with respect to M. integrifolia

(Reference sequence: NC_025288.1). Complete chloroplast genome

sizes analyzed in this study are shown in Supplementary Table 6.

Complete circular chloroplast genomes were obtained for all

genotypes, ranging in size from 159,195 to 159,734 bp. The

smallest chloroplast genome was identified for three M.

tetraphylla accessions (Mac_297, Mac_338, and Mac_345) and

two wild macadamia trees of uncertain species (Mac_047 and

Mac_329) while the largest was observed for two M. integrifolia

accessions (Mac_029 and Mac_262). Chloroplast genome sizes of

M. integrifolia ranged from 159,458 to 159,734 bp, those of M.

ternifolia ranged from 159,463 to 159,508 bp, those of M.

tetraphylla ranged from 159,195 to 159,598 bp, and M. jansenii

were 159,524 bp in length except for MacP_16 (159,526 bp). The

result of this study also revealed that out of 23 M. jansenii

accessions, 22 accessions had identical chloroplast genomes.

All macadamia chloroplast genomes showed a quadripartite

structure of angiosperm, including a large single copy (LSC), a

small single copy (SSC), and two identical inverted repeats (IRa

and IRb) (Figure 1). Gene annotation showed 116 full-length genes,

81 CDS, 4 rRNAs, and 31 tRNAs. Among these 116 genes, 60 genes

were involved in protein synthesis and DNA replication (genes

responsible for rRNAs, tRNAs, large subunit of ribosome, small

subunit of ribosome, and DNA-dependent RNA polymerase), 46

were involved in photosynthesis (genes responsible for subunits of

photosystem I, subunits of photosystem II, subunits of ATP synthase,

subunits of NADH dehydrogenase, large subunit of rubisco, and

subunits of cytochrome complex), 6 were involved in other different

functions (genes responsible for inner membrane protein,

cytochrome synthesis gene, acetyl-CoA-carboxylase, maturase,

ATP-dependent protease, and translational initiation factor), and 4

were involved in unknown function genes (Supplementary Table 7).

The L. whelanii chloroplast genome possessed the standard

quadripartite structure, containing two inverted repeats (18,824

bp), the LSC region (87,911 bp), and the SSC region (26,448 bp).

(Figure 1). Genome size was recorded as 159,631 bp. The plastome

of L. whelanii contained no significant difference in relation to

genes, protein coding genes, rRNA, and tRNA. Overall, the GC

content of the chloroplast genome was recorded as 38%.
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3.2 Chloroplast phylogeny and
geographical analysis of
Macadamia species

The multiple chloroplast genome alignment of 44 M.

integrifolia accessions together with the outgroup L. whelanii was

161,281 bp in length with 99.6% identical sites. The tree topologies

of both were similar (Figure 2A), and most nodes were supported by

high bootstrap support (BS) (>95%) and Bayesian posterior

probabilities (PP) (>0.95). However, some internal nodes tended

to have low BS, indicating incomplete lineage sorting. The

phylogenetic tree construction revealed that Mac_232

(corresponding to population site 90) clusters separately from the

rest of the 43 accessions. The remaining accessions were

differentiated into two main clades and further differentiated into

sub-clades. Clade II contained accessions from the northern

distribution of M. integrifolia: Mac_231, Mac_262, Mac_029,

Mac_265, and Mac_033 from the Gundiah/Mount Bauple region

(corresponding to population sites 1, 2, 2, 3, and 3, respectively)

(Figure 2B) and Mac_052, Mac_091, Mac_340, Mac_248, and

Mac_266 from the Gympie region (corresponding to population

sites 9, 55, 56, 57, and 57, respectively). Clade III included a total of

nine accessions, of which seven were from the Caboolture region:

