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Effect of red and blue light
versus white light on fruit
biomass radiation-use efficiency
in dwarf tomatoes
Xinglin Ke1, Hideo Yoshida1, Shoko Hikosaka1 and Eiji Goto1,2*

1Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan, 2Research Center for
Space Agriculture and Horticulture, Chiba University, Chiba, Matsudo, Japan
The effect of the ratio of red and blue light on fruit biomass radiation-use

efficiency (FBRUE) in dwarf tomatoes has not been well studied. Additionally,

whether white light offers a greater advantage in improving radiation-use

efficiency (RUE) and FBRUE over red and blue light under LED light remains

unknown. In this study, two dwarf tomato cultivars (‘Micro-Tom’ and ‘Rejina’)

were cultivated in three red-blue light treatments (monochromatic red light, red/

blue light ratio = 9, and red/blue light ratio = 3) and a white light treatment at the

same photosynthetic photon flux density of 300 mmol m–2 s–1. The results

evidently demonstrated that the red and blue light had an effect on FBRUE by

affecting RUE rather than the fraction of dry mass partitioned into fruits (Ffruits).

The monochromatic red light increased specific leaf area, reflectance, and

transmittance of leaves but decreased the absorptance and photosynthetic

rate, ultimately resulting in the lowest RUE, which induced the lowest FBRUE

among all treatments. A higher proportion of blue light (up to 25%) led to a higher

photosynthetic rate, resulting in a higher RUE and FBRUE in the three red-blue

light treatments. Compared with red and blue light, white light increased RUE by

0.09–0.38 g mol−1 and FBRUE by 0.14–0.25 g mol−1. Moreover, white light

improved the Ffruits in ‘Rejina’ and Brix of fruits in ‘Micro-Tom’ and both effects

were cultivar-specific. In conclusion, white light may have greater potential than

mixed red and blue light for enhancing the dwarf tomato FBRUE during their

reproductive growth stage.
KEYWORDS
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1 Introduction

Cultivation of dwarf tomatoes in a plant factory with artificial light (PFAL), also

known as a vertical farm, offers numerous advantages (Kato et al., 2011; Ke et al., 2021).

In comparison with general tomato cultivars, the plant density (Meissner et al., 1997)

and space-use efficiency of the dwarf tomato are higher, and its growth cycle is shorter
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(Sun et al., 2006). However, half of the energy cost in a PFAL is

used for lighting (Ohyama et al., 2002; Graamans et al., 2018).

Hence, cultivating dwarf tomatoes sustainably in a PFAL to

improve radiation-use efficiency (RUE) is crucial. Additionally,

particular attention should be given to improving fruit biomass

radiation-use efficiency (FBRUE) in commercial PFALs

producing tomato fruits. FBRUE is defined as the ratio of the

dry mass of a plant’s fruits to the number of photosynthetic

photons captured by the plant (Wheeler et al., 2008; Li et al.,

2019; Ke et al., 2023) and calculated as the product of RUE and

the fraction of dry mass partitioned into fruits (Ke et al., 2023).

In a PFAL, light quality can be manipulated and regulated to not

only improve biomass yield and quality (Goto, 2003; Ilić and

Fallik, 2017; Ji et al., 2020) but also potentially upgrade FBRUE

by enhancing RUE and/or the fraction of dry mass partitioned

into fruits in tomatoes.

According to McCree (1972a), many plants exhibit the highest

quantum efficiency of absorption in the red and blue wavelength

ranges, making red and blue light highly efficient in PFALs. Red and

blue light can also affect the morphology and photosynthesis of

tomatoes. Red light can increase plant height (Liu et al., 2011;

Nanya et al., 2012), increase leaf area (Bugbee, 2016), and reduce

specific leaf area (SLA), while blue light can reduce plant height and

increase SLA (Snowden et al., 2016; Ke et al., 2021; Kong and

Nemali, 2021). However, the effect of blue light on photosynthesis

varies with cultivars in tomatoes (Ouzounis et al., 2016). The ratio

of red and blue light may affect the RUE of the canopy by affecting

the photosynthetic quantum yield of the canopy and leaf (Ke et al.,

2021), as well as the dry matter distribution, such as increasing the

shoot/root ratio (Goto, 2003; Nanya et al., 2012). Therefore, this

ratio may have an effect on FBRUE by affecting RUE and the

fraction of dry mass partitioned into fruits. However, to date, no

study has investigated the effect of the ratio of red and blue light on

the FBRUE of dwarf tomatoes.

Recently, white LEDs are increasingly being utilized in PFALs

owing to their advantages, which include low price, wide spectrum

range, and creating a more comfortable working environment.

More than 60% of horticultural lighting devices use white LEDs

(Kusuma et al., 2020). Moreover, white light not only contains red

and blue light but also green light and far-red light. The

transmittance of green light is high, allowing leaves in the lower

canopy to absorb light, which enhances the uniformity of light

distribution in the canopy. Additionally, far-red light can increase

the photosynthetic rate (Pn) (Zhen and van Iersel, 2017;

Kalaitzoglou et al., 2019), and a previous study demonstrated that

it could increase the allocation of dry matter to fruits (Ji et al., 2019);

therefore, compared with red and blue light, white light may

increase FBRUE. However, to the best of our knowledge, there is

not much information on the comparison of FBRUE in dwarf

tomatoes grown under white light and red-blue light.

