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RNA-seq analysis reveals
transcriptome reprogramming
and alternative splicing
during early response to
salt stress in tomato root
Jianghuang Gan1,2†, Yongqi Qiu1,2†, Yilin Tao1,2, Laining Zhang1,2,
Thomas W. Okita3, Yanyan Yan1,2* and Li Tian1,2*
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Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou,
Zhejiang, China, 2Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable,
Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University,
Hangzhou, Zhejiang, China, 3Institute of Biological Chemistry, Washington State University, Pullman,
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Salt stress is one of the dominant abiotic stress conditions that cause severe

damage to plant growth and, in turn, limiting crop productivity. It is therefore

crucial to understand the molecular mechanism underlying plant root responses

to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops.

Alternative splicing (AS) of precursor RNA is one of the important RNA processing

steps that regulate gene expression and proteome diversity, and, consequently,

many physiological and biochemical processes in plants, including responses to

abiotic stresses like salt stress. In the current study, we utilized high-throughput

RNA-sequencing to analyze the changes in the transcriptome and characterize

AS landscape during the early response of tomato root to salt stress. Under salt

stress conditions, 10,588 genes were found to be differentially expressed,

including those involved in hormone signaling transduction, amino acid

metabolism, and cell cycle regulation. More than 700 transcription factors

(TFs), including members of the MYB, bHLH, and WRKY families, potentially

regulated tomato root response to salt stress. AS events were found to be greatly

enhanced under salt stress, where exon skipping was the most prevalent event.

There were 3709 genes identified as differentially alternatively spliced (DAS), the

most prominent of which were serine/threonine protein kinase,

pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase.

More than 100 DEGs were implicated in splicing and spliceosome assembly,

which may regulate salt-responsive AS events in tomato roots. This study

uncovers the stimulation of AS during tomato root response to salt stress and

provides a valuable resource of salt-responsive genes for future studies to

improve tomato salt tolerance.
KEYWORDS
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Introduction

Soil salinization has become an increasingly serious global

problem. It is estimated that more than 833 million hectares

(8.7% of the Earth’s surface) are salinized worldwide with an

annual increase of 10% (FAO, 2021). Soil salinization is projected

to extend to more than 50% of the arable land by 2050 (Jamil et al.,

2011). There are various reasons for soil salinization, including low

rainfall, weathering of indigenous rocks, and inappropriate

irrigation and fertilization during the cultivation process

(Shrivastava and Kumar, 2015). Saline soils are known to

suppress plant growth and development, which in turn severely

affects crop yields in agricultural production (Yuan et al., 2016; van

Zelm et al., 2020). Tomato (Solanum lycopersicum L.) is one of the

most grown and valuable vegetable crops in the world, ranking the

first among vegetable crops with an annual production of 186

million tons globally (FAO, 2022). Although tomato is thought to

be moderately tolerant to salt stress, tomato yield and quality are

severely affected by high salinity (Bonarota et al., 2022). The

development of salt-tolerant tomato crops is therefore an

important goal of plant breeding.

Salt stress can damage plant growth and development in many

ways. High salt concentration in the soil modifies the structure of

soil porosity and, in turn, hydraulic conductivity. This results in low

water potential and nutrient availability, causing osmotic stress and

eventually leading to metabolic toxicity and physiological disorders

that affect plant growth and development (Tester and Davenport,

2003; Hasanuzzaman and Fujita, 2022; 2023). The rapid

accumulation of reactive oxygen species (ROS) frequently occurs

during salt stress, which induces oxidative stress, causes damage to

cellular macromolecules like proteins and DNA, and destabilizes

membranes and organelles (Kesawat et al., 2023). Furthermore, salt

stress also decreases stomatal conductance and inhibits

photosynthesis (Lawlor and Cornic, 2002; Chaves et al., 2009;

Sayyad-Amin et al., 2016; Kesawat et al., 2023). All these negative

effects impair most plant growth phases, from seed germination,

vegetative growth, flowering and fruiting and eventually

overall yield.

Along with the development of multi-omics technology,

extensive studies have applied transcriptomics, proteomics,

metabolomics or the combined analysis with biochemical and

physiological characteristics to investigate the molecular

mechanism underlying plant salt tolerance. Based on current

understanding, plants adapt various mechanisms, including

activation of osmotic adjustment, regulation of ion transport and

homeostasis, clearance of reactive oxygen species, regulation of

plant hormone signaling, modulation of cytoskeletal dynamics and

the cell wall composition, to negate the adverse effects and survive at

salinity condition (Wang et al., 2011; Hasanuzzaman and Fujita,

2022; Balasubramaniam et al., 2023). More importantly, regulation

of gene expression is the integral part that activates and coordinates

all these regulatory pathways.

Gene expression is regulated at transcriptional level mainly

exerted by transcription factors and post-transcriptional events

involving RNA processing, maturation, transport and turn-over

(Zhao et al., 2017; Zhang et al., 2019). Alternative splicing (AS) is
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the main step during RNA processing to regulate gene expression

and proteome diversity. As AS can generate multiple transcripts

from a single RNA precursor via exon skipping, intron retention,

and selection of alternative donor site or acceptor site as well as

other intricate forms of splicing (Keren et al., 2010), AS eventually

cause differential expression of the corresponding gene and

modulate gene function via altering a protein domain or affecting

the stability of the spliced transcript and the corresponding protein.

Previous studies have demonstrated that high salinity stress can

promote the occurrence of alternative splicing of stress-responsive

genes and affect the expression of the genes coding spliceosome

components in Arabidopsis (Ding et al., 2014b; Feng et al., 2015; Gu

et al., 2018), rice (Yu et al., 2021; Jian et al., 2022), wheat (Liu et al.,

2018), Barley (Fu et al., 2019), Date Palm (Xu et al., 2021), grapevine

(Jin et al., 2021), cotton (Zhu et al., 2018), Opisthopappus (Han

et al., 2024), etc. However, the alternative splicing events in tomato

root under salt stress remains to be resolved.

