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The nonuniform distribution of fruit tree canopies in space poses a challenge for

precision management. In recent years, with the development of Structure from

Motion (SFM) technology, unmanned aerial vehicle (UAV) remote sensing has

been widely used to measure canopy features in orchards to balance efficiency

and accuracy. A pipeline of canopy volume measurement based on UAV remote

sensing was developed, in which RGB and digital surface model (DSM)

orthophotos were constructed from captured RGB images, and then the

canopy was segmented using U-Net, OTSU, and RANSAC methods, and the

volume was calculated. The accuracy of the segmentation and the canopy

volume measurement were compared. The results show that the U-Net

trained with RGB and DSM achieves the best accuracy in the segmentation

task, with mean intersection of concatenation (MIoU) of 84.75% and mean pixel

accuracy (MPA) of 92.58%. However, in the canopy volume estimation task, the

U-Net trained with DSM only achieved the best accuracy with Root mean square

error (RMSE) of 0.410 m3, relative root mean square error (rRMSE) of 6.40%, and

mean absolute percentage error (MAPE) of 4.74%. The deep learning-based

segmentation method achieved higher accuracy in both the segmentation task

and the canopy volume measurement task. For canopy volumes up to 7.50 m3,

OTSU and RANSAC achieve an RMSE of 0.521 m3 and 0.580 m3, respectively.

Therefore, in the case of manually labeled datasets, the use of U-Net to segment

the canopy region can achieve higher accuracy of canopy volumemeasurement.

If it is difficult to cover the cost of data labeling, ground segmentation using

partitioned OTSU can yield more accurate canopy volumes than RANSAC.
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1 Introduction

Precise management, such as application and pruning, of the

canopy is important for fruit yield and quality. Canopy volume can

provide a reference for precise pesticide application and pruning.

Several pesticide application models require the use of canopy

volume as an input variable (Gil et al., 2013; Nan et al., 2019;

Sultan Mahmud et al., 2021). However, accurate measurement of

canopy volume relative to tree height is more difficult (Tsoulias

et al., 2019). To accurately obtain canopy volume, traditional

methods require a number of expensive manual measurements,

which increases the management cost of the production process.

With the development of sensor technology, LiDAR, ultrasonic

sensors, and cameras are used for nondestructive and rapid

measurement of canopy volume.

Terrestrial LiDAR has a wide range of applications in orchard

phenology, such as canopy volume measurement and tree height

measurement (Pfeiffer et al., 2018; Brede et al., 2019). Due to the long

time required for a single scan and the need to scan as many locations

as possible to avoid occlusions, a complete scan of a 1-ha orchard can

take 3–6 days, even for an experienced team (Wilkes et al., 2017).

Mobile LiDAR scanning with a real-time kinematic (RTK) receiver

was developed to improve the efficiency of canopy point cloud

collection (Karp et al., 2017; Wang et al., 2017; Gené-Mola et al.,

2019; Mokros ̌ et al., 2021). It has been shown that tree segmentation

and canopy parameter extraction can also be achieved by LiDAR on

UAV platforms, which reduce the effect of vibration and are easy to

register (Yoshii et al., 2022; Yuan et al., 2022; Caras et al., 2024).

LiDAR still has a high cost compared to cameras. UAV remote

sensing imagery has been widely used in the precision management

of orchards (Stateras and Kalivas, 2020; Zhang et al., 2021;

Pagliai et al., 2022; Sinha et al., 2022). With structure from motion

(SFM) technology, three-dimensional information such as tree

heights and canopy volume in orchards can be obtained using

drone imagery (Mu et al., 2018; Anifantis et al., 2019;

Maimaitijiang et al., 2019; Ross et al., 2022; Vélez et al., 2022; Vinci

et al., 2023). For some orchards, crown diameter also can be

measured (Chang et al., 2020). Leaf area index (LAI) and leaf

porosity can even be obtained using multispectral images (Raj

et al., 2021; Zhang et al., 2024), while crop water stress index can

also be assessed to inform precision irrigation (Chang et al., 2020).

Combined with computer vision technology, it can even enable fruit

recognition to provide growers with yield information in the early

stages of crop growth (Ariza-Sentıś et al., 2023). The digital surface

modeling (DSM) created by images contains the height of the crop

(Zarco-Tejada et al., 2014; Yurtseven et al., 2019; Lu et al., 2021;

Tunca et al., 2024).

