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Whole-tree harvesting improves
the ecosystem N, P and K cycling
functions in secondary forests in
the Qinling Mountains, China
Yue Pang1, Jing Tian1, Qiang Liu1 and Dexiang Wang2*

1College of Forestry, Hebei Agricultural University, Baoding, China, 2College of Forestry, Northwest
A&F University, Yangling, Shaanxi, China
Forest ecosystem nutrient cycling functions are the basis for the survival and

development of organisms, and play an important role in maintaining the forest

structural and functional stability. However, the response of forest nutrient

cycling functions at the ecosystem level to whole-tree harvesting remains

unclear. Herein, we calculated the ecosystem nitrogen (N), phosphorus (P),

and potassium (K) absorption, utilization, retention, cycle, surplus,

accumulation, productivity, turnover and return parameters and constructed N,

P, and K cycling function indexes to identify the changes in ecosystemN, P, and K

cycling functions in a secondary forest in the Qinling Mountains after 5 years of

five different thinning intensities (0% (CK), 15%, 30%, 45%, and 60%). We showed

that the ecosystem’s N, P, and K cycling parameters varied significantly and

responded differently to thinning treatments. As the thinning intensity increased,

the N, P, and K cycling function indexes increased by 5%~232%, 32%~195%, and

104%~233% compared with CK. Whole-tree harvesting promoted ecosystem N

and P cycling functions through two pathways: (a) directly regulated litter

biomass, indirectly affected soil nutrient characteristics, and then regulated

ecosystem N and P cycling functions; (b) directly regulated plant productivity,

indirectly affected plant and soil nutrient characteristics, and then regulated

ecosystem N and P cycling functions. In contrast, whole-tree harvesting mainly

indirectly affected the plant and soil nutrient characteristics by directly adjusting

the plant productivity, and promoting the ecosystem K cycling function.

Furthermore, N and P cycling functions were mainly regulated by understory

plant productivity while tree and herb nutrient characteristics were key driving

factors for K cycling functions. These findings indicated that whole-tree

harvesting significantly improved the ecosystem N, P and K cycling functions,

and reveals varied regulatory mechanisms, which may aid in formulating effective

measures for sustainable forest ecosystem nutrient management.
KEYWORDS

Nutrient cycling functions, whole-tree harvesting, secondary forests, ecosystem level,
thinning intensities
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1394112/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1394112/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1394112/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1394112/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1394112&domain=pdf&date_stamp=2024-12-20
mailto:wangdx662023@163.com
https://doi.org/10.3389/fpls.2024.1394112
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1394112
https://www.frontiersin.org/journals/plant-science


Pang et al. 10.3389/fpls.2024.1394112
1 Introduction

Nutrient utilization is critical for the survival and growth of

organisms in forest ecosystems. The cycling and balance of essential

nutrients such as nitrogen (N), phosphorus (P), and potassium (K)

are key to maintaining the stability and long-term productivity of

these ecosystems (Tamm, 2012; Qi et al., 2022). Nutrient cycling in

forest ecosystems involves nutrient exchange, absorption,

distribution, and return between ecosystem components and the

environment (Gérard et al., 2008; Johnson and Turner, 2019;

Legout et al., 2020). Previous research has largely focused on

nutrient cycling characteristics in individual ecosystem

components (Zhang et al., 2018a; Hou et al., 2021; Yan et al.,

2019) and the development of parameters such as nutrient use

efficiency and nutrient enrichment coefficients at both regional and

global scales (Li, 1997; Turner and Lambert, 2015), which greatly

advanced research on nutrient cycling mechanisms and deepened

our theoretical understanding of nutrient cycling in forest

ecosystems. However, few reports explore nutrient cycling

functions from an ecosystem perspective. In nature, forest

ecosystems are composed of different ecological components, and

nutrient recycling processes are interconnected. Therefore, it is

necessary to research forest ecosystem nutrient cycling functions,

which is essential for understanding forest ecosystem structure and

function and elucidating nutrient cycling mechanisms.

Ecosystem functions are the basis of stable and sustainable

ecosystem development (Hector and Bagchi, 2007). The ecosystem

function index is often used to quantify the ability of an ecosystem

to provide and maintain ecosystem functions. Research based on

this theoretical parameter has been reflected in many fields. For

instance, Jia et al. (2022) explored associations between soil quality

and ecosystem multifunctionality driven by fertilization

management in the North China Plain. Yang et al. (2023) studied

responses of soil microbial diversity, network complexity and

multifunctionality to three land-use changes at spatial-temporal

scales. Moi et al. (2022) focused on the analysis of biodiversity-

multifunctionality relationships under human pressure in large

Neotropical wetlands. As mentioned above, the ecosystem

function index has been widely developed in the study of

ecosystem multifunctional mixtures, providing substantial data

for ecosystem function evaluation. However, the concept of this

function index is rarely used to assess specific ecosystem nutrient

cycling functions, and research in this area is crucial for forest

health and sustainable development. Thus, constructing the forest

ecosystem nutrient cycling function indices is essential for

expanding our knowledge about forest ecosystem functions.

Forest ecosystem nutrient cycling functions are complex and

are influenced by both biotic and abiotic factors; simultaneously,

nutrient elements have heterogeneous cycling patterns due to their

different roles in the ecosystem (Johnson and Lindberg, 2013;

Vitousek, 2018). Forest thinning, a key forest management

practice, modifies the community structure, directly affects the

distribution of light, heat, water and other resources in the forest

ecosystem, and indirectly influences resource competition, litter

quality, and soil nutrient fertility within vegetation communities,

potentially impacting nutrient cycling and balance (Zhang et al.,
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2018b; Li et al., 2020). For instance, some studies have shown that

thinning removes a large number of branches and leaves, resulting

in nutrient loss and decreased soil fertility (Chen et al., 2016; Garrett

et al., 2021; Chen C. et al., 2023). In contrast, some other researchers

have found that thinning may also reduce community nutrient

competition pressure and accelerate nutrient recycling rates,

thereby increasing the nutrient concentration of fresh leaves and

litter and reducing the nutrient reabsorption rates (Ma et al., 2018;

Qiu et al., 2020). However, relatively few studies have examined

how forest nutrient cycling functions respond to whole-tree

harvesting, even though whole-tree harvesting removes more

aboveground tree parts (stems, needles, branches, twigs) than

conventional stem-only harvesting, resulting in more significant

changes in community structure and ecosystem nutrient loss (Yan

et al., 2017; Pang et al., 2021b). Moreover, the regulatory

mechanisms of forest thinning on nutrient cycling functions are

not yet fully understood and require further investigation.