In this study, we investigated the transcriptomic response of

tomato root to salt stress, focusing on the global dynamics of

transcriptome reprogramming and AS changes during the initial

12 hours under salt exposure. We found a large number of early

response differentially expressed (DE) genes induced by salt stress

while simultaneously elevating AS events of both DE and non-DE

genes. Our findings provide a comprehensive understanding of

tomato root response to salt stress and highlights the vital role of AS

in tomato’s adaptation to salt stress.
Results

Overview of morphological performance
of tomato seedlings and RNA-seq data of
tomato roots in response to salt stress

To study the rapid response of tomato roots to salt stress, five-

leaf-stage tomato seedlings were treated with 150 mM NaCl for 12

hours. At 1 hour post treatment (hpt), tomato leaves became

dehydrated and wilted, exhibiting leaf curling and petiole

softening. The dehydration of plants was more severe at 3 hpt but

started to slightly recover at 6 hpt (Figure 1A). At 12 hpt, tomato

plants apparently recovered from salt stress as plants showed

upright growth without dehydration. The recovery beyond 6

hours suggests that tomato regulates changes in osmotic stress

and restores ion homeostasis in a short amount of time after

exposure to salt stress. In order to examine the underlying

molecular mechanism of tomato’s early responses to salt stress,

tomato roots were sampled at 0, 1, 3, 6 and 12 hpt (S0, S1, S3, S6,

S12) and subjected to next generation RNA-sequencing. Three

biological repeats per time point were performed and a total of 15

cDNA libraries were generated for sequencing. Approximately 6.9

billion raw reads were obtained and eventually around 6.6 billion

high-quality reads (Supplementary Tables S1, S2) were mapped

against the tomato genome to determine transcriptomic changes

during early salt stress. Principal component analysis (PCA)

(Figure 1B; Supplementary Table S3) and correlation analysis on

RNA levels (Figure 1C; Supplementary Table S4) revealed excellent
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repeatability and reproducibility of the results. PCA showed an

obvious separation of control group (S0) from salt treated groups,

especially from the S3 and S6 samples (Figure 1B; Supplementary

Table S3), suggesting that salt treatment significantly disturbed the

transcriptome of tomato root.
Transcriptional changes induced by salt
stress in tomato root

Differential expression genes (DEGs) were firstly analyzed

based on the value of FPKM (Fragments Per Kilobase of

transcript per Million mapped reads). A gene was considered to

be expressed if all three repeats showed FPKM > 0. DEGs were

selected by a threshold of log2 fold change ≥ 1 and adjusted p value

< 0.05 when compared to S0 group. Based on these criteria, total

10,588 DEGs out of 22,047 expressed genes were identified from the

salt treated samples (Supplementary Table S5), indicating that
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nearly half of the expressed genes were impacted by salt stress. A

heatmap analysis on the expression of all the DEGs revealed various

expression patterns among the salt-impacted genes (Figure 2A).

Based on their expression patterns, DEGs were classified into 10

clusters by hierarchical clustering analysis based on their expression

pattern (Figure 2B; Supplementary Tables S6, S7). Among these

clusters, the expression patterns in clusters 6 to 10 were significantly

pronounced. The DEGs in cluster 6 were highly enriched in Gene

Ontology (GO) terms of cellular anatomical entity, cytoplasm, cell

periphery and mitotic cell cycles. These DEGs showed a decreased

expression at the first 3 hours post salt treatment, suggesting that

the process of cell differentiation was inhibited when tomato roots

were exposed to salt stress. The DEGs in clusters 7 and 8 showed

significantly increased expression in S1-S3 (Cluster 7) and S3-S6

(Cluster 8) samples, respectively. The DEGs in these clusters were

highly enriched in membrane elements and the processes of

stimulus response, reflecting a reconfiguration of the membrane

under salt stress. Protein modification and ubiquitination were
B

C

A

FIGURE 1

Phenotypic and transcriptome changes of tomato in response to salt stress. (A) Images of tomato plants at different treatment times (0, 1, 3, 6,12
hours) post treatment (hpt) in the presence of 150mM NaCl. (B) Principal component analysis (PCA) of RNA-seq data. Gene expression changes were
investigated at 0h (S0), 1h (S1), 3h (S3), 6h (S6) and 12 hpt (S12) of salt stress treatment. The PCA was performed using normalized RNA-Seq data of
all mapped genes. (C) Pearson’s correlation analysis of RNA-seq data between each sample.
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significantly enriched in cluster 7, revealing that protein turnover

and metabolism was highly active during the first 3 hours of salt

stress. The most pronounced expression patterns were observed in

clusters 9 and 10 where DEGs showed linear enhancement (cluster

9) and depression (cluster 10) patterns along the treatment,

respectively. The most highly enriched GO term in cluster 9 was

catalytic activity, suggesting a continuous activation of enzymes

during response to salt stress. Besides, GO terms of response to ROS

and oxidative stress were also exclusively detected in cluster 9.

Except in cluster 6, GO terms of mitotic cell cycle and cell periphery

were also enriched in cluster 10. Multiple cell cycle related

processes, such as cell cycle checkpoint signaling, DNA

replication and phase transition, were enriched in cluster 6 and

10, further revealing a repression on cell differentiation during

salt response.