This study aimed to investigate the effect of the ratio of red and

blue light on FBRUE in dwarf tomatoes. Additionally, we aimed to

verify whether FBRUE under white light is higher than that under

red and blue light and to determine an appropriate light quality to

improve FBRUE at the reproductive growth stage. In this study, we

quantified the effects of light quality on FBRUE, RUE, and dry
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matter partitioning of fruits by using white light and blue and red

light with three different red/blue light ratios.
2 Materials and methods

2.1 Plant materials and growth conditions

Two dwarf tomato cultivars, ‘Micro-Tom’ and ‘Rejina’

(Lycopersicon esculentum), were used as the test materials. After

3-day germination, at a photosynthetic photon flux density (PPFD)

of 200 mmol m–2 s–1, we cultivated tomato seeds using white light

(LDL40S-N19/21, Panasonic Corporation, Osaka, Japan) in a

cultivation room with the following environmental conditions:

1000 mmol mol–1 CO2 concentration, 25/20°C (day/night) air

temperature, 70% relative humidity, and 16/8 h (day/

night) photoperiod.

At 24 days after sowing (DAS), all seedlings were transplanted

under red and blue LED lamps (CIVILIGHT, DPT2RB120Q33 40

type, Showa Denko K.K., Tokyo, Japan; red:blue = 9:1), and PPFD

above the top of the canopy was set as 300 mmol m–2 s–1. As the

growth rate and anthesis time of the first flower in the two cultivars

were distinct, the plant density management between the two

cultivars was different. The number of days, plant density, used

lamps, and PPFD on the top of the canopy during growth periods

are shown in Supplementary Table 1. The first flowers of half of the

plants in ‘Micro-Tom’ and ‘Rejina’ bloomed at 36 and 50 DAS,

respectively. Finally, when the experiments started, the values of leaf

area (LA) / projected leaf area (PLA) in ‘Micro-Tom’ at 36 DAS and

in ‘Rejina’ at 50 DAS were modulated at 1.5 and 1.6, respectively

(Supplementary Figure 1).

Following 36 DAS in ‘Micro-Tom’ and 50 DAS in ‘Rejina’, the

plants were placed in four treatments with different light qualities

(Supplementary Figure 2): red light (R), white light (WH, the same

lamps as previously described white LED), and the mixture of red

and blue lights: red/blue light ratio = 3 (R3B1) and red/blue light

ratio = 9 (R9B1). The PPFD above the top of all canopies was set at

300 mmol m–2 s–1. Apart from the light condition, other

environmental conditions remained unchanged. As soon as

visible side shoots and axillary buds appeared, all plants were

pruned. Final harvests were conducted when half of the fruits

turned red at 82 DAS in ‘Micro-Tom’ and at 100 DAS in ‘Rejina’,

respectively. The spectral photon flux distributions of the LED

lamps are shown in Supplementary Figure 3 and calculations were

performed for the blue, green, and red wavelength fractions

(Supplementary Table 2).
2.2 Growth measurement, Brix, and acidity
of fruits

In each treatment, three to four plants were sampled for fresh

and dry biomass analysis at 36, 43, 50, 57, 64, 71, and 82 DAS for

‘Micro-Tom’ and at 50, 60, 70, 80, 90, and 100 DAS for ‘Rejina’. A

leaf area meter (LI-3000C, Li-Cor Inc., Lincoln, NE, USA) was

utilized to measure LA in ‘Micro-Tom’ and ‘Rejina’ at 82 and 100
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DAS, respectively, with the results taken from two replicates.

Specific leaf area (SLA, cm2 g−1) was calculated by dividing the

LA (cm2) by the leaf dry weight (g). Additionally, the number of

fruits was recorded and plant height was measured.

At 82 DAS in ‘Micro-Tom’ and 100 DAS in ‘Rejina’, two

parameters of fruit quality (Brix and acidity level) were determined

using a pocket Brix-Acidity Meter (PAL-BX|ACID3; Atago Co. Ltd.)

in 6−9 ripe tomatoes from three or four plants for each treatment.
2.3 Reflectance, transmittance,
absorptance, Pn and chlorophyll
concentration of leaves

The reflection and transmission spectra of leaves at 50, 71, and

82 DAS for ‘Micro-Tom’ and 50, 60, 70, and 80 DAS for ‘Rejina’

were measured with three plants sampled per treatment using the

same method reported by Ke et al. (2023). The absorptance was

then computed by subtracting the reflectance and transmittance

from 100%.

At 53, 67, and 81 DAS, the Pn of the topmost, fully expanded,

and unshaded leaf of three randomly selected plants in each

treatment was determined using a portable photosynthesis

measurement system (LI-6400XT, LI-COR Inc., Lincoln, NE,

USA) under the same environmental conditions shown in the

article (Ke et al., 2023).