Therefore, investigating the response rules of forest ecosystem

nutrient cycling functions following whole-tree thinning and

clarifying the regulatory pathways are crucial for revealing the

nutrient cycling mechanism following thinning and can provide

further insights into formulating a reasonable forest

management system.

The Qinling Mountains are significant secondary forest regions

located in the transitional zone between the subtropical and warm

temperate zones of central China (Pang et al., 2022). So far, Qinling

secondary forests cover 80% of the Qinling forest area under the

protection of the “Natural Forest Protection Program”, making

great contributions to the region’s vegetation reconstruction, soil

and water conservation, carbon fixation and oxygen release (Yu

et al., 2023). Nevertheless, these secondary forests have poor growth

conditions, low ecological functions, and vulnerable stability.

Whole-tree harvesting, a common forest management practice in

the Qinling Mountains, is used to improve forest productivity and

restore ecological functions. However, this practice can result in

significant nutrient loss, raising concerns about its long-term effects

on forest health and nutrient cycling functions. Numerous studies

have evaluated the variation in the vegetation community

structures, soil physical and chemical properties and microbial

metabolic activity (Ren et al., 2018; Kang et al., 2022); but, the

effects of whole-tree harvesting on nutrient cycling functions in

these secondary forests at the ecosystem level are not

well understood.

This study aims to: (1) analyze the nutrient cycling

characteristics of the secondary forest ecosystem following whole-

tree harvesting, and (2) construct nutrient cycling function indexes

to explore the mechanisms driving changes in nutrient cycling.

Thus, we measured the C, N, P, and K nutrient characteristics of

trees, shrubs, herbs, litter, and soil at the plot level in secondary

forests in the Qinling Mountains after 5 years of five thinning

intensities (CK: 0%, T1: 15%, T2: 30%, T3: 45%, T4: 60% of the

stand volume removed), and calculated the ecosystem N, P, and K

absorption, utilization, retention, cycle, surplus, accumulation,

productivity, turnover and return parameters. We further

constructed the ecosystem N, P, and K cycling function indexes

and analyzed the relationships among ecosystem nutrient cycling
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functions and forest stand characteristics, soil properties and

ecosystem component nutrient characteristics. We hypothesized

that (1) there may be significant differences in the ecosystem N, P,

and K cycling characteristics due to the heterogeneous effects of

nutrient elements; (2) whole-tree harvesting would have a negative

impact on the ecosystem N, P, and K cycling functions because

whole-tree harvesting causes substantial nutrient loss; (3) whole-

tree harvesting may regulate nutrient cycling functions differently

due to the significant disturbances it causes to vegetation, soil, and

the overall environment.
2 Materials and methods

2.1 Site description and
experimental design

The study was performed in the Qinling National Forest

Ecosystem Research Station (33°18′-33°28′N, 108°21′-108°39′E),
which is located in Ningshaan County, Shaanxi Province, China.

The area covers 22.25 km2 and has a subtropical humid montane

climate. The average annual temperature is 10.5°C, and the annual

precipitation is 1000 mm, with an average frost-free period of 199

days and a growth period of 177 days (Pang et al., 2021b, 2022). The

soil types in the sampling area are classified as Cambisols,

Umbrisols, and Podzols according to the Food and Agriculture

Organization (FAO) classification system. Across the site, the

average soil layer thickness and humus matter thickness are 50

cm and 8 cm, respectively. The forests underwent rotational felling

or firewood cutting during the 1960s and 1970s at this research

station. After natural regeneration, secondary growth dominated

the study area, and the dominant tree species areQuercus aliena var.

acutiserrata , Quercus variabilis , Pinus armandii, Betula

albosinensis, Picea asperata, and Populus davidiana. Additionally,

shrubs including Lonicera tragophylla, Cerasus stipulacea, and

Symplocos paniculate, as well as herbs including Lysimachia

christinae, Rubus parvifolius, Saussurea mutabilis, and Rubia

cordifolia occupy the understory space.

To guide the development of secondary forests towards a healthy

stand structure, this study implemented a target tree operation system

to transform the existing secondary forests based on the principles of

near-natural forest management. Based on field surveys, we selected

secondary stands with similar geographical and micro-topographic

conditions. The whole-tree harvesting experiment with a complete

randomized block design with 5 treatments and 4 replicates, making a

total of 20 plots (20 m in length × 20 m in width), were established in

the secondary forests in September 2013. At the same time, tree

height and diameter at breast height (DBH ≥ 5 cm, measured at 1.3

m) were recorded for each plot. The treatments were 5 levels of

thinning intensity: no thinning as a control with (CK), 15% removal

of the stand volume (T1), 30% removal of the stand volume (T2),

45% removal of the stand volume (T3), 60% removal of the stand

volume (T4). To avoid potential edge effects, a 5-m-wide buffer zone

was established around each plot. All harvested materials, including

leaves, branches, stems, bark, and twigs, were removed from the plots.

We conducted the survey and sampling for this study in 2018, 5 years
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about the blocks and plots are presented in Supplementary Figure S1.
2.2 Plant, litter and soil sample collection
and survey

Plant samples were collected in August 2018 during the peak

growing season. For trees, the tree height and diameter at breast

height (DBH ≥ 5 cm, 1.3 m) in each plot were measured again

before sampling, and the trees were also classified and counted by

species. Tree leaves, branches, stems, bark, and roots were then

sampled by species through pruning, cutting, drilling, and digging,

as detailed in our previous study (Pang et al., 2021a). We calculated

the tree organ biomass based on the allometric equations developed

for trees in or near the study area (Supplementary Table S1).