Amino acid metabolic processes were significantly enriched in

clusters 8 and 10. Cluster 8 contains genes involved in metabolism

of aromatic amino acids, branched-chain amino acids, sulfur amino

acids and alpha amino acids. While serine family amino acids

catabolic process was pronounced in cluster 8, their biosynthetic

process was only enriched in cluster 10. On the other hand, amino

acid transmembrane transport was only significantly enriched in

cluster 9. KEGG analysis (Supplementary Figure S1) further reveals

that the metabolic pathways of many amino acids, including valine,

leucine, isoleucine, serine, glycine, threonine, aspartate, glutamate,

arginine, methionine, phenylalanine, tyrosine and tryptophan, were

greatly influenced.
Frontiers in Plant Science 04
Biological processes of response to hormone were observed in

highly enriched terms in clusters 6, 8 and 10, but not in cluster 9,

suggesting that the process was highly dynamic but not

continuously activated. Response to abscisic acid (ABA) and

auxin were detected in both clusters 8 and 10. While response to

cytokinin was enriched in cluster 10, responses to gibberellin and

ethylene were enriched in cluster 8. KEGG analysis on plant

hormone signaling pathways revealed that most of key steps in

hormone signal transduction were significantly influenced in

tomato root by salt stress (Supplementary Figure S2).

The genes involved in cytokinin, ABA and auxin signaling

transduction showed various expression patterns as viewed by

heatmap clustering (Figure 3; Supplementary Table S9), which

reveals various expression pattern of these key factors. For

example, while most of PYR/PYL genes was down-regulated by

salt treatment, significant induction of PP2C was greatly observed at

3 hours after salt treatment (Figure 3B).

The numbers of DEGs (Supplementary Table S8) in the samples

collected at each time point are shown in Figure 4A. The largest

number of DEGs, 7,260 in total including 3,938 up-regulated and

3,322 down-regulated genes, was observed at 3 hours after salt

treatment. Venn diagram data (Figures 4B–D) revealed 2,279

common DEGs (1,012 up-regulated and 1,099 down-regulated

genes) among all pairwise comparisons (Supplementary Table

S10). GO analyses were conducted to analyze the functions of all

DEGs (Figure 5; Supplementary Table S11). Among the four

comparison groups, several functional categories, including
BA

FIGURE 2

Hierarchical clustering and heatmap analyses of tomato DEGs. (A) Heatmap analysis shows dynamic expression pattern of DEGs during the early 12-
hour response to salt stress in tomato root. (B) Hierarchical clustering analysis segregates DEGs into 10 clusters based on gene expression pattern. Y
axis represents relative gene expression level based on normalized expression value. The p value of each cluster is shown inside the chart area, and
the profound clusters are filled with colors. Top GO terms enriched in each profound cluster are shown on the right. GO terms of biological
processes, molecular function and cellular component are shown in green, orange and blue bars. Detailed information of the clustered genes and
list of all significant GO terms are provided in Supplementary Tables S6 and S7, respectively.
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catalytic activity, cellular anatomical entity, cell periphery,

membrane, response to hormone and response to stimulus, were

strongly over-represented in all groups. It is worth noting that the

DEGs from all salt treated samples were also highly enriched in the

categories of RNA binding, RNA processing and RNA metabolic

process (Supplementary Table S11), suggesting salt stress induces

comprehensive changes in RNA metabolism. The common 2,279

DEGs contained genes are related to catalytic activity and responses

to hormones and various stimuli (Supplementary Figure S3;

Supplementary Table S12). Consistent with the previous

clustering result, catalytic activity and cell cycle process were

over-represented in the up-regulated and down-regulated

common DEGs, respectively.
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The expression of 738 transcription factors (TFs) belonging to 26

families were identified to be regulated by salt treatment

(Supplementary Table S13). Among those TFs, 87 TFs were

identified from the MYB family, 85 from the AP2/ethylene

response factor (ERF) family, 80 from the zins finger (ZF) family,

75 from the bHLH family (Figure 6; Supplementary Table S13).

Other TFs belonged to the superfamilies of homeobox (44), NAC

(39), WRKY (31), MADS (28), bZIP (23), Dof (22) superfamilies

were also noted. The distribution of these differentially expressed TFs

along salt treatment is shown in Figure 6. A large proportion of TFs

from MYB, heat stress transcription factor (HSF), AP2/ERF, MADS,

Dof, homeobox, NAC, B3, WRKY and nuclear factor Y (NF-Y)

families were up-regulated during the whole treatment. For example,
B

C

D

A

FIGURE 3

Expression of the annotated DEGs involved in plant hormone signal transduction KEGG pathway. (A) Overview of DEGs that code key factors
functioning in cytokinin, ABA and auxin signal transduction. Red boxes represent genes that were regulated by salt stress, while red boxes filled in
yellow represent the common genes found in the 1, 3, 6,12-hour samples treated under salt stress. (B–D) Heatmap analysis on the representative
DEGs involved in cytokinin, ABA and auxin signaling transduction. The gene ID and potential family name are labeled on the right next to heatmap.
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25 out of 31 WRKY TFs showed increased expression under salt

stress (Supplementary Table S13). On the other hand, most of TFs

from AT-hook, TCP, and GATA showed down-regulation. Members

of ZF and bHLH TFs exhibited diverse expression patterns during

salt treatment (Figure 6; Supplementary Table S13). Some of them

were activated by salt stress while others were significantly down-

regulated. We also noticed that TFs from MADS, homeobox and

NAC families were highly induced at 3 hours after treatment.
Analysis of alternative splicing events
induced by salt stress

Alternative splicing events were analyzed using the rMATS

software based on transcript data. Five major types of AS patterns

(Figure 7A), including alternative 5’ splice site (A5SS), alternative 3’

splice site (A3SS), mutually exclusive exon (MXE), retained intron (RI)

and skipped exon (SE) were determined. A total of 11,217 A5SS, 29,363

A3SS, 4,052 MXE, 7,902 RI and 85,812 SE events were identified from

all tested samples (Supplementary Table S14). The total numbers of AS

events based on three repeats for each salt treated group (9,365 events

for S1, 9,488 events for S3, 10,447 events for S6 and 8,743 events for S12

groups) were higher than that observed in S0 group (8,072) (Figure 7B;

Supplementary Table S14), suggesting that salt stress promoted

significant AS changes in the tomato root. SE event was the most

common AS events, counting for 57% in S0, 62.9% in S1, 64.6% in S3,

64.9% in S6 and 59.5% in S12 group (Supplementary Table S14). A3SS
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was the second most abundant AS pattern (20.6–24.5%), followed by

A5SS (7.3–9.5%), RI (5.2–6.5%) and MXE (2.5–3.2%) (Supplementary

Table S14). Although the ratio of each AS type to the total AS events

varied in individual group, the ratio of SE event was higher in salt

treated samples than that in S0 sample.