The chlorophyll concentration was determined on a dry weight

basis using an ultraviolet-visible spectrophotometer (V-750, JASCO

Corporation, Tokyo, Japan) and was extracted from the first leaf from

the top of the main stem with N,N-dimethylformamide at 50, 71 and

82 DAS in ‘Micro-Tom’ and at 50, 70, 80, and 100 DAS in ‘Rejina’,

according to the protocol and method of Porra et al. (1989). Three or

four plants (one leaf per plant) in each treatment were sampled.
2.4 Radiation-use efficiency (RUE) and fruit
biomass radiation-use efficiency (FBRUE)

RUE (g mol−1) is the proportion of the accumulated dry mass

(DW, g) to the integrated PPFD received by a plant during a given

period (DIPPFD, mol) using projected leaf area (Ke et al., 2023). In

this study, the RUE remained constant through the reproductive

growth stage. Thus, the gradient of the fitted linear regression

expressing the connection between DW and DIPPFD was the value

of RUE. FBRUE is defined as RUE (g mol–1) multiplied by the

fraction of dry mass partitioned into fruits (Ffruits, g g
–1) on a given

day (Ke et al., 2023).
2.5 Statistical analysis

Data analysis was performed using SPSS for Windows (Version

24.0; SPSS Inc., Chicago, IL, USA). The Tukey–Kramer test at

p < 0.05 was conducted to investigate significant differences among

treatments after performing one-way analysis of variance

(ANOVA) on the data. The mean values of measured data were
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compared, and the measurements related to FBRUE in each

treatment were repeated three times.
3 Results

3.1 Growth condition

Light quality significantly affected the plant height of ‘Rejina’

but not ‘Micro-Tom’ (Table 1). The plant height in R was

significantly higher than that in WH. Additionally, light quality

affected the SLA in the two cultivars. The SLA of the two cultivars in

R without blue light was the highest and significantly higher than

those in R3B1, which had the highest blue light ratio. Light quality

also had significant effects on the total dry weight ratio in ‘Micro-

Tom’. However, total fresh and dry weights in the two cultivars were

not significantly affected by light quality.
3.2 Reflectance, transmittance, and
absorptance of leaves

Photosynthetically active radiation was most reflected and least

absorbed by the top leaves in R in the two cultivars (Tables 2, 3). In

‘Micro-Tom’, the reflectance values to green and red light in R were

significantly higher than those in WH (Table 2). Moreover, the

absorptance values to green and red light in R were significantly

lower than those in other treatments. In ‘Rejina’, the transmittance

of leaves in R was significantly higher than those in other

treatments (Table 3).
3.3 Pn and chlorophyll concentration

The values of Pn in R at 53, 67, and 82 DAS were the lowest

among all treatments in ‘Micro-Tom’ (Figure 1A). At 67 DAS, the

Pn in R was significantly lower than that in other treatments.

Similar to ‘Micro-Tom’, the values of Pn in ‘Rejina’ under red light

were significantly lower than those in WH at 53 and 67

DAS (Figure 1B).

Light quality significantly affected the concentration of

chlorophyll a+b in the two cultivars (Figure 2). The chlorophyll

concentration of leaves in ‘Micro-Tom’ in WH was significantly

lower than that in other treatments at 71 DAS (Figure 2A). At 82

DAS, it was significantly higher in R than in WH and R3B1.

Similar to ‘Micro-Tom’, the chlorophyll concentration of leaves in

‘Rejina’ in WH at 80 DAS was significantly lower than that in

other treatments (Figure 2B). Additionally, at 100 DAS, the

chlorophyll concentration of leaves in R was significantly higher

than WH.
3.4 RUE and FBRUE

The RUE in Figure 3 was calculated using the data in

Supplementary Figures 4, 5. In ‘Micro-Tom’, the values of RUE
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in WH and R3B1 were significantly higher than those in R and

R9B1 (Figure 3A). The highest RUE in WH was 0.38 g mol−1

higher than the lowest RUE in R. Similarly, in ‘Rejina’, the RUE

value in WH was the highest, and that in R was the lowest among

all treatments (Figure 3B). The blue light proportions of R, R9B1,

and R3B1 were 0%, 10%, and 25%, respectively (Supplementary

Table 2). The RUE increased with an increase in the blue light

proportion from 0% to 25% under red and blue light in both

cultivars (Figure 3).