According to the biomass ratios of different species organs, the

different organ samples of the trees were mixed evenly. To evaluate

the species diversity of shrub and herb, five shrub subplots (2 × 2 m)

and five herb subplots (1 × 1 m) were established in each plot, and a

whole-plant sampling technique was used to collect shrub and herb

biomass. After dividing the shrubs into leaves, branches, and roots,

and the herbs into aboveground and belowground parts, then mixed

into a uniform sample.

At the plot level, we used a root auger (90mmdiameter) to collect

9 fine root point samples at depths of 0–20 cm, 20–40 cm and 40–60

cm in September and November 2018, and April and June 2019.

According to the method described by Brassard et al. (2013), the fine

roots were divided into living and dead groups, including three

diameter classes (<0.5 mm, 0.5–1mm, and 1–2 mm). For litter

sampling, six litter traps (90 cm in diameter) were fixed 1 m above

the ground to collect tree litter three times in one year, and all the

ground litter was collected in five 1 × 1 m subplots. Litter was

categorized into leaves, branches, and miscellaneous material.

Eventually, all subsamples of plant and litter were transported to

the laboratory and oven-dried at 70 °C to constant weight.

The soil samples were collected from 9 replicate points along an

“S” shape in each plot at 0–20 cm, 20–40 cm and 40–60 cm depths by

using a 40 mm diameter stainless-steel auger and mixing the samples

into one composite sample per plot. The soil samples were then

immediately sieved through a mesh < 2 mm, and stones, plant roots,

fauna, and debris were removed. Each soil sample was divided into

three parts, the first part was used to determine the soil moisture

content; the second part was airdried for physicochemical analyses;

and the other portion was stored at 4°C for microbial biomass

analyses. Soil bulk density samples were obtained randomly from

three points per plot by volumetric rings (100 cm3).
2.3 Laboratory analyses

All the chemical indicators of plant, litter and soil samples were

determined following a previously described method (Bao, 2000).

The carbon (C) contents in plant, litter and soil (SOC) samples were

analyzed using the K2Cr2O7 oxidation method, while total nitrogen

(TN) and total phosphorus (TP) contents were analyzed by
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colorimetry with an automatic discontinuous elemental analyzer

(Clever chem200+, Germany) after wet digestion. Plant, litter and

soil total potassium (TK) and soil available potassium (AK) were

measured through a flame photometry. Soil available nitrogen (AN)

and available phosphorus (AP) were determined by alkaline

hydrolysis diffusion and colorimetry respectively. Soil pH was

measured in a 1:2.5 soil:water suspension using a glass-electrode

meter. Soil moisture content was determined by oven-drying fresh

soil at 105°C for 48 hours to a constant weight. Similarly, the

volumetric ring soil was dried at 105 °C to constant weight, and the

ratio of soil mass to total volume (g·cm−3) was calculated to obtain

the soil bulk density (De Vos et al., 2005). Microbial biomass C

(MBC), N (MBN) and P (MBP) were quantified with a total

organic C analyzer (TOC-LCSN, Shimadzu Co., Japan), flow

analyzer (AutoAnalyzer 3, Seal Analytical Ltd., UK) and

spectrophotometer (UV-1900, Shimadzu Co., Japan) after

fumigation (Kim et al., 2018).
2.4 Data calculation and analysis

2.4.1 Biomass, productivity, nutrient stock,
nutrient accumulation rate and nutrient
return calculation

Referring to the National Standard of the People’s Republic of

China “Long-term Positioning Observation Method of Forest

Ecosystems” and “Technical Regulations for Continuous

Inventory of Forest Resources”, the biomass and productivity of

trees, shrubs and herbs, the existing biomass and annual biomass of

litter, and the total biomass and productivity of the forest ecosystem

were calculated respectively. Furthermore, combined with the C, N,

P and K characteristics of plant, litter, and soil, the C, N, P and K

stocks and accumulation rates across tree, shrub, and herb layers,

the C, N, P and K return amounts of aboveground and belowground

parts, the C, N, P and K stocks in the soil layer, and the C, N, P and

K stocks, plant C, N, P and K accumulation rates, and plant C, N, P

and K return amounts at the ecosystem level were obtained.

Detailed methods used to quantify the above parameters are

included in the SI Materials and Methods.

2.4.2 Ecosystem nutrient cycling
parameter calculation

The calculation of ecosystem nutrient cycling parameters refers

to the method described by Liu (2009).

Nutrient flux parameters:

TR = PR + RI − RO (1)

Where TR is total N, P or K return amounts (kg·ha-1·year-1), PR

is plant N, P or K return amounts (kg·ha-1·year-1, ecosystem plant

N, P or K return amounts); RI is rainfall N, P or K input amounts

(kg·ha-1·year-1): the rainfall nutrient input amounts in this research

were determined by reviewing the literature on rainfall nutrient

content that has been reported in this study area (Zhang, 2005;

Zhao, 2015; Li, 2017), N: 5.44 kg·ha-1·year-1, P: 0.268 kg·ha-1·year-1,

K: 11 kg·ha-1·year-1 respectively; RO is N, P or K runoff output
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amounts (kg·ha-1·year-1): Note that the runoff output in this study

area is dominated by subsurface runoff, and the output and input up

and down slopes are basically in balance (Zhang et al., 2000).

Therefore, no runoff nutrient export is assumed in this study area.

NB = CL + TR (2)

Where NB is N, P or K absorption amounts (kg·ha-1·year-1,

absorbed by the ecosystem plant layer in one year), CL is N, P or K

retention amounts (kg·ha-1·year-1, ecosystem plant N, P or K

accumulation rate).