A gene was considered to incur a differentially alternative spliced

(DAS) event when at least one of the AS transcripts was significantly

expressed at a log2 fold change≥1 with adjusted p value < 0.05. When

compared to the S0 group, a total of 2,169 DAS events in S1, 3,479 in

S3, 3,092 in S6 and 2,669 in S12 were identified (Figure 8A;

Supplementary Tables S15, S16). As some genes were alternatively

spliced by more than one patterns, DAS events eventually generated a

total of 3,709 DAS genes induced by salt stress, including 1164 DAS

genes in S1, 1855 in S3, 1658 in S6 and 1429 in S12 groups

(Supplementary Tables S15, S17). Although the highest counts of

total raw AS events was observed in S6 group (Figure 7B), S3 group

possessed the highest number of DAS events and genes, suggesting

that more extensive changes occurred at 3 hours after salt treatment.

While less than 10% DAS events were found to be differentially

alternative spliced by RI pattern (Supplementary Table S15), SE was

the most abundant DAS event that occurred under salt stress

(Figure 8A; Supplementary Table S15).

GO enrichment analysis was performed on the DAS genes

(Figure 8B; Supplementary Table S18). The top GO terms were

mostly related to cellular anatomical entity, catalytic activity,

membrane-bound organelle, nitrogen compound metabolic

process and macromolecule metabolic process.
B

C D

A

FIGURE 4

Number of DEGs during tomato root responses to salt stress. (A) Number of DEGs induced by salt treatment at different time point. Blue, orange and
yellow bars represent the number of total DEGs, up-regulated DEGs, and down-regulated DEGs. (B–D) Venn diagram analysis to show the overlap
or time-specific DEGs among different salt-treated groups. (B) all DEGs; (C) up-regulated DEGs; and (D) down-regulated DEGs.
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Venn diagram revealed that 368 DAS genes commonly

alternatively spliced during the 12-hour salt treatment process

(Supplementary Figure S4A; Supplementary Table S19). The top

20 GO terms enriched in the 368 common DAS genes were largely

related to mitotic cycle, cytoskeleton and protein kinase

(Supplementary Figure S4B; Supplementary Table S20).
The combined analysis on DEGs and DAS
genes in response to salt stress

Comparison between DEG and DAS gene datasets revealed that

2,002 genes were differentially expressed due to the changes of AS events,

while 1707 genes exhibited DAS-only events (Figure 8C; Supplementary

Figure S5A; Supplementary Table S17). When expanded at each time

point, the number of the overlapped genes between DEG and DAS

events were 512 in S1 vs S0, 803 in S3 vs S0, 895 in S6 vs S0 and 689 in

S12 vs S0 pairwise groups (Supplementary Figures S5B–E).

Compared to the GO analysis on the all 3,079 DAS genes

(Figure 8B), the 1,707 DAS-only genes exhibited similar pathway

enrichment on cellular anatomical entity, catalytic activity,
Frontiers in Plant Science 07
membrane-bound organelle, nitrogen compound metabolic

process and macromolecule metabolic process (Supplementary

Figure S6A; Supplementary Table S18). When focusing on the

2,002 common genes between DEGs and DAS genes, however,

mitotic cycle relevant pathways, such as spindle assembly,

chromatid segregation and nuclear division, were found to be

enriched (Supplementary Figure S6B; Supplementary Table S18).

Further investigation on the DAS genes revealed 117 genes coding

serine/threonine-protein kinase (Figure 8D; Supplementary Table S17).

Other profound gene families were pentatricopeptide repeat (PPR)-

containing protein (96 genes) and E3 ubiquitin ligase (76 genes)

(Figure 8D; Supplementary Table S17). Some TF families like ZF,

MYB and bHLH were also detected. Among these gene families, most

of the PPR-coding genes were detected in DAS only group.
Verification of AS patterns in DAS genes by
RT-PCR

Six genes were selected to validate the alternative splicing

pattern under salt stress by RT-PCR (Figure 9). In the study, semi-
B

C D

A

FIGURE 5

The enriched Gene Ontology (GO) terms of DEGs in salt treated samples. (A–D) Top 20 GO terms significantly enriched in the DEGs induced at 1
(A), 3 (B), 6 (C) and 12 (D) hours after salt treatment.
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quantitative RT(sqRT)-PCR was performed to visualize the

patterns of splice isoforms based on size disparity between

differentially spliced transcripts (Harvey and Cheng, 2016), and

quantitative RT(qRT)-PCR were carried out to quantify the

expression level of each transcript. While the relative expression

level of most of transcripts studied by qRT-PCR were consistent

with the RNA-seq results (Figure 9; Supplementary Table S17), we

observed more complex splicing events in some genes based on

sqRT-PCR. Salt stress apparently increased skipping frequency of

the second exon in the gene coding for a serine/argnine-rich

splicing factor SR30 (101257012) (Figures 9A, B). The actual

splicing pattern of F-box protein CPR1 gene (101260686) was

more complicated than expected (Figures 9C, D). Except for the
Frontiers in Plant Science 08
increase of splicing at alternative 3’ splice site, extra bands were

observed in the PCR products. A WRKY transcription factor

(101265102) was highly induced at 12 hours after salt treatment,

with an extra splicing variant detected at 6 and 12-hour treatment

(Figures 9E, F). The increase of various splicing at alternative 5’

splice site contributed to the expression increase of a heat stress

transcription factor HsfA2 (101255223) (Figures 9G, H). Intron

retention caused the increased expression of a gene coding

multiple inositol polyphosphate phosphatase (101244492)