Mac_250, Mac_312, Mac_246, Mac_045, Mac_080, Mac_026, and

Mac_143 (corresponding to population sites 20, 21, 21, 71, 76, 76,

and 77, respectively) and one from the Nambour region: Mac_044

(corresponding to population site 101). Interestingly, Mac_059

from population site 57 did not cluster with two other accessions

(Mac_248 and Mac_266) from population site 57 (Gympie region)

in Clade I. Clade IV contained 24 accessions that were collected

from the region south of Brisbane except for Mac_251, Mac_089,

Mac_139, and Mac_189 (corresponding to population sites 3, 90,

90, and 90, respectively). This observation verified that the

accessions having the same geographical origin tend to form

distinct clusters among themselves. However, it is noteworthy

that certain accessions from these localities exhibit a tendency to

associate or cluster with accessions sourced from different

geographical areas. The result of this study also revealed that

Mac_251, Mac_089, Mac_139, and Mac_189 (corresponding to

population sites 3, 90, 90, and 90, respectively) are likely to be

planted trees. Mac_312, Mac_246 and Mac_306, Mac_228 are

biological replicates and confirmed by clustering together.

Additionally, the short branch length of the tree suggested that

Mac_232 had less divergence while Mac_026, Mac_044, Mac_080,

and Mac_143 from Clade III were more diverged accessions.

To study the phylogenetic relationship of M. tetraphylla,

phylogenetic trees were constructed using 49 complete chloroplast

genome sequences. The multiple chloroplast genome alignment of

M. tetraphylla accessions together with the outgroup L. whelanii

was 161,554 bp in length with 96% identical sites. ML and BI trees

exhibited similar phylogenetic topologies (Figure 3A). The resulting

phylogenetic tree showed strong statistical support for most internal

and external nodes but barring poor BS value for some internal
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FIGURE 2

(A) Chloroplast phylogeny of M. integrifolia using the ML and BI method. (B) Phylogeographic analysis of M. integrifolia. Numbers above the lines
represent ML bootstrap support/Bayesian posterior probabilities. Numbers indicate corresponding population site (Supplementary Table 3). Light
blue: Clade I, Red: Clade II, Purple: Clade III and Green: Clade IV. Coloured dots on the map indicate the corresponding clade in chloroplast
phylogenetic tree. Two red circles highlight population site number which contained accessions from different clades.
FIGURE 1

The circular chloroplast genome map of four Macadamia species and Lasjia whelanii. Genes inside the circle are transcribed in the clockwise
direction whereas the genes outside the circle are transcribed in the counterclockwise direction. Genes belonging to different functional groups are
colour coded. Gray area in the inner circle indicates the GC content of the chloroplast genome. The four regions of a chloroplast genome are also
indicated in the inner circle: the two inverted repeat regions (IRA and IRB) are separated by small (SSC) and large (LSC) single copy regions.
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nodes. However, in the Bayesian chloroplast tree, the highest PP

value of 1 was observed for all the nodes. The chloroplast tree

displayed two major clades. The first major clade (Clade I) consisted

of germplasm collected from the southern part: the Lismore region

(Mac_060, Mac_108, Mac_134, Mac_268, Mac_244, Mac_031,

Mac_297, Mac_184, Mac_083, and Mac_095) and the Ballina

region (Mac_247, Mac_325, MacP_14, and Mac_115) except for

MacP_15 (corresponding to population site 31) and Mac_097

(corresponding to population site 38) (Figure 3B). The second

major clade was further divided into sub-clades. Clade II

contained accessions from the Murwillumbah region: Mac_341,

Mac_314, Mac_227, Mac_270, Mac_098, Mac_064, Mac_291, and

Mac_259 (corresponding to population sites 37, 37, 81, 160, 160,

160, 160, and 160, respectively) and the Beenleigh region: Mac_236

(corresponding to population site 100). Two accessions from Clade

III from population site 37 clustered separately from the rest of the

accessions from the same geographical location. However, as in the

M. integrifolia chloroplast phylogenetic tree, the majority of M.

tetraphylla tended to form distinct clusters among themselves based

on geographical areas. Results also indicated that Mac_031,

Mac_244, and Mac_268 from population site 96 (Clade I) and

Mac_264 and Mac_238 from population site 84 (Clade VI) were

highly diverged accessions.