In ‘Micro-Tom’, Ffruits increased from 36 to 71 DAS in all

treatments and did not change until 82 DAS (Figure 4A). At 64

DAS, the Ffruits values in WH and R3B1 were significantly higher

than Ffruits in R and R9B1, temporarily. Finally, no significant

difference was observed in Ffruits at 82 DAS (harvest time) among

treatments. In ‘Rejina’, Ffruits increased from 50 to 90 DAS in all

treatments and decreased until 100 DAS except in WH

(Figure 4B). The Ffruits values in WH and R3B1 were

significantly higher than those in R9B1 at 90 DAS. Moreover,

the Ffruits in WH were significantly higher than those in other

treatments at 100 DAS.
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In ‘Micro-Tom’, FBRUE was significantly affected by light quality

at 43, 57, 64, 71, and 82 DAS (Figure 5A). The FBRUE values in WH

and R3B1 were significantly higher than those in R and R9B1 from 64

DAS. In ‘Rejina’, FBRUE was affected by light quality from 70 DAS;

specifically, the FBRUE in WH was significantly greater than that

observed in other treatments (Figure 5B).
3.5 Yield, Brix and acidity of fruits

In ‘Micro-Tom’, there were no significant differences in fruit

fresh and dry weights among the treatments at 71 and 82 DAS

(Supplementary Tables 3, 4). At 82 DAS, the fruit dry matter ratio in

WH was significantly higher than that in R. Additionally, Brix in

WH was significantly higher than that in R3B1 (Table 4). In

‘Rejina’, at 70 DAS, fruit fresh and dry weights in WH were the

highest among all treatments and significantly higher than those in

R (Supplementary Table 3). However, at 100 DAS, no significant

differences were observed in all items among treatments (Table 4;

Supplementary Table 4).
TABLE 2 Effects of light quality on the reflectance and absorptance of leaves in ‘Micro-Tom’ at the green and red wavelengths 82 DAS.

Treatment

Reflectance (%) Absorptance (%)

500–599 nm
(Green)

600–700 nm
(Red)

500–599 nm
(Green)

600–700 nm
(Red)

R 9.3 ± 0.0 a 7.2 ± 0.0 a 86.1 ± 1.2 b 90.9 ± 0.6 b

R9B1 6.3 ± 0.0 ab 5.0 ± 0.1 ab 90.8 ± 0.8 a 94.0 ± 0.3 a

WH 5.2 ± 1.4 b 3.8 ± 1.4 b 89.4 ± 0.4 a 94.0 ± 0.9 a

R3B1 6.1 ± 0.4 ab 4.8 ± 0.0 ab 91.8 ± 0.7 a 93.1 ± 0.0 a
The range of measured light spectrum was 400–700 nm. Each value represents the mean ± standard error. Different letters in a column in a cultivar indicate significant differences among the
treatments based on Tukey−Kramer’s test at p < 0.05 (n = 3−4). R, red light; R9B1, red/blue light ratio = 9; WH, white light; R3B1, red/blue light ratio = 3.
TABLE 1 Effect of light quality on the growth in ‘Micro-Tom’ 82 days after sowing (DAS) and in ‘Rejina’ 100 DAS.

Cultivar
Initial value
or treatment

Plant height
(cm)

Specific leaf
area

(cm2 g−1 DW)

Total fresh
weight
(g)

Total dry
weight
(g)

Total dry
matter ratio

(%)

Micro-Tom

Initial value at
36 DAS

10.3 ± 0.4 288.5 ± 13.7 10.2 ± 0.7 0.9 ± 0.1 8.9 ± 0.3

R 12.7 ± 0.7 157.2 ± 17.4 a 118.8 ± 12.7 10.4 ± 1.6 8.6 ± 0.5 b

R9B1 12.1 ± 0.3 133.0 ± 8.5 ab 115.0 ± 9.8 10.9 ± 0.9 9.5 ± 0.4 ab

WH 11.3 ± 0.3 115.7 ± 4.8 ab 104.6 ± 17.4 10.9 ± 1.8 10.5 ± 0.1 a

R3B1 13.2 ± 0.2 109.0 ± 1.6 b 133.9 ± 5.8 13.1 ± 0.5 9.8 ± 0.2 ab

Rejina

Initial value at
50 DAS

13.7 ± 0.4 186.9 ± 11.9 69.4 ± 2.0 6.5 ± 0.2 9.3 ± 0.2

R 21.7 ± 1.7 a 136.4 ± 6.8 a 382.2 ± 67.0 31.2 ± 4.5 8.3 ± 0.6

R9B1 18.5 ± 0.8 ab 113.6 ± 1.3 b 416.8 ± 85.3 34.7 ± 5.7 8.5 ± 0.3

WH 16.5 ± 0.3 b 102.0 ± 3.4 b 435.7 ± 57.7 35.4 ± 5.1 8.1 ± 0.1

R3B1 19.0 ± 0.8 ab 110.3 ± 4.2 b 452.4 ± 91.1 37.0 ± 6.0 8.4 ± 0.4
DW is dry weight (g). Each value represents the mean ± standard error. Different letters in a column in a cultivar indicate significant differences among the treatments based on Tukey−Kramer’s
test at p < 0.05 (n = 6−8). R, red light; R9B1, red/blue light ratio = 9; WH, white light; R3B1, red/blue light ratio = 3.
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4 Discussion

4.1 Influence of the proportion of red and
blue light on RUE due to alterations in leaf
optical characteristics and photosynthesis

In the present study, monochromatic red light increased SLA

(Table 1) and chlorophyll concentration (Figure 2) compared with

combined red-blue light and white light. In corn, there is an inverse

correlation between chlorophyll concentrations and the reflectance

of green and red light (Daughtry et al., 2000). Moreover, higher SLA

leads to thinner leaves with the same dry matter ratio and higher

transmittance of leaves. Consequently, the monochromatic red light

increased the reflectance and transmittance but decreased the

absorptance (Tables 2, 3) and may ultimately cause the over-

valuation of the DIPPFD and the under-valuation of RUE.