Furthermore, to obtain the volume of the canopy, the digital

terrain model (DTM) needs to be split from the DSM (Patrignani and

Ochsner, 2015; Ali-Sisto et al., 2020; Ali et al., 2021), and the canopy

height model (CHM) is created by taking the difference between the

DSM and the DTM (Eitel et al., 2014; Walter et al., 2018). Next,

canopy volume can be obtained by summing the CHM with voxel

(Stovall et al., 2017; Wallace et al., 2017). For field crops, it is easier to
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obtain the DSM as DTMwhen the crop is not planted (Maimaitijiang

et al., 2019). However, for orchards, accurate ground segmentation is

required for canopy volume measurement tasks. Algorithms that

have been developed for ground segmentation include zone

thresholding methods and plane-fitting (Sithole and Vosselman,

2004; Oniga et al., 2023; Wen et al., 2023). The results of ground

segmentation can significantly affect the measurement of canopy

volume. Therefore, exploring different ground segmentation methods

can improve the accuracy of canopy volume measurements.

This study presents a canopy volume measurement pipeline

based on UAV remote sensing images, which first constructs the

RGB and DSM of the target orchard, then segments the ground and

canopy regions, and finally calculates the canopy volume based on

the segmented masks using DSM. The effects of different

segmentation algorithms on the accuracy of canopy volume

measurements are also investigated.
2 Materials and methods

The point cloud acquired from the moving LiDAR scan was

voxelated, the voxel volumes were summed, and the calculated

canopy volume was taken as the true value. The RGB and DSM

images acquired by the UAV are segmented into plots, and the

canopy and ground section are segmented by different

segmentation methods, and the volume of the canopy is

calculated without the use of high-resolution DTM data. Diagram

of the experimental design is shown in Figure 1.
2.1 Image data collection

2.1.1 Data collection

Field experiments were conducted in a pear (Pyrus

bretschneideri ‘Zaosuhong’) orchard in Pinggu District, Beijing

(40.18°N, 116.97°E, WGS-84). The orchard covered an area of

about 3 ha, and the pear trees were BBCH 91 when

photographed. The trees were spaced in rows with a 4.5-m

interval (Figure 2A) and in rows with a 1.5-m interval between

trees, with an average tree height of about 4 m.

The P4 Multispectral (DJI Technology Inc., Shenzhen, China),

which has one RGB camera and a multispectral camera array with

five cameras covering blue, green, red, red edge, and near-infrared

bands, all at 2 megapixels (MP) with global shutter, was used to

acquire images (Figure 2B), and only its RGB channel (2 MP) was

used in this experiment. The flight height was 30 m, resulting in a

ground sample distance (GSD) of 0.016 m/pix. The head and side

overlap were both 70%, and the images were taken at equal time

intervals. Images were captured between 11:00 and 13:00 to ensure

photograph quality. During the capture period, the weather was

clear and windless, which eliminated the blur caused by swaying

branches. During the flight, the network core service provided by

Qianxun Inc. (Shanghai, China) was used to get more accurate

RTK positioning.
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2.1.2 Image processing
The image procession utilized a workstation with Windows 10

(64-bit), 32 GB of RAM, i7–8700K, and GTX 1080Ti. The

orthophotos and DSM were reconstructed with Terra (3.5.5, DJI

Technology Inc., Shenzhen, China). A high reconstruction quality

was selected to get high accuracy and resolution. The geographic

coordinates were based on the WGS84 (EPSG: 4326) coordinate

system in this study. As the P4M is equipped with an RTK receiver

and the manufacturer supports phase-free control point technology,

no ground image control point was set during the experiment.
2.2 UAV-based canopy
volume measurements

The DSM of an orchard can be utilized to calculate the canopy

volume (Mahmud et al., 2023). First, a segmentation operation was

performed to extract the mask of the canopy region. Next, the

volume of the region between the canopy and the ground was

calculated as the final measured canopy volume. In this study, a U-

Net-based deep learning method, grid-based OTSU, and RANSAC

methods were used to segment the canopy, and the accuracy of
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different segment methods was compared. The orchard is situated

on a gentle hillside, resulting in the ground in the orchard not being

on the same plane. To avoid misclassification in the ground

segmentation, it is important to segment the elevation data of the

orchard area separately. In this study, the orchard was divided into

multiple 4.5 m times 4.5 m plots. The ground within each plot was

considered to be in one plane.