Nutrient supply capacity parameters:

SP = TR − NB (3)

SPR =
TR − NB

SW
� 100 (4)

where SP is soil N, P or K surplus amount (kg·ha-1·year-1), SPR

is soil N, P or K surplus percentage (%), SW is soil N, P or K stock

(kg·ha-1·year-1); SP and SPR describe the ecosystem N, P or K supply

capacity.

NP =
PP
NB

(5)

Where NP is N, P or K productivity (t·kg-1), PP is plant

productivity(t·ha-1·year-1); NP represents the dry matter mass that

can be produced per unit weight of N, P or K absorption.

Nutrient cycling parameters:

ax =
NB
SW

(6)

Where ax is N, P or K absorption coefficient; ax represents the

N, P or K absorption capacity of plant roots from the soil N, P or K

pool.

ux =
NB
FS

(7)

Where ux is N, P or K utilization coefficient, FS is total N, P or K

stocks in the forest stand; ux represents the plant’s ability to

maintain the N, P or K required for growth at the ecosystem level.

cx =
TR
NB

(8)

where cx is N, P or K cycle coefficient; the cx represents the cycle

intensity of N, P or K in the ecosystem, and the larger the value, the

faster the cycle rate.

rx =
1

1 − cx
(9)

where rx is N, P or K recycling coefficient; the rx represents the

average recycling numbers of a unit substance before leaving the

system, which can better reflect the forest land soil N, P or K status

under severe human interference.

ncx =
CL
NB

(10)
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Where ncx is N, P or K retention coefficient; the ncx represents

the plant’s ability to retain N, P or K, and the smaller the value, the

higher the nutrient utilization efficiency.

pt =
PS
TR

(11)

Where pt is plant N, P or K turnover time coefficient, PS is plant

N, P or K stock; pt represents the time required for the plant N, P or

K pool to go through a cycle, and the larger the value, the more N, P

or K the plant needs.

pax =
NB
PS

(12)

Where pax is plant N, P or K stock accumulation coefficient; the

pax reflects the accumulation rate of plant N, P or K stock pools.

2.4.3 Ecosystem nutrient cycling function index
The ecosystem function index was employed to systematically

extract comprehensive information from nutrient flux, nutrient

supply capacity, and nutrient cycling parameters.

First, the Z-scores of the ecosystem nutrient cycling parameters

were calculated in each plot.

Zij =
xij − mj

sj
(13)

Where Zij represents the Z-score of the j-th N, P or K cycling

parameter in plot i; xij represents the value of the j-th N, P or K

cycling parameter in plot i; mj represents the mean value of the j-th

N, P or K cycling parameter; sj represents the j-th N, P or K cycling

parameter standard deviation; where i ranges from 1-20 and j

ranges from 1-12.

Then, the Z-scores of the nutrient cycling parameters in each

plot were averaged, which is the ecosystem nutrient cycling function

index (M) in each plot.

Mi =
on

j=1Zij

n
(14)

Where Mi is the secondary forest ecosystem N, P, or K cycling

function index of the i-th plot, n is the number of nutrient cycling

parameters involved in the calculation, n=12.

2.4.4 Basis for selection of factors affecting
ecosystem nutrient cycling function

The forest ecosystem nutrient cycling functions are affected by

complex and diverse biotic and abiotic factors. Referring to previous

studies, 58 explanatory factors were initially screened. Among them,

the forest stand characteristics of tree, shrub, herb, litter and fine

root (<0.5mm, 0.5-1mm, 1-2mm, <2mm) productivity, shrub and

herb diversity, and litter biomass can reflect the nutrient

competition diversity and consumption level in the community.

Soil pH, moisture content, and bulk density are key parameters that

affect vegetation growth and development and soil nutrient

mineralization, and have an important impact on ecosystem

nutrient cycling. The nutrient pool characteristics of the soil (C,
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N, P, K, C:N, C:P, N:P, AN, AP, AK, MBC, MBN, MBP, MCN

(MBC: MBN), MCP (MBC: MBP), MNP (MBN: MBP)), plant (C,

N, P, K and their stoichiometric ratios of tree, shrub, and herb

functional groups at the ecosystem level, see details in SI Materials

and Methods) and litter (GC (litter C), GN (litter N), GP (litter P),

GK (litter K), GC:N (GC: GN), GC:P (GC: GP), GN:P (GN: GP))

are all the ecosystem nutrient cycling components and promote the

development of the ecosystem nutrient cycling function.

2.4.5 Statistical analysis
All data were checked for normality and homogeneity of

variance and transformed if necessary. A linear mixed-effect

model was used to evaluate the statistical significance of

ecosystem components (plant, litter and soil) and ecosystem

biomass, productivity, C, N, P and K stocks, C, N, P and K

accumulation rates, C, N, P and K return amounts, C, N, P and K

cycling parameters, and N, P and K cycling functions under

different thinning intensities. The models included thinning

intensities, plant organ components, soil layers, nutrient element

categories or their interaction terms as the fixed factors and block or

block and plot as the random factors. For all models, the

significance of fixed effects was assessed using Satterthwaite

approximations for degrees of freedom. When fixed effects or

interactions were significant, the least square means differences

test was used for multiple comparisons. Pearson correlation and

Boruta feature selection were performed to explore the correlation

between ecosystem N, P, and K cycling function indexes and

influencing factors, and to determine optimal predictors.

Variation partitioning analysis (VPA) was employed to analyze

the contribution of category driver factors to changes in ecosystem

N, P and K cycling functions. Partial least squares path modeling

(PLS-PM) was used to further identify the possible pathways that

whole-tree harvesting regulates the ecosystem N, P and K cycling

functions. All analyses were implemented using R for Windows

version 4.1.1 statistical software (R Development Core Team, 2017).
3 Results

3.1 Biomass, productivity, nutrient stock,
nutrient accumulation rate and
nutrient return

The biomass and productivity of tree and ecosystem, and

ground litter biomass were significantly reduced with increasing

thinning intensity, whereas shrub and herb biomass and

productivity showed the opposite trend (Supplementary Figures

S2–S9, p < 0.05). Although litter miscellaneous productivity was

significantly higher in T2 and T3 than in other thinning treatments

(Supplementary Figure S8A, p < 0.05), total litter productivity did

not respond significantly to the thinning treatments

(Supplementary Figure S8B, p > 0.05).