(Figures 9I, J). While the expression level of a gene coding for

SAGA-Tad1 like protein (101268618) (Figures 9K, L) was not

significantly changed, the composition of splicing variants altered

due to intron retention.
BA

FIGURE 7

Distribution of alternative splicing events. (A) Diagram of five AS events detected in all 15 libraries. A5SS, alternative 5’splice site; A3SS, alternative 3’
splice site; MXE, mutually exclusive exon; RI, retained intron; and SE, skipped exon. (B) The number of each AS event in control and salt-
treated groups.
FIGURE 6

Numbers of the salt-responsive transcription factors (TFs) from the main TF families identified at different time points after salt treatment. Heatmap
analysis on the distribution of up- and down-regulated TFs is shown in left panel, and total number of TFs from each family is presented in the chart
on the right.
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The potential DEG genes responsible for
AS events under salt stress

Given that the AS events were significantly altered in tomato

root’s response to salt stress, analysis of potential genes responsible

for AS events in response to salt stress was performed (Figure 10;

Supplementary Table S18). Based on the spliceosome pathway

obtained from KEGG database (Figure 10A), more than 100

genes were found differentially expressed in one or more salt

treated samples (Figure 10B; Supplementary Table S18). These

genes encoded 42 types of splicing relevant factors, such as SR

splicing factors, Prp family proteins, SnRNP proteins and other

factors in U1, U2, U5, U4/6 complexes. Their expression showed

dynamic changes throughout the salt stress treatment (Figure 10B;

Supplementary Table S18).
Discussion

Salinity is one of the most significant environmental factors

adversely affecting crop growth, development and yield. Tomato is

moderately sensitive to salinity stress with seedlings especially

susceptible due to its sensitive osmotic potential which is readily

disrupted by salt stress during growth (Cuartero et al., 2006;

Tanveer et al., 2019). Consequently, understanding of the

underlying mechanisms of salinity tolerance will contribute to the

breeding of salt tolerant tomato cultivars. To explore the gene
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regulatory network of tomato to salt stress, we investigated the early

transcriptional responses to salt treatment over a 12-hour period in

tomato roots.

The early morphological changes by tomato to salt stress

(Figure 1) is consistent with the view that salt-specific signaling

pathways are rapidly triggered in plant roots during the very early

stages of salt stress (Galvan-Ampudia et al., 2013; Choi et al., 2014).

The response of plant roots to salt stress involves complex regulation

of gene expression at multiple levels, including at transcription, post-

transcription, translation, post-translation, and metabolism, which

eventually result in phenotypic changes (Barkla et al., 2013; van Zelm

et al., 2020). Here we show that transcriptomic analysis of tomato

roots under salt stress revealed a considerable and dynamic

expression of transcripts in tomato roots during the early 12-hour

treatment process of salt exposure. The gene expression patterns of

continuously up or down-regulation, peak expression at 1 or 3 hours,

and reduction at the first 3 hours were highly pronounced (Figure 2).

The GO terms enriched in those clusters revealed the important

changes of key biological processes, such as hormone signaling, cell

cycle, amino acid metabolism and response to oxidative stress, during

the 12-hour salt treatment.

This study revealed that amino acid metabolism was greatly

enhanced at the early response of tomato root to salt treatment

(Figure 2; Supplementary Table S7; Supplementary Figure S1).

Amino acid metabolism is involved in various strategies during

plant adaption to abiotic stress conditions (Huang and Jander, 2017;

Hildebrandt, 2018; Batista-Silva et al., 2019; Reshi et al., 2023).
B

C

D

A

FIGURE 8

Numbers and functional analysis of DAS genes in salt treated samples. (A) The distribution of AS events and the number of DAS genes in salt treated
samples. (B) The top 20 GO terms enriched in the DAS genes. (C) Flow chart to analyze the distribution of the 10588 DEGs and 3709 DAS genes.
(D) List of significant DAS genes detected in the study.
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Accumulation of free amino acids have been generally observed in

diverse plants under various abiotic stress (Hildebrandt et al., 2015;

Huang and Jander, 2017) and the enhancement of amino acid

biosynthesis and amino acid transmembrane transport have been

reported to improve plant tolerance to salt stress (Batista-Silva et al.,

2019; Shohan et al., 2019). While some amino acids like proline are

known to be potential ROS scavengers to protect plant cell from

oxidative damage (Hayat et al., 2012), several amino acids, such as

phenylalanine, tyrosine and tryptophan, arginine, methionine and

lysine, act as precursors for the synthesis of nitrogenous secondary

metabolites and signaling molecules (Tzin and Galili, 2010; Batista-

Silva et al., 2019; Heinemann and Hildebrandt, 2021). Therefore,

enhancement of amino acid metabolism is likely to be an important

adaptive strategies to eliminate the adverse effects of salt stress in

tomato root. On the other hand, it’s known that the high levels of

ROS concentration can affect amino acid metabolism, specially the

site-specific chemical modification of amino acids such as arginine,

lysine, proline, threonine and tryptophan, which cause increased

vulnerability to proteolytic degradation (Moller et al., 2007). In this

study, most of the DEGs involved in response to ROS and oxidative

stress exhibited a continuously up-regulated expression pattern,

suggesting the continuous accumulation of ROS throughout

treatment of salt stress (Figure 2; Supplementary Table S7, cluster

9). Thus, the ROS accumulation induced by salt stress may

contribute to the considerable changes of amino acid metabolic

and catabolic processes under salt tress.
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Plant hormones play vital roles in maintaining plant growth and

enable plants to survive under conditions of salt stress (Ryu and Cho,

2015; Yu et al., 2020). It was reported that tomatoes could adapt to

salt stress by dynamically regulating their hormone levels to establish

new hormone balance (Wang et al., 2023a). The levels of ABA, SA,

and JA and their respective signal transduction pathways were

reported to be significantly increased, while decrease in the levels of

GA and IAA were observed during the early response to salt stress

(Wang et al., 2023a). In the current study, we also observed the

dynamic regulation of plant hormone signaling transduction.