2.2.1 Deep-learning-based ground
segmentation methods

U-Net (Ronneberger et al., 2015) is a widely used deep learning

network in remote sensing for efficient semantic segmentation of

input images through an encoder and decoder. The classical U-Net

can obtain fast segmentation results on smaller datasets with a

lightweight structure. In this study, the classical U-Net was directly

used, containing 31 million parameters, and the inputs were a

four-channel image of 281 pixels times 281 pixels (RGB and DSM)

or a single-channel image of 281 pixels times 281 pixels (DSM)

for training, and the outputs were the segmented masked

images (Figure 3).

Three subfields from the orthophoto and the corresponding

labeled files were divided as the sampling regions for the training
FIGURE 1

Diagram of the experimental design, LiDAR scanning as a baseline method for canopy volume measuremenlt, and comparison of the effects of
different ground segmentation methods on the accuracy of canopy volume measurement.
A B

FIGURE 2

Experimental site and UAV conducting experiment. (A) Pear orchard with a row-to-row distance of 4.5 m. (B) UAV used for image acquisition.
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set, validation set, and test set, with the number of samples being

400, 50, and 100, respectively (Figure 4). The validation set was used

to adjust the epoch, batch size, and learning rate. Labels were

created by an open-source annotation tool called labelme (V5.2.1).

2.2.2 OTSU-based ground segmentation method
The OTSU threshold segmentation method is widely used in the

field of remote sensing. The values of the background and the target

have different distributions, and the OTSU method selects the

threshold corresponding to when the value of the interclass variance

is taken to be the maximum as the optimal threshold. The points

belonging to the ground had a low elevation, and the canopy points had

a higher elevation in the distribution histogram of DSM, showing two

peaks in the histogram. The OTSU method was used to automatically

find the threshold value in the middle of the two peaks to maximize the

interclass variance of the ground and canopy elevation distributions.
Frontiers in Plant Science 04
Points with elevation above the threshold are categorized as canopy

regions, and the rest are ground. Figure 5 illustrates the segmentation

process and the binarized mask map.

2.2.3 RANSAC-based ground
segmentation method

RANSAC is an iteration-based fitting method that obtains the

parameters of a model by randomly sampling the data points and

calculating the probability of a successful fit. Given its good

robustness, it is often used to extract planes within a point cloud.

Open3D is an open-source library that supports rapid development

of software that deals with 3D data. The plane fitting function

therein was used in this study based on the empirical selection of 50

sampling points, 10,000 iterations (N), and a distance threshold of

0.2 m (D). The ground was fitted and split between the canopy and

the ground (Figure 6).
FIGURE 3

U-Net network structure used in the study. Blue boxes correspond to multichannel feature maps with a number of channels marked on the top of
each box. Conv, convolution; up-conv, upconvolution; max pool, max pooling with the size of the convolution kernel.
A B

FIGURE 4

Sampling region of the data in training and the RGB images, DSM images, and corresponding labels used. (A) The red subfield is the random
sampling region for the training set, and the blue and yellow are the test and validation sets, respectively. (B) Sampled training images and
corresponding labels with a total of four channels of RGB and DSM were fed into the network, where the dark-green color in the labels are the
canopy and the light-green-colored regions are the ground.
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2.2.4 Method of tree height and canopy
volume calculation

The positions of the tree base were measured using a tilt-

featured RTK receiver (E500, Beijing UniStrong Science and

Technology Co. Ltd., Beijing, China), and the true height of the

tree was measured using a tower ruler with a height accuracy of ±

5 cm. The coordinates and tree heights of 20 trees were measured in

the scanned area and used to analyze the accuracy of the tree height

measurements. The tree height measured by the LiDAR or UAV

was achieved by selecting points within 0.25 m from the root

coordinates of the tree and calculating the difference between the

maximum and minimum heights.

The volume of the canopy was accumulated from the volume of

each pixel in the mask (Equation 1). The volume of the pixel was

calculated by the area multiplied by the height, which was the

difference between the pixel and the ground mean altitude.

Vcanopy =oGSD2 � (hpix − �hground) (1)

Where Vcanopy is the final volume, GSDis the resolution of DSM

(in this study is 0.016 m/pix), hpix is the altitude of each pixel, and
�hground is the mean value of the altitude of the ground in the plot.
2.3 LiDAR data acquisition methods

The true value of canopy volume is difficult to measure, and

canopy calculations from moving LiDAR scans have typically

been used as the true volume in previous studies (Li et al., 2017;

Sultan Mahmud et al., 2021). A previously developed LiDAR-RTK
Frontiers in Plant Science 05
fusion information acquisition system (Han et al., 2023) was used

to acquire point clouds of the canopy. The LiDAR and RTK

mobile stations were mounted on a frame on top of a vehicle,

which allowed for smooth travel through the orchard (Figure 7A).