Overall, thinning significantly reduced tree C, N, P and K stocks

and accumulation rates, ground litter C, N, P and K stocks, soil C, N
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and P stocks, ecosystem C, N and P stocks and accumulation rates

and ecosystem K accumulation rate, and significantly increased the

ecosystem K stock and the stocks and accumulation rates of shrub

and herb C and N, shrub P and herb K (Supplementary Table S3

and Supplementary Figures S10–S16, p < 0.05). The shrub K and

herb P stocks and accumulation rates were nonsignificant among

the different thinning intensities (Supplementary Table S3 and

Supplementary Figures S11G, H, S15G, H, p > 0.05).

As shown in Supplementary Figure S17, the tree litter C

concentration was highest in winter, while N, P, and K

concentrations peaked during the spring-summer period while the

return amounts of tree litter C, N, P, and K were significantly higher in

autumn than in other seasons (p < 0.05). However, total aboveground

litter C, N, P, and K return amounts did not respond significantly to

thinning treatments (Supplementary Figure S18, p > 0.05).

Although the <0.5mm fine root in T2 and T4 exhibited

significantly higher productivity, turnover rate, and C, N, P, and

K return amounts than in other treatments (Supplementary Figures

S19, S20A–D, p < 0.05), no significant differences were observed in

total (<2mm) fine root C, N, P, and K return amounts across

thinning intensities (Supplementary Figures S20E-H, p > 0.05).

Likewise, thinning did not significantly impact total plant C, N,

P, and K return amounts at the ecosystem level (Supplementary

Figure S21, p > 0.05).
3.2 Ecosystem nutrient cycling parameters
and nutrient cycling function indexes
among thinning treatments

Significant differences were observed among ecosystem N, P,

and K cycling parameters, which showed varied responses to

thinning treatments (Figure 1). The ecosystem N total return

amounts, absorption amounts, absorption coefficient, and

utilization coefficient were the highest (Figures 1A–D, p < 0.05),

while the N surplus amounts and surplus rate were the lowest

(Figures 1F, J, p < 0.05). The ecosystem P productivity, retention

coefficient, and plant nutrient turnover time were at their highest

levels (Figures 1G, I, K, p < 0.05). The ecosystem N and K cycle

coefficient, recycling coefficient and plant nutrient accumulation

coefficient were comparable and significantly higher than those

parameters of P (Figures 1E, H, L, p < 0.05).

The ecosystem N, P, and K total return amounts and productivity

had no significant responses to the thinning treatments (Figures 1A, G,

p > 0.05). The N, P, and K absorption amounts, retention coefficients,

and plant turnover nutrient time significantly decreased as thinning

intensities increased (Figures 1B, I, K, p < 0.05), while the N, P and K

cycle coefficient, recycling coefficient, surplus amounts, and plant

nutrient accumulation coefficient significantly increased (Figures 1E,

H, J, L, p < 0.05). Thinning significantly increased the ecosystem N

absorption coefficient and utilization coefficient, and showed opposite

effects on the P and K absorption coefficients and utilization coefficients

(Figures 1C, D, p < 0.05). The N surplus rate in T2 was significantly

lower than other treatments, while there was a significant increasing

trend in ecosystem P and K surplus rates following thinning intensities

(Figure 1F, p < 0.05).
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Compared with CK, thinning improved the ecosystem N, P, and

K cycling function indexes by 5%~232%, 32%~195%, and 104%

~233% respectively (Figure 2, p < 0.05).
3.3 Relationships between ecosystem
nutrient cycling functions and stand
characteristics, soil properties and
ecosystem component
nutrient characteristics

The ecosystem N, P, and K cycling function indexes were

significantly negatively correlated with SOC, TN, TP, AN, AP,

tree productivity, tree ecosystem level K, and herb ecosystem level

N, while there were significant positive correlations between those

nutrient cycling function indexes and the shrub and herb

productivity, and the herb ecosystem level C:N (Supplementary

Tables S2–S4 and Figure 3A, p < 0.05). The ecosystem N and P

cycling function indexes were significantly negatively related to soil

C:P, N:P ratios and ground litter biomass (Supplementary Tables

S2–S4 and Figure 3A, p < 0.05). The tree ecosystem level P had

negative correlations with the ecosystem P and K cycling function

indexes (Supplementary Tables S2–S4 and Figure 3A, p < 0.05). The

ecosystem K cycling function index was positively correlated with

the tree ecosystem level C, tree ecosystem level C:N, tree ecosystem

level C:P and the herb ecosystem level C:P, but had the opposite

effect on the herb ecosystem level P (Supplementary Tables S2–S4

and Figure 3A, p < 0.05). The optimal predictors for ecosystem N, P,

and K cycling function indexes, as identified by the Boruta method,

aligned with with Pearson’s significantly correlated results

(Supplementary Tables S2–S4 and Figures 3A–D, p < 0.05).

Based on the classification of selected predictors, the VPA

analyses indicated that these soil nutrient, litter biomass, plant

productivity and plant nutrient collectively explained the majority

of variation associated with the ecosystem N, P, and K cycling

functions (Figure 4). The soil nutrient, litter biomass, plant

productivity and plant nutrient accounted for 67.1%, 37%, 77.2%,

27.5% of the variation of N cycling functions (Figure 4A), 71.3%,

33.5%, 79.4%, 28.4% of the variation of P cycling functions

(Figure 4B), and 58.3%, 26.6%, 58.8%, 87.5% of the variation of K

cycling functions (Figure 4C), respectively.