Regulation of ABA and auxin-mediated signaling pathways were

found to be significantly pronounced throughout the early response

to salt stress (Figure 5; Supplementary Tables S7, S11). ABA is the

primary hormone that promotes plant salt tolerance (Sah et al., 2016;

Vishwakarma et al., 2017; Pye et al., 2018) where auxins promote

plant growth (Zhang et al., 2022). The majority of genes involved in

both hormone pathways appeared in expression clusters exhibiting

continuous down-regulation or enhanced expression within the first

6 hours. This suggests that the regulation of salt tolerance and growth

are closely intertwined. In contrast to a previous study (Wang et al.,

2023a), significant regulation of the SA-mediated signaling pathway

were not detected. On the other hand, response to JA was found to

be prominent throughout the early response to salt stress

(Supplementary Table S7). A previous study by Abouelsaad and

Renault (2018) found that activation of JA signaling pathway

enhanced tomato salt tolerance, aligning with our current result.
B C D
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FIGURE 9

Validation of AS events in six representative genes by sqRT-PCR and qRT-PCR. (A, B) Expression of two transcripts of a serine/arginine-rich splicing
factor SR30-like protein (101257012). (C, D) Expression of four transcripts of a F-box protein (101260686). (E, F) Expression of two transcripts of a
WRKY transcription factor (101265102). (G, H) Expression of four transcripts of a heat stress transcription factor HsfA2 (101255223). (I, J) Expression
of two transcripts of a multiple inositol polyphosphate phosphatase (101244492). (K, L) Expression of two transcripts of a SAGA-ted1-like protein
(101268618). Panels (A, C, E, G, I, K) show the results of sqRT-PCR, and panels (B, D, F, H, J, L) depict the results of qRT-PCR. The asterisk (*) next to
the band represents an unknown or abnormal alternative splice form. The black arrow on top of diagram indicates the location sites of the specific
primers used for sqRT-PCR. Molecular markers are labeled on the left side, and the size of each transcript on the right side of gel picture. The
transcript expression levels in panels (B, D, F, H, J, L) were relative to the transcript 1 of each gene and obtained from three independent replicates.
The primers used for RT-PCR are listed in Supplementary Table S22.
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Cytokinin is another important hormone that modulates plant

development and tolerance to various environmental stimuli

(Mandal et al., 2022; Papon and Courdavault, 2022; Yin et al.,

2023) by regulating cell cycle and differentiation, promoting

antioxidant systems, impeding plant senescence, and cross-talking

with stress-related phytohormones (Liu et al., 2020; Mandal et al.,

2022). While defective cytokinin signaling mitigates high salinity in

Arabidopsis via regulation of the lipid and flavonoid gene-to-

metabolite networks, enhancement of cytokinin content was

reported to improve tomato salt tolerance in tomato (Zizkova

et al., 2015). We noticed that the pathway of response to

cytokinin was only enriched in the cluster of down-regulated

DEGs (Figure 2, cluster 10; Supplementary Table S7), suggesting

that cytokinin-mediated signaling pathway was suppressed during

the early response of tomato root to salt stress.

Transcription factors (TFs) play a central role to regulate the

expression of the genes responsible for plant stress tolerance.

Numerous TFs from the families like bZIP, NAC, WRKY, MADS,

MYB, ZF, HSF and bHLH families are involved in conferring salt

tolerance in various crop species (Duan et al., 2019; Zang et al.,

2019; Li et al., 2020; Guo et al., 2021; Li et al., 2021; Wang et al.,

2021a, Wang et al., 2021b; Liu et al., 2023; Rosca et al., 2023;

Sukumaran et al., 2023; Ye et al., 2023; Wang et al., 2023b),

including in tomato (Pan et al., 2010, Pan et al., 2012; Wang
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et al., 2013; Klay et al., 2014; Campos et al., 2016; Bai et al., 2018;

Klay et al., 2018; Li et al., 2018; Waseem et al., 2019; Zhang et al.,

2020; Guo et al., 2021; Qian et al., 2021; Chen et al., 2022) In this

study, more than 700 TFs were found to be differentially expressed

in tomato roots under salt stress (Supplementary Table S13) with

members from MYB, ZF, bHLH and AP2/ERF gene families being

the most abundant. Among these salt responsive TFs, several of

them were previously reported to modulate tomato salt tolerance.

For example, a R1-MYB type TF coding gene, SlARS1 (Gene ID

101257705), that was reported to affect ABA-mediated stomatal

conductance under salt stress (Campos et al., 2016), was found to be

significantly induced under salt stress especially at 3-hour salt

induction (Supplementary Table S13); SlWRKY13 previously

proved to be negative regulator of tomato salt tolerance (Birhanu

et al., 2020) was among the decreased WRKY TF group in this

study. We also observed significant down-regulation of several AP2/

ERF family TFs (Supplementary Table S13), such as SlERF.B1

(Gene ID 543867) (Wang Y. et al., 2022) and SlERF.B3 (Gene ID

108511945) (Klay et al., 2014) that negatively regulate tomato salt

tolerance. Given the key roles of transcription factors in regulation

of salt response in plants, the salt-sensitive TFs identified in this

study deserve further investigation in the future.