Data acquisition was carried out during clear and windless hours,

traveling at a speed of about 1 m/s.

The acquired point cloud was synchronized with the recorded

RTK packet to obtain position and heading, and each frame of the

point cloud was converted to a geographic coordinate system to

obtain a complete point cloud of the scanned area. The complete

point cloud was carefully removed from the ground portion

manually with Meshlab software (2023.12). It was later

constructed as voxel data at 0.1 m in size. Multiplying the

number of voxels by the volume of a single voxel calculates the

measured canopy volume (Figure 7B). The canopy volume

calculated from the moving LiDAR-scanned point cloud was

taken as the true value.
2.4 Statistical methods for
precision evaluation

Mean intersection of concatenation (MIoU, Equation 2) and

mean pixel accuracy (MPA, Equation 3) were used to evaluate the

segmentation accuracy of the model. The data in the training set

was segmented using OTSU and RANSAC, and the segmentation

accuracy was also evaluated.

MIoU = ð TP

TP + FP + FN
+

TN

TN + FP + FN
Þ=2 (2)
FIGURE 6

Conversion of DSM to 3D point cloud and segmentation by RANSAC.
FIGURE 5

Segmentation thresholds for DSM obtained by OTSU and a mask of the canopy region, where dark green is the canopy region and light green is
the ground.
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MPA =
1

k + 1o
k
i=0Pi (3)

where TP is the number of correctly classified pixels in canopy

samples, TN is the number of correctly classified pixels in ground

samples, FP is the number of wrongly classified pixels in

canopy samples, FN is the number of incorrectly classified pixels

in ground samples, and Pi represents the proportion of correctly

classified pixels in a different category.

In total, 50 zones of size 4.5 m * 4.5 m were selected from the

scanned area of the LiDAR. The canopy volumes obtained by

different methods were calculated, and the accuracy of the

volumetric measurements was assessed using the moving LiDAR

scans as the true values. Root mean square error (RMSE, Equation 4),

relative root mean square error (rRMSE, Equation 5), and mean

absolute percentage error (MAPE, Equation 6) were used to assess the

error between the measured and true values.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(Vi − V

0
i )
2

n

s
(4)

rRMSE =
RMSE
�V *100% (5)

MAPE =
100%
n o V

0
i − Vi

Vi

�����
����� (6)

where Vi is the measured volume, V
0
i is the true volume

(measured by moving LiDAR), n is the sample number, and �V is

the mean value of the true volume.
3 Result

3.1 Segmentation of canopy and ground

Different hyperparameter settings will have an impact on the

training results. In this study, by modifying the default parameters

and pretraining, the finalized hyperparameters were an epoch of 20,

a batch size of 5, and a learning rate of 10−5. The losses of the U-Net
Frontiers in Plant Science 06
networks trained with different input data during training are

shown in Appendix A. Both drop faster in the first three epochs,

and the loss stabilizes after 10 epochs of training.

The data in the training set were segmented by trained U-Net,

OTSU, and RANSAC methods, and the example results are shown

in Figure 8. Deep learning-based segmentation methods possess

smoother edges. The neural network trained based on RGB and

DSM inputs more information, and its edges will be smoother and

more closely fit the actual canopy region. While OTSU and

RANSAC segment by simple thresholding, the edges will have a

lot of noise and reduce the recognition accuracy. In addition,

RANSAC has a fixed distance threshold compared to OTSU,

which will incorrectly classify the ground as a tree canopy in

some areas.

Table 1 shows the accuracy of different segmentation methods.

U-Net trained by RGB images and DSM achieved the highest MIoU

and MPA of 84.75% and 92.58%, respectively. RANSAC had the

worst segmentation accuracy, with MIoU and MPA of 64.48% and

90.20%, respectively. The MPAs of the four methods were close to

each other, indicating that the segmentation accuracies of the

different methods were similar for canopy and ground level.