The phylogenetic relationships within M. ternifolia accessions

were inferred by 22 assembled complete chloroplast genomes. A

multiple chloroplast alignment conducted using an outgroup was

160,807 bp with 97.2% identical sites. Phylogenetic trees built with

the whole chloroplast genome using both methods had the same

topology (Figure 4A). The results showed two major clades having

MacP_11, Mac_309, and MacP_12 from Nambour (corresponding
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to population site 88) (Figure 4B) in one major clade and the

remaining accessions in the second major clade. There was a clear

relationship between the phylogenetic structure and geographic

origin of the wild accessions of M. ternifolia. The resulting

topology suggested accessions from Clade IV: Mac_299,

Mac_071, Mac_317, Mac_332, and Mac_334 (corresponding to

population sites 20, 51, 51, 51, and 51, respectively) were highly

diverged accessions. In theM. jansenii population, no variants were

observed, indicating that all accessions shared the same chloroplast

haplotypes except for MacP_16 with a 2-bp difference.

The chloroplast phylogeny tree generated by taking 138 complete

chloroplast genomes was supported with a PP of 1.0. Two major

clades were identified (Figure 5). The first major clade contained 16

M. tetraphylla accessions from the Lismore region (Mac_060,

Mac_108, Mac_134, Mac_268, Mac_244, Mac_031, Mac_297,

Mac_184, Mac_083, and Mac_095), the Ballina region (Mac_247,

Mac_325, MacP_14, andMac_115), the Beenleigh region (MacP_15),

and the Murwillumbah region (Mac_097). Interestingly, all these

accessions corresponded to Clade I in M. tetraphylla chloroplast

phylogenetic tree (Figure 3A). The second major clade was further

differentiated into two sub-clades. All theM. jansenii accessions were

clustered in one clade. The second sub-clade was further divided into

two clades. The small sub-clade contained 10 accessions from the

northern distribution ofM. integrifolia (corresponding to Clade II in

the M. integrifolia Cp phylogenetic tree) and 1 accession from the

Nambour region (corresponding to Clade I in the M. integrifolia Cp

phylogenetic tree). The larger sub-clade contained all the remaining

M. tetraphylla, M. integrifolia, and M. ternifolia. This result shows

that accessions that were collected from same locality cluster together.

We assumed that chloroplast capture could be the reason for the
FIGURE 3

(A) Chloroplast phylogeny of M. tetraphylla using the ML and BI method. (B) Phylogeographic analysis of M. tetraphylla. Numbers above the lines
represent ML bootstrap support/Bayesian posterior probabilities. Numbers indicate corresponding population site (Supplementary Table 3). Red: Clade I,
Green: Clade II, Brown: Clade IIII, Orange: Clade IV, Light blue: Clade V and Purple: Clade VI. Coloured dots on the map indicate the corresponding
clade in chloroplast phylogenetic tree. Four red circles highlight population site number which contained accessions from different clades.
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presence of different species in the same clade when a species coexists

in the same geographic area with other species.
3.3 Nuclear gene phylogenetic analysis

3.3.1 Concatenation based phylogeny
For M. integrifolia, we used a total of 44 accessions. The

multiple sequence alignment was 81,747 bp in length with 91%

identical sites. The topology of the nuclear gene phylogenetic tree

constructed based on both ML and BI methods was nearly identical

(Supplementary Figures 1, 2). However, the resulting phylogenetic

trees exhibited low bootstrap values (<70) and Bayesian posterior

probabilities (<0.95). Moreover, this result was not congruent with

the results of the chloroplast phylogenetic tree.
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The nucleotide alignment of 49 M. tetraphylla accessions along

with the outgroup, was 81,753 bp in length. The phylogeny obtained

with the ML approach was nearly identical to the BI approach

(Supplementary Figures 3, 4). Similar to M. integrifolia branching,

the support rate is low. The tree topology of nuclear gene phylogeny

and chloroplast phylogeny are dissimilar. Next, we constructed

nuclear phylogenetic trees for M. ternifolia (Supplementary

Figures 5, 6) and M. jansenii (Supplementary Figures 7, 8)

populations with the ML and BI methods. However, the resulting

topologies had poor statistical support for internal and

external nodes.