Additionally, there were no significant differences in leaf optical

properties among all treatments at 50 and 71 DAS in ‘Micro-Tom’

and 50, 70, and 80 DAS in ‘Rejina’ (data not shown). Therefore, the

effects of light quality on leaf optical properties appeared

significantly in the late period of the reproductive growth stage.
Frontiers in Plant Science 05
RUE is affected by the ratio of red and blue light not only

because of its effect on optical properties but also its effect on

photosynthesis. For optimal plant growth, the addition of at least a

low percentage of blue light to supplement red light is necessary

(Hoenecke et al., 1992; Cope and Bugbee, 2013). Monochromatic

red light decreased the RUE (Figure 3) by decreasing the Pn

(Figure 1). Several crop plants have demonstrated a decreased

photosynthesis rate when grown solely under red light, such as

rice (Matsuda et al., 2004), wheat (Goins et al., 1997), cucumber

(Hogewoning et al., 2010), and radish (Yorio et al., 2001). This may

be because the disruption to the photosynthetic machinery is caused

by the presence of red light only or the lack of blue light

(Hogewoning et al., 2010). Additionally, monochromatic red light

results in low Fv/Fm in cucumber (Hogewoning et al., 2010) and the

inhibition of PSI and PSII development in wheat (Sood et al., 2004).

Under the combined red and blue light, a higher blue light

proportion, up to 25%, resulted in a higher Pn at 67 DAS in ‘Rejina’

(Figure 1B). This may be associated with the decreasing SLA (Table 1)

and stomatal conductance and an increase in photosynthetic electron

transport capacity (Miao et al., 2016; Izzo et al., 2020). However, there

were no significant differences in total dry weights between the two
A B

FIGURE 1

Effects of light quality on net photosynthetic rate (Pn) in ‘Micro-Tom’ (A) and ‘Rejina’ (B) at 53, 67, and 81 DAS. Solid points represent the average Pn
of three or four plants in each treatment. Error bars represent ± standard error. Different letters indicate significant differences among the treatments
based on Tukey−Kramer’s test at p < 0.05 (n = 3−4). R, red light; R9B1, red/blue light ratio = 9; WH, white light; R3B1, red/blue light ratio = 3; DAS,
days after sowing.
TABLE 3 Effects of light quality on the reflectance, transmittance and absorptance of leaves in ‘Rejina’ at the blue, green and red wavelengths
100 DAS.

Treatment

Reflectance (%) Transmittance (%) Absorptance (%)

400–499
nm

(Blue)

500–599
nm

(Green)

600–700
nm
(Red)

400–499
nm

(Blue)

500–599
nm

(Green)

600–700
nm
(Red)

400–499
nm

(Blue)

500–599
nm

(Green)

600–700
nm
(Red)

R 5.6 ± 0.1 8.9 ± 0.4 a 7.7 ± 0.5 a 0.5 ± 0.1 a 5.7 ± 0.7 a 3.3 ± 0.4 a 94.1 ± 0.1 b 85.7 ± 0.6 b 88.7 ± 0.2 b

R9B1 5.5 ± 0.0 6.5 ± 0.1 b 6.2 ± 0.1 ab 0.1 ± 0.0 b 1.8 ± 0.4 b 0.9 ± 0.2 b 94.5 ± 0.0 ab 91.7 ± 0.5 a 92.9 ± 0.3 a

WH 5.0 ± 0.3 5.9 ± 0.1 b 5.3 ± 0.5 b 0.1 ± 0.0 b 2.5 ± 0.6 b 1.3 ± 0.2 b 94.9 ± 0.3 ab 91.6 ± 0.6 a 93.4 ± 0.5 a

R3B1 4.7 ± 0.3 5.8 ± 0.5 b 5.1 ± 0.0 b 0.1 ± 0.0 b 1.7 ± 0.1 b 1.6 ± 0.0 b 95.3 ± 0.3 a 92.5 ± 0.4 a 93.3 ± 0.0 a
The range of measured light spectrum was 400–700 nm. Each value represents the mean ± standard error. Different letters in a column in a cultivar indicate significant differences among the
treatments based on Tukey−Kramer’s test at p < 0.05 (n = 3−4). R, red light; R9B1, red/blue light ratio = 9; WH, white light; R3B1, red/blue light ratio = 3.
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cultivars (Table 1). This result contrasts with the finding that a large

proportion of blue light has the potential to hinder the production of

biomass in tomato seedlings (cv. Early girl) at PPFDs of 200 and 500

mmol m–2 s–1 (Snowden et al., 2016). However, in the same study, there

were no significant differences in dry mass among different light

qualities in cucumber at a PPFD of 200 mmol m–2 s–1 as well as in

radish, soybean, lettuce (cv. Waldmann’s Green), and wheat at PPFDs

of 200 and 500 mmolm–2 s–1. The drymass of lettuce plants “Gentilina”