While the difference in MIoU suggested that the different

segmentation methods had different overlaps of the canopy

region, the deep learning method had tidier edges, and the pixel

classification accuracy would be higher at the edges. Therefore, the

overlap with the correct classification was higher to get a higher

MIoU. Although both the DSM-based training U-Net OTSU and

RANSAC methods used only altitude data, the results of the

segmentation method with deep learning were smooth, with a

higher overlap with the actual canopy region.
3.2 Measurement of tree height and
canopy volume

Figure 9 shows the results of tree height measurements using

moving LiDAR scanning and a UAV. The RMSE of the tree height

measured by LiDAR was 0.430 m and MAPE was 8.16%, while the

RMSE and MAPE of UAV were 0.644 m and 14.26%, respectively.
A B

FIGURE 7

Voxel volume of the canopy obtained by LiDAR. (A) Vehicle collecting canopy point cloud with LiDAR and RTK rover. (B) Processing pipeline of point
cloud data acquired by mobile laser scanning.
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The UAV showed a greater error, which was probably due to the

DSM construction process with some errors. Comparing the

measurements of the two methods for the same tree, it could be

found that the UAV’s measurements were low.

Figure 10 shows the accuracy of canopy volume measurements

for different segmentation methods. U-Net trained with DSM

obtained the highest canopy volume measurement accuracy with

an RMSE of 0.410 m3. However, RANSAC segmentation had the

worst canopy volume measurement accuracy, with an RMSE of

0.580 m3. The accuracy of deep learning-based segmentation

approaches was higher than that of traditional methods,

consistent with the results of segmentation accuracy. In the

OTSU and RANSAC methods, the measurement accuracy of

OTSU was higher than that of RANSAC.
4 Discussion

This study presented a pipeline for measuring canopy volume

using UAVs and evaluated the impact of different ground

segmentation methods on the accuracy of the measurements.

The results indicated that the deep learning-based segmentation

method had higher accuracy than the OTSU and RANSAC
Frontiers in Plant Science 07
methods, whether trained with RGB and DSM or only with

DSM. The U-Net model trained with an additional RGB

channel input provided more color and texture information,

improved the segmentation accuracy (Geirhos et al., 2018), and

resulted in the highest segmentation accuracy with MIoU of

84.75%. Since the edges of manual labels were smooth, the

neural network learned the feature of smooth edges, and the

segmentation results do not need filtering operations.

Since the filtering operation on the mask image involved

different filtering algorithms and hyperparameters, the output

results were not filtered in this study but were directly used to

calculate the canopy volume in the next step in order to evaluate

the differences between the different algorithms themselves.

The difference in the performance of OTSU and RANSAC at the

edges might result in the identity of the masked area being larger

than that manually labeled, which leads to a lower MIoU. At the

same time, RANSAC might incorrectly classify a small number of

ground points as a canopy, and some “pretzel-like” noise points can

be seen in the ground part of the segmentation results. RANSAC

incorrectly classified a small number of ground points as a canopy,

and some “pretzel-like” noise points were visible in the ground

portion of the segmentation result. In the DSM constructed using

UAV, there were weeds in the ground part, and the ground part has

a certain “thickness” due to the accuracy of the SFM method, and

RANSAC uses a fixed threshold (0.2 m in this study) to misclassify

some of the ground points as canopy (Figure 11). This might be the

reason why RANSAC has the worst accuracy in segmentation and

canopy volume measurements.

LiDAR tended to give higher results compared to manually

measured true tree heights due to the fact that the LiDAR-equipped

vehicle had a slight wobble when traveling, leading to incorrect

measurements of tree heights (Han et al., 2023). In contrast, the tree

heights measured in the UAV-based constructed DMS will be low.
TABLE 1 MIoU and MPA for different segmentation methods.

Method MIoU MPA

U-Net (RGBD) 84.75% 92.58%

U-Net (DSM) 83.37% 91.55%

OTSU 65.33% 90.56%

RANSAC 64.48% 90.20%
FIGURE 8

Results of different segmentation methods for tree rows: dark green for the canopy and light green for the ground.
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This might be due to the small area of the treetops, which makes it

difficult to recognize the features when constructing the DSM, thus

resulting in the highest point of the tree canopy not being correctly

identified. Considering the difference in measurement efficiency, it

is possible to measure tree height using a UAV.

The accuracy of canopy volume measurements did not follow

the same order as the accuracy of canopy area segmentation

due to multiple sources of error. The UAV-constructed DSM

underestimated the canopy height compared to the point cloud

acquired by the moving LiDAR (Figures 9C, 12), resulting in

underestimated volumes, while the UAV was unable to access the

structure of the inner and lower canopy (Brede et al., 2017; Schneider

et al., 2019). Other studies have reported underestimates of UAV

measurement (Krause et al., 2019; Pourreza et al., 2022). The

overhead captured from the UAV resulted in higher leaves

obscuring details of the lower canopy, and the reconstructed DSM

contained only the upper surface of the canopy, which could lead to

an overestimation of volume. The two errors had opposite effects on

the volume measurements. With the combination of these two

factors, U-Net trained based on DSM alone obtained the best
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canopy volume measurement with an RMSE of 0.410 m3. The