Alternative splicing (AS) is an important post-transcriptional

mechanism that regulates plant growth and development and is
BA

FIGURE 10

Differential expression of splicing related genes. (A) The spliceosome pathway based on KEGG analysis. Red boxes indicate differentially expressed
genes. (B) Heatmap of differentially expressed spliceosome-related genes. NCBI gene IDs and potential gene names are listed on the right.
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prevalent during stress (Kelemen et al., 2013; Jabre et al., 2019;

Punzo et al., 2020; Rosenkranz et al., 2022). In tomato, around 65%

of the annotated protein-coding genes possess multiple transcript

isoforms (Clark et al., 2019). Alternative splicing changes have been

reported in tomato plants grown under phytotron vs greenhouse

conditions (Wang et al., 2017), in inflorescences of cultivated and

wild tomato species (Zhou et al., 2022), during fruit development

regulation (Sun and Xiao, 2015; Wang et al., 2016), pollen responses

to heat stress (Keller et al., 2017), tomato responses to drought stress

(Lee et al., 2020), water deficit stress (Ruggiero et al., 2022), low

nitrate stress (Ruggiero et al., 2022), phosphate starvation (Tian

et al., 2021), and response to the fungal infection by Trichoderma

harzianum (De Palma et al., 2019). Based on these studies,

differential alternative splicing (DAS) was found to be tissue-

specific, developmental stage-related or stress-responsive

condition. As there is limited understanding regarding the

involvement of alternative splicing in tomato’s response to salt

stress, we investigated the changes of AS events during early

response of tomato root to salt stress in this stduy (Figure 3A,

4B). A total of 46,115 AS events, including A5SS, A3SS, RI, MXE

and SE, were detected in the tomato root transcriptome (Figure 7;

Supplementary Table S14), revealing a comprehensive and dynamic

alteration in AS patterns in tomato roots during early responses to

salt stress. An integrated genome-wide study (Clark et al., 2019)

reported that RI was the prevalent AS event (18.9%) followed by

alternative A5SS and A3SS, while SE was the least AS type,

accounting for only 6%, among total 369,911 AS events in

tomato. By contrast, SE was the most abundant AS event in

tomato root under salt stress (Figure 7; Supplementary Table

S14), suggesting that the alternative splicing pattern of SE might

be susceptible to salt stress in tomato root. The dominance of SE in

AS events was also previously reported in tomato root and shoot

during phosphate starvation (Tian et al., 2021) and in date palm

seedlings under salt stress (Xu et al., 2021), suggesting that AS

patterns are not constant, but may change depending on the abiotic

condition. On the other hand, RI event was reported to be the most

frequent event induced by salt stress in Arabidiopsis (Ding et al.,

2014b), wheat (Liu et al., 2018), cotton (Zhu et al., 2018) and Barley

(Fu et al., 2019), while A3SS was the mostly affected AS events in

rice by salt stress (Fu et al., 2019). Given that the differences in AS

profiles are related to tissue type, stress condition and genotype

(Gan et al., 2011; Vitulo et al., 2014; Martıń et al., 2021; Zhou et al.,

2022), the differences on the alternative splicing preference induced

by salt may contribute to the evolutionary adaptation process

in tomato.

Salt-induced AS of non-differentially expressed genes may

contribute to the transcriptome reprogramming for salt tolerance

of tomato root. Interestingly, except for unclassified genes,

differentially alternative splicing induced by salt stress in tomato

root were largely detected in the gene families of serine/threonine-

protein kinase, PPR-containing protein, and E3 ubiquitin ligase

(Figure 8D). Serine/threonine-protein kinases are key enzymes that

reversibly phosphorylate the OH group of serine or threonine

residues at the post-translational level. The network of serine/

threonine kinases in plant cells is considered a central unit to
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accept and convert signaling information from sensing receptors of

various stimulus and phytohormones and in turn guide responsive

changes in gene expression, metabolism, plant growth and

development (Hardie, 1999). One of the most representative

serine/threonine-protein kinases belong to the SnRK2 family,

which are involved in the ABA-dependent signaling pathway to

regulate plant development and plant responses to diverse abiotic

stresses (Kulik et al., 2011). Ubiquitin E3 ligases are major players

that catalyze the covalent attachment of ubiquitin to target proteins

(Mazzucotelli et al., 2006; Kelley, 2018). Ubiquitination of

substrates is a dynamically regulated process and can generate

diverse functional outcomes like potential degradation or

activation of target proteins and changes in subcellular

localization (Kelley, 2018). E3 ubiquitin ligases are thus well-

known to be central regulators of many plants molecular

processes, including plant hormone biosynthesis, signaling

transduction and response to various stress conditions (Wang S.

et al., 2022). AS susceptibility of serine/threonine kinases and E3

ubiquitin ligases in tomato root under salt stress poses as an

additional complication in understanding the relationship

between hormone signaling transduction and salt-responsive gene

regulation. Pentatricopeptide (PPR) proteins are characterized by

tandem arrays of a degenerate 35-amino-acid sequence motifs

(Lurin et al., 2004). They are a large family of modular RNA-

binding proteins with essential roles in organelle biogenesis, RNA

editing, mRNA maturation and thus involved in many diverse

biological processes during plant growth, development and stress

acclimation (Barkan and Small, 2014). A previous genome-wide

analysis revealed that the tomato genome has 471 PPR-coding genes

(Ding et al., 2014a). In this study, extensive AS occurred in PPR-

coding genes under salt stress as 96 out of the 471 PPR-coding genes

were found to be differentially alternative spliced (Figure 8D;

Supplementary Table S17). The dynamic AS changes of PPR-

coding genes may also contribute to the gene regulation and

transcriptome reprogramming under salt stress.

We also observed that some genes, such as the genes coding

CPR1-like F-box protein and HsfA2 in Figure 9, were abnormally

spliced under salt. These observations indicate that AS modulation

in response to salt stress is more complicated than previously

envisioned and that modulation of alternative splicing deserves

more attention in future studies. The genes and their transcripts

identified in the present study can be targeted for the improvement

of tomato salt tolerance.

Analysis on the differential expression of spliceosome pathway-

associated proteins (Figure 10) revealed the potential roles of

specific groups of AS-associated proteins in regulating tomato

root response to salt stress. Expression of many genes coding key

component assembled in spliceosome machinery, such as small

nuclear ribonucleoprotein complexes (snRNPs), U1, U2, U4, U5,

and U6, was found to be affected in tomato root under salt stress.