(cv. Rebelina) decreased and then increased with an improved

proportion of blue light at a PPFD of 215 mmol m–2 s–1 (Pennisi

et al., 2019). This may be attributed to the highly cultivar-specific effects

of the ratio of red and blue light on stomatal conductance and Pn in

tomatoes (Ouzounis et al., 2016). Therefore, at 67 DAS, there was a

significant difference in Pn between monochromatic red light and
Frontiers in Plant Science 06
mixed red and blue light in ‘Micro-Tom’ (Figure 1A) but no significant

difference in ‘Rejina’ (Figure 1B). Additionally, the values of Pn in the

two cultivars decreased with time. This may be attributed to leaf

senescence (Quirino et al., 2000). Thus, a higher blue light proportion

led to higher Pn and further led to higher RUE (Figure 3) under the

combination of red and blue light.
4.2 Blue light improves FBRUE by
improving RUE rather than Ffruits

Except for two temporary periods around 64 DAS in ‘Micro-

Tom’ and 90 DAS in ‘Rejina’, there was no significant difference in

Ffruits among the three treatments under the combination of red and
A B

FIGURE 2

Effects of light quality on chlorophyll concentration of leaves in ‘Micro-Tom’ (A) at 50, 71, and 82 DAS, and in ‘Rejina’ (B) at 50, 70, 80, and 100 DAS.
DW (g) is dry weight. Solid points represent the average value of three plants in each treatment. Error bars represent ± standard error. Different
letters indicate significant differences among the treatments based on Tukey−Kramer’s test at p < 0.05 (n = 3). R, red light; R9B1, red/blue light
ratio = 9; WH, white light; R3B1, red/blue light ratio = 3; DAS, days after sowing.
A B

FIGURE 3

Effects of light quality on RUE in ‘Micro-Tom’ (A) and ‘Rejina’ (B) during the reproductive growth stage. The RUE was calculated using the data in
Supplementary Figures 4, 5. Error bars represent ± standard error. Different letters indicate significant differences among the treatments based on
Tukey−Kramer’s test at p < 0.05 (n = 3). R, red light; R9B1, red/blue light ratio = 9; WH, white light; R3B1, red/blue light ratio = 3.
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blue light (Figure 4). Until 71 DAS in ‘Micro-Tom’ and 70 DAS in

‘Rejina’, a higher blue light proportion resulted in higher fruit fresh

and dry weights among the three treatments (Supplementary

Table 3). However, both cultivars are determinate tomatoes, and

no new fruits emerged from the main stem during the late

reproductive growth stage. Hence, there were no significant

differences in the number of fruits and fruit fresh and dry weights

among the three treatments until the harvest (Supplementary

Table 4). Consequently, blue light improved FBRUE by mainly

increasing RUE rather than Ffruits.

The range of FBRUE in ‘Micro-Tom’ was 0.39–0.61 g mol−1,

which was higher than 0.21–0.33 g mol−1 in ‘Rejina’ (Figure 5).

Previous studies have demonstrated that the FBRUE values of

tomatoes cultivated in a controlled environment ranged from

0.20−0.36 g mol−1 (Goto, 2011; Li et al., 2019), which was almost

the same as for ‘Rejina’ in the present study. The Ffruits values in

‘Micro-Tom’ and ‘Rejina’ were 0.55−0.60 and 0.41−0.66 g mol−1,
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respectively (Figure 4) which were similar to the values reported

perviously (Cockshull et al., 1992; De Koning, 1993; Cavero et al.,

1998; Scholberg et al., 2000). The range of RUE in ‘Micro-Tom’ was

0.65–1.03 g mol−1, which was higher than the RUE of 0.50–0.77 g

mol−1 in ‘Rejina’ (Figure 3). Therefore, the difference in FBRUE

between the two cultivars was mainly due to the distinction in RUE

rather than Ffruits.

Although the two cultivars could not be compared statistically

because of the inconsistency in plant density and light environment,

the RUE of ‘Micro-Tom’ was higher than that of ‘Rejina’, although

the Pn of ‘Rejina’ was higher than that of ‘Micro-Tom’ (Figure 1).

This discrepancy may be attributed to two reasons. Firstly, the

respiration rate of ‘Rejina’ was higher than that of ‘Micro-Tom’

(Supplementary Figure 6), leading to more dry mass being

consumed during the dark period. Secondly, there were about ten

true leaves in ‘Rejina’ and six true leaves in ‘Micro-Tom’ on the

main stem. The fifth true leaf from the bottom in ‘Rejina’ and the
A B

FIGURE 5

Effects of light quality on fruit biomass radiation-use efficiency (FBRUE) over time in ‘Micro-Tom’ (A) and ‘Rejina’ (B). Error bars represent ± standard
error. * and ** indicates significant difference among the treatments based on Tukey−Kramer’s test at p < 0.05 and p < 0.01 (n = 3), respectively.
R, red light; R9B1, red/blue light ratio = 9; WH, white light; R3B1, red/blue light ratio = 3.
A B