An ML tree was also constructed for 138 macadamia genotypes

based on the concatenated single-copy nuclear gene CDS. The ML

tree demonstrated the presence of four distinct species in the genus

Macadamia. This well-supported tree classified the population into
FIGURE 5

Chloroplast phylogeographic results of Macadamia species. (A) Chloroplast phylogenetic tree of Macadamia using BI method. Light blue: M. tetraphylla,
Purple: M. jansenii, Red: M. integrifolia and Green: M. ternifolia. Numbers above the lines represent Bayesian posterior probabilities. (B) Map of Australia
showing origins of Macadamia accessions. Numbers indicate corresponding population site (Supplementary Table 3). Coloured dots on the map indicate
the corresponding species. Three red circles highlight population site number which contained accessions from different species.
FIGURE 4

(A) Chloroplast phylogeny of M. ternifolia using the ML and BI method. (B) Phylogeographic analysis of M. ternifolia. Numbers above the lines represent ML
bootstrap support/Bayesian posterior probabilities. Numbers indicate corresponding population site (Supplementary Table 3). Purple: Clade I, Green: Clade II,
Red: Clade IIII, Light blue: Clade IV and Orange: Clade V. Coloured dots on the map indicate the corresponding clade in chloroplast phylogenetic tree.
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two main clades (Figure 6). The main Clade I consisted of M.

ternifolia and M. jansenii while Clade II consisted of all M.

integrifolia and M. tetraphylla. This outcome underscored the

close relationship between M. ternifolia and M. jansenii and also

that between M. integrifolia and M. tetraphylla.

3.3.2 Single Nucleotide Polymorphisms (SNPs)
based phylogeny

SNPs based phylogenetic tree for individual genes generated by

talking 138 samples was supported with low bootstrap values (<70)

(Supplementary Figure 9). However, the ASTRAL tree exhibited

high local posterior probability support (LPP) values for external

nodes (/1) (Supplementary Figure 10). This well-supported tree

demonstratedM. integrifolia andM. tetraphylla in one clade andM.

ternifolia and M. jansenii in another.
4 Discussion

Phylogenetics helps to unravel evolutionary histories and

provides valuable insights into the factors driving the growth and

adaptation of important plant groups worldwide (Lan et al., 2022).

The current study, using whole-genome sequencing, has resolved
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the phylogeny of the fourMacadamia species and confirmed that all

the wild accessions belonged to four distinct species. Chloroplast

genome sequences have been extensively used in Phylogenetic

analysis (Sun et al. , 2020). Chloroplasts are the most

metabolically active organelle found in plants that carry out most

of the biochemical synthesis process, which required the cell to

produce energy through photosynthesis (Dobrogojski et al., 2020).

The chloroplast DNA sequence has unique features compared to

the nuclear genome in the analysis of population genetics and

evolutionary relationships within families, genus, and species (De

Las Rivas et al., 2002; Ahmad Termizi et al., 2016). The chloroplast

genome is present in high copy numbers, has a low rate of

spontaneous mutation, and does not undergo crossovers or

recombination. Chloroplast genome sequence data are highly

conserved (Dobrogojski et al., 2020). Earlier research relies on the

separation of chloroplast genome from the nuclear genome and

mitochondrial genome (Jansen et al., 2005). With the emergence of

NGS technology, new high-throughput approaches have been

introduced for the successful isolation of chloroplast sequencing

with low cost (Ahmad Termizi et al., 2016). The read length,

sequencing depth, sequence coverage or width, and evenness of

coverage influence the accuracy of DNA sequencing using NGS

technology. Short-read sequencing has been successfully applied to
FIGURE 6

Nuclear phylogenetic results of Macadamia species. Light blue: M. tetraphylla, Purple: M. jansenii, Red: M. integrifolia and Green: M. ternifolia.
Numbers above the lines represent ML bootstrap support. Phylogenetic tree constructed from coding sequences of 53 single copy genes using
1000 bootstrap replicates. Accessions were colour coded according to the species.
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sequence chloroplast genomes of various plant species (Kyriakidou