Except for core components of spliceosome machinery, the

expression of trans-factors, including serine/arginine-rich (SR)

proteins and heterogeneous nuclear ribonucleoprotein (hnRNP),

were also significantly regulated under salt stress (Figure 10;

Supplementary Table S21). In addition to differential expression,
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alternative splicing in some of AS-related genes, such as SR-like

splicing factors (Figure 8D; Supplementary Table S17), was also

observed, which adds an additional complication of AS regulation

during salt stress. It is reported that the salt-responsive regulation of

SR gene isoforms may result in inaccurate identification of splicing

sites and destabilization of the spliceosome complex (Albaqami

et al., 2019; Xu et al., 2021; Laloum et al., 2023). Therefore, future

studies on the AS events of splicing-related proteins will provide

new insights on how genes are regulated in salt-stressed tomato.

Collectively, this study provides a comprehensive view of

transcriptome changes and highlights the key role of AS in

tomato root response to salt stress. A large number of DEGs and

DAS genes involved in diverse metabolic pathways, such as

hormone signaling transduction, DNA transcription, RNA

binding and processing, were identified. The findings in this study

expand our current understanding of transcriptional and post-

transcriptional regulation in the response of tomato roots to

salinity stress and provide an important gene resource for

developing salt-tolerant tomato plants.
Materials and methods

Plant materials and salt stress treatment

Tomato seeds (S. lycopersicum cv. Ailsa Craig) were sown in a

nutrient soil mixture with a ratio of 3:1 (w/w) and cultivated in an

illumination incubator under standard conditions (16 hours of light

at 26°C, followed by 8 hours of darkness at 20°C). After three weeks,

the seedlings were transferred to pots filled with 1/2 Hoagland’s

nutrient solution following root rinsing under running water. After

two additional weeks, seedlings of uniformed size were selected and

treated with 150 mM NaCl. Three biological replicates of root

samples were collected at 0, 1, 3, 6, and 12 hours post treatment. All

samples were immediately frozen in liquid nitrogen and stored at

-80°C for further use.
RNA extraction, library construction
and sequencing

Total RNAs were extracted from root samples with TransZol

UP Plus RNA kit (Tiangen Biotech, China). The mRNAs used for

cDNA library construction were isolated from total RNAs using

oligo-dT magnetic beads. A total of 15 cDNA sequencing libraries

were constructed and sequenced using the DNBSEQ™ technology

(Beijing Genomics institution, China) following the manufacturer’s

recommendations to generate paired-end sequencing data.
RNA-seq analysis

The raw sequencing data was filtered by SOAPnuke v1.5.6 (https://

github.com/BGI-flexlab/SOAPnuke) to remove low-quality reads, and

the high-quality reads were mapped against the reference S.
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lycopersicum genome (Version SL3.1, https://www.ncbi.nlm.nih.gov/

datasets/genome/GCF_000188115.5/) using the HISAT2 software

(v2.1.0) (http://www.ccb.jhu.edu/software/hisat/index.shtml) with

default parameters. Detection of differentially expressed genes was

performed using Bowtie2 (v2.3.4.3) (http://bowtiebio.sourceforge.net/

Bowt i e2 / index . sh tml ) and DESeq2 (v1 .4 .5 ) (h t tp : / /

www.bioconductor.org/packages/release/bioc/html/) with default

parameters. The mapped reads were counted and normalized into

fragments per kilobase of transcript per million (FPKM), and the

expressed genes with a log2 fold change≥1 and adjusted p value < 0.05

were identified as differentially expressed genes (DEGs). Gene

clustering was analyzed using the software of Dynamic Trend

Analysis on https://www.omicshare.com/tools. Significantly enriched

trends were determined according to a significance threshold p

value<0.05 (Ernst and Bar-Joseph, 2006). Alternative splicing

analysis were performed using rMATS (V3.2.5) (http://rnaseq-

mats.sourceforge.net) with default parameters. Compared to control

samples, alternative splicing events with adjusted p value < 0.05 were

identified as differentially alternative spliced (DAS) events, and the

genes that had at least one of the transcripts differentially expressed

(log2 fold change≥1 and adjusted p value < 0.05) were considered to be

DAS genes.
Pathway enrichment analysis

Gene Ontology (GO) analysis of the candidate gene groups was

performed on https://geneontology.org/ that is powered by

PATHER. Annotation version used in GO enrichment was GO

Ontology database DOI:10.5281/zenodo.10536401 released on Jan

17, 2024. Kyoto Encyclopedia of Genes and Genomics (KEGG)

enrichment was performed using KEGG Mapper on https://

www.genome.jp/kegg/. The GO terms and KEGG pathways with

p value<0.05 were defined as significantly enriched in the candidate

gene groups.
Validation of alternative splicing

Semi-quantitative RT(sqRT)-PCR and quantitative RT(qRT)-

PCR were performed to verify the AS pattern of six representive

genes. Total RNA was subjected to first-strand cDNA synthesis

using EVo M-MLVRT Mix Kit with gDNA Clean for qPCR Ver.2

(Vazyme, Nanjing, China) following the manufacturer ’s

instructions. Specific primers of target genes (Supplementary

Table S22) were designed using the NCBI primer design tool

(https://www.ncbi.nlm.nih.gov/tools/primerblast). sqRT-PCR was

conducted with HotStarTaq Plus DNA Polymerase Reagents

(Qiagen) and the melting temperature (Tm) was optimized based

on different sequences of the primers. PCR products were visualized

via horizontal gel electrophoresis using a 2% agarose-TBE gel.

Reactions of qRT-PCR were carried out on Applied Biosystems

StepOnePlus instrument using SYBR Green Premix Pro Taq HS

qPCR Kit (Vazyme, Nanjing, China). The gene encoding ribosomal

protein L2 (RPL2) (Løvdal and Lillo, 2009) was used as internal
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reference for qRT-PCR. Three independent replicates were tested

for each transcript.
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