FIGURE 4

Effects of light quality on the fraction of dry mass portioned to fruits (Ffruits) over time in ‘Micro-Tom’ (A) and ‘Rejina’ (B). Error bars represent ±
standard error. * indicates significant differences among the treatments based on Tukey−Kramer’s test at p < 0.05 (n = 3−6). R, red light; R9B1, red/
blue light ratio = 9; WH, white light; R3B1, red/blue light ratio = 3.
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sixth true leaf in ‘Micro-Tom’ were expanded at 36 DAS

(Supplementary Figure 7A). The age of the top leaf in ‘Rejina’

was younger than that in ‘Micro-Tom’ at the same DAS. In

addition, until harvest, the age of the bottom leaf in ‘Micro-Tom’

was younger than that in ‘Rejina’. Furthermore, the top leaves (2–3

leaves) in ‘Rejina’ occupied 20–30% and in ‘Micro-Tom’ occupied

30–50%. Therefore, the Pn of the whole canopy in ‘Rejina’ may be

less than that in ‘Micro-Tom’. In the future, the Pn of the whole

canopy should be measured and used for the investigation of the

RUE of the canopy. Moreover, the growth speed was also different

between the two cultivars. Until 36 DAS, when the first flower in

‘Micro-Tom’ bloomed, the ‘Micro-Tom’ plant was taller and larger

than the ‘Rejina’ plant (Supplementary Figure 7A). However, the

‘Rejina’ plant was taller and larger than the ‘Micro-Tom’ plant at 50

DAS (Supplementary Figure 7B). Therefore, it is also important to

consider choosing tomato cultivars with high RUE in the

commercial PFAL.
4.3 White light may have a greater capacity
for enhancing FBRUE than red and blue
light in a PFAL

LED fixtures for horticulture generally comprise a combination

of LEDs emitting red (approx. 660 nm), blue (approx. 450 nm),

white, and/or far-red (approx. 730 nm) light because of their high

efficiency and efficacy (Kusuma et al., 2020). Theoretically, the

photon efficacy (µmol J−1) of blue LEDs is less than that of red

LEDs (Tsao et al., 2010). Additionally, the photosynthetic efficiency

of blue photons is at most 20% lower than that of photons from a

typical red LED (660 nm) (McCree, 1971). Therefore, more red light

usually leads to higher energy use efficiency. However, a blue light

percentage of 5–22 or 30% is typically employed to prevent

excessive stem elongation and shade-avoidance characteristics

(Hogewoning et al., 2010; Kusuma et al., 2020). Therefore, in the

present study, the proportion of blue light we selected did not

exceed 25% (Supplementary Table 2). Moreover, a luminescent

material coating that absorbs blue photons and luminesces at longer
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wavelengths is used to construct white LEDs. Hence, the photon

efficacy of white LEDs is less than that of blue and red LEDs.

However, the advantages of white LEDs, such as affordability, wide

spectrum range, and enhanced comfort in the workplace, have

made them increasingly popular in PFALs.

In the present study, white light increased FBRUE (Figure 5) by

increasing RUE (Figure 3) and Ffruits (Figure 4). There may be two

possible reasons why RUE in WH was the highest. First, the

changing trend of RUE under different light qualities was

associated with Pn changes in the two cultivars. The Pn in WH

was high until 67 DAS in both cultivars (Figure 1). In this study, the

white LED light had 3.3% far-red photons (Supplementary Table 2)

that may increase Pn. Zhen and van Iersel (2017) and Murakami

et al. (2018) reported that supplementing far-red photons (peaking

at 735 nm) to existing red+blue or white LED light synergistically

enhanced the quantum yield of PSII and the Pn of leaves in a broad

range of light intensities. Second, the white light inWH in this study

had 46.7 % green light, while other light treatments had less than 1%

green light (Supplementary Table 2). Green light is able to penetrate

into the leaves more deeply than both red and blue lights, thus

enabling leaves in the lower canopy to absorb more of the green

light (Terashima et al., 2009). Additionally, the efficiency of

photosynthesis is known to be highly driven by the absorption of

green light in leaves (Björkman, 1968; McCree, 1972b). More green

light in WH might enhance the canopy RUE by improving the

uniformity of light distribution throughout the canopy.

The Ffruits in WH was significantly higher than those in other

treatments at 100 DAS in ‘Rejina’ (Figure 4B). A higher red/blue

light ratio led to higher dry mass partitioning to leaves in tomatoes

under red and blue LED light (Liang et al., 2021). The shoot-root

ratio in tomatoes (cv. Sida) was higher under high red-to-blue ratio

light, which was in agreement with Thwe et al. (2020). In the

present study, the dry mass partitioning to leaves in both R and

R9B1 was higher than that in WH and R3B1 in ‘Micro-Tom’ at 64

DAS (data not shown). In addition, far-red light promotes fruit

growth by increasing dry mass partitioning to fruits (Ji et al., 2019).

This may be one reason why Ffruits was the highest at 90 and 100

DAS in ‘Rejina’ (Figure 4B).
TABLE 4 Effects of light quality on the fruit dry matter ratio and fruit quality in ‘Micro-Tom’ 82 DAS and in ‘Rejina’ 100 DAS.