RMSE of the UAV-based tree height measurements in this study

was 0.644 m. An RMSE of 0.51 m was also obtained in young trees

(Vacca and Vecchi, 2024). In a previous study, an RMSE of 0.28 m

could be obtained using a high-resolution camera on a flat orchard

(Mahmud et al., 2023), and an RMSE of about 0.3 m has been

reported in a similar study (Wallace et al., 2016; Birdal et al., 2017;

Krause et al., 2019). There is almost only one branch extending

upwards at the treetop in this study, while the RGB camera only has

200 million pixels, which affects the accuracy of the reconstruction.

There are various ways to measure canopy volume, such as the

envelope polygon method and the voxel method. The voxel method

was used in this study as a baseline method, and the RMSE of the

canopy volume measured with the UAV was 0.410 m3. Using the

envelope polygon method as a baseline and adjusting the different

parameters, the RMSE of measurement is between 0.33 m3 and

0.43 m3 by the UAV (Mahmud et al., 2023). Based on UAV

measurements of canopy volume in apple orchards, the best

measurements obtained at different flight heights had an RMSE of

1.41 m3, using the ellipsoid fitted by manual measurements as a
A B

C

FIGURE 9

Results of different methods of measuring tree height. (A) Tree height measured by LiDAR. (B) Tree height measured by UAV. (C) Comparison of the
results of the two methods of measuring tree height.
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baseline (Sun et al., 2019). In contrast, the reconstruction process in

this study did not use ground control points. With the combination

of errors, the accuracy of canopy volume measurements

was acceptable.

The canopy measurement process proposed in this study can be

used for orchard phenology, pruning, and light interception

estimation (Westling et al., 2020; Scalisi et al., 2021). The developed

method can obtain the variability of the canopy in spatial distribution
Frontiers in Plant Science 09
and provide prescription maps for precise pesticide spraying,

pruning, and other field management work. Compared to LiDAR,

the UAV-reconstructed DSM is missing branch details at the

treetops, leading to an underestimation of tree height. Also, the

ground control point-free reconstruction method may have affected

the accuracy of tree height measurement. The UAV-based canopy

volume testing process can balance efficiency and accuracy and is

particularly suitable for larger orchards.
FIGURE 12

Aligned LiDAR point cloud (yellow) with UAV-constructed DSM
(using RGB coloring).
A B

DC

FIGURE 10

Results of canopy volume measurements for different segmentation methods, with the gray dashed line in the figure being the 1:1 line. (A) U-Net
(RGB and DSM). (B) U-Net (DSM). (C) OTSU. (D) RANSAC.
FIGURE 11

The RANSAC method incorrectly segments undulating ground and
wild weeds.
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5 Conclusion

This study evaluated the effect of different canopy region

segmentation methods on the accuracy of UAV-based canopy

volume measurements. RGB and DSM orthophotos constructed

based on UAV were used to segment the canopy by U-Net, OTSU,

and RANSAC methods and calculate the canopy volume. The

results showed that U-Net trained by RGB and DSM achieved the

best accuracy in the segmentation task, with 84.75% MIoU and

92.58% MPA. The MPA of segmentation by the OTSU and

RANSAC methods is similar to that of the deep learning method,

but the MIoU is 65.33% and 64.48%, respectively, which is lower

than that of the deep learning method due to the lower overlap of

the segmented regions and the obtained canopy mask with a lot of

noise. In tree height measurement, the RMSE of tree height

measured by LiDAR was 0.430 m, while that of the UAV was

0.644 m. However, the canopy volume measurement task was less

affected by the accuracy of tree height measurements. The U-Net

trained using only DSM achieved the best accuracy with an RMSE

of 0.410 m3, an rRMSE of 6.40%, and a MAPE of 4.74%. In contrast,

the RMSE of the U-Net segmentation method trained with RGB

and DSM was 0.471 m3. The canopy volume measurement accuracy

of the traditional OTSU and RANSACmethods was lower than that

of the deep learning method, with RMSE of 0.521 m3 and 0.580 m3,

respectively. Therefore, in the case of having manually labeled

datasets, the segmentation of the canopy region using the deep

learning approach can achieve higher accuracy of canopy

volume measurement.
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Appendix A
A B

FIGURE 1

Loss of U-Net network during training with training epoch. (A) Trained with RGB and DSM. (B) Trained only with DSM.
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