PLS-PM identified direct and indirect effects of forest thinning,

plant productivity, litter biomass, soil nutrient and plant nutrient on

the ecosystem N, P, and K cycling functions (Figures 5–7). For N, P,

and K cycling functions, thinning positively affected the plant

productivity (0.84 of the direct effects) and negatively affected litter

biomass (-0.76 of the direct effects) (Figures 5-7A). For N, and P

cycling functions, plant productivity further negatively regulated

plant nutrient and soil nutrient (-0.51 and -0.53 of the direct

effects), and litter biomass positively regulated soil nutrient (0.33 of

the direct effects) (Figures 5, 6A). Plant and soil nutrients jointly

exerted a negative direct effect on the ecosystem N (-0.28 and -0.74)

and P (-0.35 and -0.68) cycling function (Figures 5, 6A). For K cycling

function, plant productivity directly positively regulated plant

nutrient (0.51) and negatively regulated soil nutrient (-0.64)

(Figure 7A). And plant nutrient and soil nutrient have a direct
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positive effect (0.56) and a direct negative effect (-0.52) on the

ecosystem K cycling function (Figure 7A). Overall, the total

positive effects of forest thinning on ecosystem N, P, and K cycling

functions were 0.639, 0.626, and 0.585 respectively (Figures 5-7B).
4 Discussion

4.1 Differences in ecosystem N, P, and K
cycling characteristics

Nutrient cycling is a key ecosystem process closely related to

forest ecosystem structure and function and is also the basis for
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supporting organic matter production in forest ecosystems (Vrignon-

Brenas et al., 2019; Perron et al., 2021). Although ecosystem nutrient

cycling is crucial to the healthy and stable development of

communities, there have been few evaluations of nutrient cycling

characteristics at the ecosystem level. In our study, the ecosystem N,

P, and K cycling parameters were significantly different from each

other, which was consistent with previous research results on the key

cycling processes of different nutrient elements (absorption,

accumulation, distribution, utilization efficiency, etc.) (Rodrıǵuez-

Soalleiro et al., 2018; Schlesinger, 2021). A possible explanation is that

the cycling process of different nutrient elements will be corporately

affected by the physical and chemical properties of the elements,

biological effects, environmental conditions (Vitousek, 2018; Johnson
FIGURE 1

N, P and K cycling parameters in ecosystem under different thinning intensities. (A) Total nutrient return, (B) nutrient absorption, (C) absorption
coefficient, (D) utilization coefficient, (E) cycle coefficient, (F) soil nutrient surplus (%), (G) nutrient productivity, (H) nutrient recycling coefficient, (I)
nutrient retention coefficient, (J) nutrient surplus, (K) plant nutrient turnover coefficient, (L) plant nutrient accumulation coefficient. CK, T1, T2, T3, T4
represent 0%, 15%, 30%, 45% and 60% thinning intensity, respectively. T, treat; N, nutrient element. Different letters indicate significant differences
between different thinning intensities. ns, non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1394112
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pang et al. 10.3389/fpls.2024.1394112
and Turner, 2019; Sayer et al., 2020), exhibiting different nutrient

cycling characteristics. Specifically, the ecosystem’s high N return,

absorption, and utilization rates, along with low N surplus, indicate

severe nitrogen limitation for plant growth in this area, which

conformed with our previous results regarding nutrient

stoichiometry and nutrient reabsorption in multi-plant organs

(Pang et al., 2021b). Additionally, compared with N and K, the

ecosystem’s higher P productivity, retention coefficient, and plant

nutrient turnover time and lower P cycle coefficient, recycling

coefficient, and plant nutrient accumulation coefficient implied that

although P productivity is high in this study area, the cycling intensity

is the lowest. On the one hand, ecosystem P is mainly derived from

the weathering of soil phosphate minerals, which is a relatively slow

process (Zhou et al., 2018; Koester et al., 2021). On the other hand,

ecosystem P cycle also depends on the amount of P returned from

plant organisms (Whitehead, 2000; Mengel and Kirkby, 2012), but in

this study, plant P showed higher retention and higher turnover time,

which also led to lower ecosystem P cycling intensity. As for the N

cycle, ecosystem N sources are diversified. In addition to soil N

nutrient mineralization and plant return, N can also be input through

atmospheric nitrogen deposition and biological nitrogen fixation, so

it has a higher cycling intensity relative to P (Wang et al., 2007;

Nevison et al., 2022). Unlike N and P, which often form complex

molecular structures, K mainly exists as soluble ions. These ions are

more easily leached, resulting in a faster nutrient cycle (Qiao et al.,
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2023). Moreover, in order to maintain the K balance, plants in the

forest ecosystem have a “pumping” mechanism, which further

promotes the K circulation rate in the ecosystem (Sardans and

Peñuelas, 2015; Schlesinger, 2021). Overall, ecosystem N, P, and K

cycles exhibited heterogeneous patterns, supporting our hypothesis 1.
4.2 Ecosystem N, P and K cycling functions
following thinning

To maintain the forest ecosystem sustainable development, in

addition to focusing on forest productivity sustainability, the

importance of nutrient sustainability cannot be ignored (Haberl

et al., 2010; Rodrıǵuez-Soalleiro et al., 2018). It is well-known that

the whole-tree harvesting method permanently removes a large

amount of wood and plant residues from the nutrient cycling

system of plant growth, and this high nutrient output rate has a

negative impact on the ecosystem nutrient budget (Smolander et al.,

2010; Thiffault et al., 2011; Pang et al., 2021b). Therefore,

understanding the effects of whole-tree harvesting on the forest

ecosystem nutrient cycling characteristics and functions at the

ecosystem level is of great significance for explaining the forest

ecosystem nutrient balance mechanism after thinning and

formulating scientific forest management strategies (Jordan, 1985;