Cultivar Treatment
Fruit dry matter

ratio (%)
Brix
(%)

Acidity
(%)

Brix/acidity

Micro-Tom

R 7.7 ± 0.4 b 5.4 ± 0.1 ab 1.2 ± 0.1 4.7 ± 0.3

R9B1 8.3 ± 0.4 ab 5.3 ± 0.2 ab 1.2 ± 0.1 4.5 ± 0.4

WH 9.6 ± 0.1 a 5.7 ± 0.4 a 1.3 ± 0.1 4.5 ± 0.3

R3B1 8.5 ± 0.2 ab 4.8 ± 0.2 b 1.3 ± 0.1 4.1 ± 0.6

Rejina

R 6.5 ± 0.4 5.5 ± 0.1 0.7 ± 0.1 8.5 ± 0.8

R9B1 6.5 ± 0.1 5.5 ± 0.2 0.7 ± 0.1 7.9 ± 0.6

WH 5.8 ± 0.2 5.9 ± 0.2 0.6 ± 0.0 10.6 ± 0.8

R3B1 6.8 ± 0.1 5.8 ± 0.1 0.7 ± 0.0 8.1 ± 0.5
Each value represents the mean ± standard error. Different letters indicate significant differences at the p < 0.05 level among light-quality treatments with Tukey−Kramer’s test. Each value of the
fruit dry matter ratio represents a mean of three values. There were 6−9 fruits sampled in each treatment for fruit quality. R, red light; R9B1, red/blue light ratio = 9; WH, white light; R3B1, red/
blue light ratio = 3.
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In ‘Micro-Tom’, the lowest Pn in R (Figure 1A) led to the lowest

fruit dry weight, which resulted in the lowest fruit dry matter ratio

(Table 4). However, red light may improve the content of soluble

sugars in tomatoes (Erdberga et al., 2020). This aligns with a previous

study indicating that an increased red-to-blue ratio enhanced tomato

glucose and fructose contents and sugar/acid ratio (Thwe et al., 2020).

Therefore, the fruit Brix in R3B1 rather than R was the lowest

(Table 4). In addition, the fruit dry matter ratio and Brix inWHwere

the highest among all treatments at 82 DAS. This may be attributed to

white light containing far-red radiation that can increase fruit sugar

concentration (Ji et al., 2020). The expression of genes related to both

sugar transportation and metabolism, such as HY5 (van Gelderen

et al., 2018), SWEET11, and SWEET12 (Chen et al., 2016), were

increased by far-red light. In summary, white light is suitable for

enhancing RUE, FBRUE, and fruit quality.

This study has certain limitations. It is important to note that

white light is a mixture of light. In this study, we used just one kind

of white light. Therefore, other kinds of white light with different

spectra emitted by white LEDs with different color temperatures

should be investigated in the future to determine whether white

light has a greater capacity for enhancing the FBRUE of tomatoes

than red and blue light in a PFAL. In addition, the cool-type white

LED with a lower R/B light ratio may improve RUE and FBRUE of

dwarf tomatoes at the reproductive growth stage. In Arabidopsis, a

blue light (470 nm) threshold intensity of 5 mmol m–2 s–1 was found

to activate psbD, a PSII core protein D2-encoding gene through

cryptochromes (Mochizuki et al., 2004). In addition, there may be a

qualitative or threshold effect of blue photons on leaf

photosynthesis in cucumbers (Hogewoning et al., 2010).

However, the relationship between blue light and RUE/FBRUE is

still unclear, in terms of whether there is a qualitative threshold and/

or quantitative progressive effect.
5 Conclusions

Our study showed that the decrease in RUE was ultimately

caused by the monochromatic red light, which increased SLA,

reflectance, and transmittance but decreased absorptance and Pn.

Additionally, a higher blue light proportion, up to 25%, led to

higher Pn, which further caused higher RUE under the combined

red and blue light. Moreover, blue light improved FBRUE by

enhancing RUE rather than Ffruits. We also found that FBRUE is

cultivar-specific and was higher in ‘Micro-Tom’ than in ‘Rejina’.

This distinction was attributed to RUE rather than Ffruits.

Compared with red and blue light, white light increased FBRUE

by 0.14–0.25 g mol−1. In both cultivars, white light improved RUE.

However, Ffruits was increased by the white light only in ‘Rejina’.

Moreover, white light improved fruit dry matter ratio and Brix in

‘Micro-Tom’, and this effect was also cultivar-specific. In summary,

white light has more potential to enhance FBRUE than red and blue

light by improving RUE and Ffruits; hence, it is recommended for

improving RUE, FBRUE, and fruit quality at the reproductive

growth stage. Our study results will be helpful in comprehending

how light quality affects the RUE and FBRUE of dwarf tomatoes in

PFALs. Further studies are essential to determine what kinds of
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white light have more potential to boost the FBRUE of tomatoes

than blue and red light, and whether blue light intensity has a

qualitative threshold effect on FBRUE in tomatoes.
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