et al., 2018). Although there were numerous records of the extensive

use of chloroplast genomes in evolutionary relationships in plants,

very few studies were presented on the whole chloroplast genome

data in macadamia. In this study, the size of all chloroplast genomes

was consistent with previous macadamia chloroplast genomes

(Nock et al., 2014; Liu et al., 2017, Liu et al., 2018). Genome

annotation resulted in a higher number of genes compared to

previous studies (Nock et al., 2014; Liu et al., 2017, Liu et al.,

2018), which reported 79 CDS, 4 rRNA, and 30 tRNA for M.

integrifolia (Nock et al., 2014), M. ternifolia (Liu et al., 2017), and

M. tetraphylla (Liu et al., 2018). The difference in the gene number

was possibly due to the difference in the annotation tool. All the

previous genomes were annotated using Dual Organelle GenoMe

Annotator (DOGMA) (Wyman et al., 2004), while the current

genomes were annotated using the GeSeq online tool (https://

chlorobox.mpimp-golm.mpg.de/geseq.html). Moreover, there is

no previously reported chloroplast genome for M. jansenii. For

the first time, we have generated chloroplast genomes for 23 M.

jansenii accessions using the Get Organelle toolkit (Jin et al., 2020).

This study provides the most comprehensive analysis of the

evolutionary relationships of the chloroplasts within the species in

the genusMacadamia. The topology of the chloroplast phylogenetic

tree with the distinct northern population and southern population

of M. integrifolia is in agreement with the previously published

phylogenetic results (Nock et al., 2019; Lin et al., 2022). Nock et al.

(2019) also reported two distinct populations, namely, the Gundiah/

Mount Bauple and the Gympie populations in the northern clade. A

similar result was also reported by Lin et al. (2022) based on

chloroplast and nuclear phylogenetic analysis. However, our

results do not clearly separate accessions between the Gundiah/

Mount Bauple region: Mac_231, Mac_262, Mac_029, Mac_265, and

Mac_033 (corresponding to population sites 1, 2, 2, 3, and 3,

respectively) (Figure 2B) and the Gympie region: Mac_052,

Mac_091, Mac_340, Mac_248, and Mac_266 (corresponding to

population sites 9, 55, 56, 57, and 57, respectively). In this study,

the ML/BI phylogenetic tree showed that Mac_232 from Clade I

(Figure 2B) was clustered separately from three other accessions in

Cluster III (Mac_089, Mac_139, and Mac_189) originating from

population site 90, suggesting that it is a planted tree. This finding

was also supported by previous SSR results, which indicated that the

Dulong tree is a planted tree that originated from the Brisbane

region (Nock, 2022). The results also show that Mac_059 from

population site 57 is a planted tree, which was not reported

previously. Moreover, all the trees from the Sunshine Coast—

Mac_089, Mac_139, and Mac_189 (Figure 2A, Clade IV)—are

likely to be planted trees, which is consistent with previous

studies (Nock et al., 2019; Nock, 2022). The results revealed that

Mac_026, Mac_044, Mac_080, and Mac_143 are highly diverged

accessions, in contrast to the previous study (Mai et al., 2020), in

which Mac_229, Mac_266, Mac_139, and Mac_235 were

recognized as diverged accessions. The phylogeographic results of

the present study were in agreement with those of the previous

study by Mai et al. (2020). Chloroplast phylogenetic analysis of M.