Pei et al., 2017). Contrary to our initial hypothesis 2, whole-tree
FIGURE 2

Ecosystem N, P and K cycling function indexes under different thinning intensities. CK, T1, T2, T3, T4 represent 0%, 15%, 30%, 45% and 60% thinning
intensity, respectively. T: treat. Different letters indicate significant differences between different thinning intensities. ns, non-significant, ** p < 0.01,
*** p < 0.001.
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harvesting can significantly enhance the ecosystem N, P, and K

cycling functions. The results of this study were inconsistent with

previous researchers who suggested that whole-tree harvesting

aggravated nutrient loss and had a negative impact on nutrient

cycling in forest ecosystems (Kaarakka et al., 2014). From the

details, there was no difference in the nutrient concentration and

returned biomass of above-ground litter and underground fine roots

under different thinning intensities (Supplementary Figures S8, S17,

S19; Supplementary Table S3), and the nutrient input from

atmospheric precipitation was also consistent. So, the total nutrient

return amounts and nutrient productivity did not respond to

thinning treatments, and had no effects on the ecosystem nutrient

cycling functions (Figure 1). However, N, P, and K cycle coefficients,
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recycling coefficients, surplus rates, and plant nutrient accumulation

coefficients significantly increased with the increasing thinning

intensity, while N, P, and K absorption amounts, retention

coefficients, and plant nutrient turnover time significantly

decreased (Figure 1). Collectively, these results proved that the N, P

and K cycling intensity in the ecosystem increased following thinning,

promoting the improvement of N, P and K cycling functions at the

ecosystem level. Simultaneously, there are coupling effects and

mutual influences in the multi-nutrient element cycling process

(Zhang et al., 2019). In this study area, due to N limitation, the

ecosystem N absorption coefficient and utilization coefficient

increased significantly with the increased thinning intensity, and

the N surplus amounts showed a significantly low value at T2,
FIGURE 3

Correlation between ecosystem N, P and K cycling function indexes and influencing factors, and selection of important predictors for ecosystem N,
P and K cycling functions. Z_N, Z_P, Z_K: N, P and K cycling function indexes; WC: water content; BD: soil bulk density; SS and HS: shrub and herb
Shannon-Wiener indexes; LB: litter biomass; M_C:N, M_C:P, M_N:P: microbial biomass stoichiometric ratios; P_tree, P_shrub, P_herb, P_litter,
P.0.5mm, P.0.5.1mm, P.1.2mm, P.S2mm: tree, shrub, herb, litter, <0.5mm, 0.5-1mm, 1-2mm and <2mm fine root productivity; T_C, T_N, T_P, T_K,
S_C, S_N, S_P, S_K, H_C, H_N, H_P, H_K, T_C:N, T_C:P, T_N:P, S_C:N, S_C:P, S_N:P, H_C: N, H_C:P, H_N:P: C, N, P and K concentrations and
stoichiometric ratios of trees, shrubs and herbs at the ecosystem level. (A): red indicates a negative correlation and blue indicates a positive
correlation; the darker the color and larger the size of the square is, the greater the absolute value of the correlation coefficient. (B-D) green and
yellow columns represent selected important predictors, and red columns represent unselected factors. *p < 0.05, **p < 0.01, ***p < 0.001.
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indicating that the ecosystem N utilization and consumption

increased significantly, the N cycling speed was accelerated, and

which may also have led to the improvement of the ecosystem P and

K cycling functions. Furthermore, previous studies on the effects of

whole-tree harvesting on nutrient cycling in forest ecosystems mostly

focused on the nutrient budget of plant or soil pools (the single

ecosystem component) (Yan et al., 2017; Pang et al., 2021b), and

lacked understanding of the nutrient cycling function at the

ecosystem level. In this study, the ecosystem function index was

employed to systematically extract comprehensive information
Frontiers in Plant Science 10
regarding ecosystem nutrient cycling characteristics, providing in a

more representative assessment of the impact of whole-tree

harvesting on nutrient cycling functions at the ecosystem level.
4.3 Control factors of N, P and K cycling
functions following thinning

Nutrient cycling in forest ecosystems involves complex processes

driven by various influencing factors (Johnson and Lindberg, 2013;
FIGURE 4

Variation partitioning analysis displaying the effects of soil nutrient, litter biomass, plant productivity and plant nutrient characteristics on ecosystem
N, P and K cycling functions. (A) N cycling, (B) P cycling, (C) K cycling.
FIGURE 5

Partial least squares path analysis showing effects of thinning on ecosystem N cycling function. (A) Influence path of variables on N cycling, (B) total
effects of variables on N cycling, (C) weight of the outer model. Red and blue arrows indicate positive and negative flows of causality. The width of
the arrows indicates the strength of the path coefficient. Numbers on the arrow indicate significant standardized path coefficients. R2 indicates the
variance of the dependent variable explained by the model. Z_N: N cycling function index; P_tree, P_shrub, and P_herb: tree, shrub and herb
productivity; H_N and H_C:N: herb N concentration and C:N ratio at the ecosystem level. * p < 0.05, ** p < 0.01, *** p < 0.001.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1394112
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pang et al. 10.3389/fpls.2024.1394112
Vitousek, 2018). Whole-tree harvesting drastically changes the biotic

and abiotic factors in the forest ecosystem, thereby most likely

significantly affecting the ecosystem nutrient cycling function

(McDaniel et al., 2013; Sicard et al., 2016). In the present study, PLS-

PM revealed that whole-tree harvesting mainly promoted ecosystem N

and P cycling functions through two pathways: (1) whole-tree

harvesting regulated litter biomass and affected soil nutrient

characteristics, then regulating the ecosystem N and P cycling

functions; (2) whole-tree harvesting adjusted ecosystem plant

productivity, influenced both plant and soil nutrient characteristics,

and then adjusting ecosystem N and P cycling functions. First of all,

early studies pointed out that litter nutrient return is an important

source of soil nutrients (Chao et al., 2019; Keller and Phillips, 2019),

and litter biomass has a positive impact on soil nutrients (Figures 5, 6).

Our results showed that whole-tree harvesting significantly reduced

litter biomass return and had a negative impact on soil nutrients

(Supplementary Figure S3; Supplementary Tables S2, S3), in agreement

with previous results (Clarke et al., 2021; Smith et al., 2022; Vos et al.,

2023). Secondly, the ecosystem plant productivity represents the ability

of plant systems to compete and consume nutrients (Liu, 2009). We

found that although the productivity of the tree layer was significantly

reduced by whole-tree harvesting, the productivity of the understory

vegetation increased rapidly after thinning (Supplementary Figure S6).

At the same time, the VPA analysis results showed that the ecosystem

plant productivity was the main controlling factor of the ecosystem N

and P cycling functions while the PLS-PM path coefficient showed that
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the whole-tree harvesting had a significant positive effect on the

ecosystem plant productivity. All these results indicated that the

productivity of understory vegetation after thinning played a more

significant role in regulating the ecosystem N and P cycling functions

and confirmed findings from previous studies that thinning promotes

understory vegetation growth, with its productivity making an essential

contribution to ecosystem nutrient reserves and nutrient cycling (Ma

et al., 2007). Therefore, when whole-tree harvesting caused a large

amount of nutrient loss, the rapidly increased understory vegetation

productivity intensified nutrient consumption and competition, having

negative effects on plant and soil nutrient characteristics (Elser et al.,

1996; Bauhus et al., 2001). Ultimately, the degradation of plant and soil

nutrient characteristics had direct negative impacts on the ecosystem N

and P cycling functions, supporting the previous conclusion that

intensity disturbance negatively affects the nutrient budget and

nutrient cycling function (Kaarakka et al., 2014).

Compared with the ecosystem N and P cycling functions, PLS-

PM results showed that whole-tree harvesting mainly affected the

plant and soil nutrient characteristics by adjusting the ecosystem

plant productivity, thereby enhancing the ecosystem K cycling

function. Moreover, within the regulation pathway, it was

noteworthy that the positive effect of ecosystem plant productivity

on plant nutrient characteristics, as well as the positive effect of

plant nutrient characteristics on K cycling function, differed from

the effects of plant productivity on N and P cycling functions, where

it exerts an indirect positive effect through its negative impact on
FIGURE 6

Partial least squares path analysis showing effects of thinning on ecosystem P cycling function. (A) Influence path of variables on P cycling, (B) total
effects of variables on P cycling, (C) weight of the outer model. Red and blue arrows indicate positive and negative flows of causality. The width of
the arrows indicates the strength of the path coefficient. Numbers on the arrow indicate significant standardized path coefficients. R2 indicates the
variance of the dependent variable explained by the model. Z_P: P cycling function index; P_tree, P_shrub, and P_herb: tree, shrub and herb
productivity; H_N and H_C:N: herb N concentration and C:N ratio at the ecosystem level. * p < 0.05, ** p < 0.01, *** p < 0.001.
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plant nutrient characteristics. It is well known that removing trees

through thinning can reduce competition pressure for nutrient

resources in plant communities (Hertel et al., 2009). Relative to

the important regulatory role of herb nutrients (plant nutrient

characteristics) on the ecosystem N and P cycling functions, tree

nutrients were included in the plant nutrient characteristics in the K

cycling function PLS-PM model (Figures 5-7C). Therefore, in the

K-cycling process, the direct positive effects of ecosystem plant

productivity on plant nutrient characteristics (herbs and trees) may

be due to the fact that the nutrient competition pressure released by

thinning exceeded the nutrient consumption and competition

pressure caused by increased understory vegetation productivity,

thus inducing the positive effects of ecosystem plant productivity on

plant nutrient characteristics. Additionally, the differential

regulation patterns of N, P, and K cycling functions may depend

on synergistic effects of multiple factors not monitored in this study,

such as climate drivers, elemental heterogeneity or biocatalytic

effects (Vitousek, 2018; Johnson and Turner, 2019; Sayer et al.,

2020). And unexplained parts of the VPA and PLS-PM models

require further investigation (Figures 6, 7). Furthermore, the direct

positive effect of plant nutrient characteristics on K cycling function

was consistent with the positive correlation between plant nutrient

stoichiometric ratios and K cycling function index (Figures 3A, 7A),

suggesting the importance of plant nutrient stoichiometric ratios in

the ecosystem K cycling function regulation. Similar findings were
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also reported elsewhere in studies of forest or non-forest ecosystem

nutrient cycling (Tripler et al., 2006; Chen B. et al., 2023). Overall,

whole-tree harvesting showed inconsistent regulatory mechanisms

for N, P and K cycling functions, supporting our hypothesis 3.
5 Conclusions

Our study proved that the ecosystem N, P, and K cycles had

heterogeneous cycling patterns. Whole-tree harvesting significantly

improved the ecosystem N, P and K cycling functions. We found

two regulatory paths for N and P cycling functions: (a) whole-tree

harvesting regulated litter biomass and affected soil nutrient

characteristics, then regulating the ecosystem N and P cycling

functions, (b) whole-tree harvesting adjusted plant productivity,

influenced both plant and soil nutrient characteristics, and then

thereby adjusting ecosystem N and P cycling functions.

Contrastively, whole-tree harvesting mainly affected the plant and

soil nutrient characteristics by adjusting the ecosystem plant

productivity, and promoting the ecosystem K cycling function. N

and P cycling functions were mainly regulated by understory plant

productivity while tree and herb nutrient characteristics were key

driving factors for K cycling functions. These results indicate that

the ecosystem N, P, and K cycling functions are driven by different

mechanisms. We believed that this work could advance our
FIGURE 7

Partial least squares path analysis showing effects of thinning on ecosystem K cycling function. (A) Influence path of variables on K cycling, (B) total
effects of variables on K cycling, (C) weight of the outer model. Red and blue arrows indicate positive and negative flows of causality. The width of
the arrows indicates the strength of the path coefficient. Numbers on the arrow indicate significant standardized path coefficients. R2 indicates the
variance of the dependent variable explained by the model. Z_K: K cycling function index; P_tree, P_shrub, and P_herb: tree, shrub and herb
productivity; H_P, H_C:P, T_P, T_K and T_C:P: herb P concentration, herb C:P ratio, tree P concentration, tree K concentration and tree C:P ratio at
the ecosystem level. ns: non-significant, ** p < 0.01, *** p < 0.001.
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understanding of the effects of forest management on the forest

ecosystem nutrient cycle.
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