tetraphylla revealed that MacP_15 (corresponding to population

site 31), Mac_097 (corresponding to population site 38), and
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Mac_236 (corresponding to population site 100) (Figures 3A, B)

might have been moved by humans as they were clustered with

accessions from a different locality. It is noteworthy that we

identified MacP_15 and Mac_236 to be outside the range of the

natural population. M. tetraphylla is mostly distributed in the New

SouthWales region (Topp et al., 2019). There is no record of natural

occurrence in the Beenleigh, QLD region. Previous studies reported

a weak genetic differentiation (O'Connor et al., 2015; Mai et al.,

2020; Nock, 2022) for M. tetraphylla populations. However, the

present study revealed a positive correlation between genetics and

geographical distribution.

For the first time, we report the phylogeographic pattern of

distribution of genetic variation for the M. ternifolia population.

However, further investigation is needed with an increased number

of samples. Results for the M. jansenii accessions identified the

presence of one chloroplast haplotype as expected due to the small,

isolated population. This suggested that M. jansenii has gone

through a genetic bottleneck. M. jansenii is found only in the

Bulburin National Park north of Bundaberg, which is 180 km away

from any M. integrifolia population (Topp et al., 2019; Mai et al.,

2020). Therefore, the possibility of gene flow between the two

populations is limited except for the movement of nuts with the

involvement of humans. A decrease in the movement of genes is

expected to increase the occurrence of inbreeding among

individuals in the population (Hatmaker et al., 2018). Inbreeding,

in turn, can have effects on the genetic health of the population,

potentially leading to an accumulation of harmful traits and a

decrease in overall fitness (Hatmaker et al., 2018).

In contrast to the previously recorded phylogenies (Peace, 2005;

Mast et al., 2008; Mai et al., 2020; Nock, 2022), we found that

accessions that were collected from the same geographical location

were closely related. The distinct separation of Macadamia

populations within species reported in previous phylogenies (Peace,

2005; Mast et al., 2008; Mai et al., 2020; Nock, 2022) were based on

chloroplast genome analysis. This study shows that reticulate

evolution has resulted in chloroplast transfer between species and

resulted in distinct chloroplast types within individual species but

does not affect the distinctness of the nuclear genomes. Although

chloroplast capture was not previously reported in Macadamia, many

other plants have reported the occurrence of reticulate evolution of

the chloroplast (Acosta and Premoli, 2010; Wambugu et al., 2015; Yi

et al., 2015; Moner et al., 2020; Ananda et al., 2021). In this study,

chloroplast phylogeny separated 16 M. tetraphylla accessions from

the rest of the accessions. The second major clade was further divided

into two clades having allM. jansenii in one clade and the rest of the

accessions in the other. Furthermore, a sub-clade further separated 11

M. integrifolia and 24 M. tetraphylla accessions, leaving a complex

clade having M. integrifolia, M. ternifolia, and M. tetraphylla. This

suggested a series of chloroplast capture events between M.

integrifolia, M. ternifolia, and M. tetraphylla.

Phylogenetic trees built with the single-copy nuclear gene CDS

for Macadamia species strongly supported four distinct species in

the genus Macadamia as reported in previous studies (Peace, 2005;

Nock, 2022). Individual nuclear phylogenetic trees for the four

species showed little structure, suggesting widespread gene flow

within each species and little geographic structure in the nuclear
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genome. The SNPs based phylogeny also showed four distinct

species in the genus Macadamia.

The availability of large sequence data has significantly

advanced our understanding of the distribution and diversity of

Macadamia species, which is essential for both conservation and

breeding programs. This advanced knowledge aids in the

conservation of these species, now found in fragmented rainforest

habitats, by highlighting the importance of in situ conservation

strategies that focus on capturing a wide range of genetic diversity

within sites. Such conservation efforts are crucial not only for

safeguarding the species against extinction but also in enhancing

their commercial value and sustainability for the future generations.
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