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Dissecting the effect of heat
stress on durum wheat under
field conditions
Eder Licieri Groli1, Elisabetta Frascaroli 1*, Marco Maccaferri 1,
Karim Ammar2 and Roberto Tuberosa1

1Department of Agricultural and Food Sciences, DISTAL, University of Bologna, Bologna, Italy,
2International Maize and Wheat Improvement Center, CIMMYT, El Batán, Mexico
Introduction: Heat stress negatively affects wheat production in several ways,

mainly by reducing growth rate, photosynthetic capacity and reducing spike

fertility. Modeling stress response means analyzing simultaneous relationships

among traits affecting the whole plant response and determinants of grain yield.

The aim of this study was to dissect the diverse impacts of heat stress on key yield

traits and to identify the most promising sources of alleles for heat tolerance.

Methods: We evaluated a diverse durum wheat panel of 183 cultivars and

breeding lines from worldwide, for their response to long-term heat stress

under field conditions (HS) with respect to non stress conditions (NS),

considering phenological traits, grain yield (GY) and its components as a

function of the timing of heat stress and climatic covariates. We investigated

the relationships among plant and environmental variables by means of a

structural equation model (SEM) and Genetic SEM (GSEM).

Results: Over two years of experiments at CENEB, CIMMYT, the effects of HS

were particularly pronounced for the normalized difference vegetation index,

NDVI (-51.3%), kernel weight per spike, KWS (-40.5%), grain filling period, GFP

(-38.7%), and GY (-56.6%). Average temperatures around anthesis were

negatively correlated with GY, thousand kernel weight TKW and test weight

TWT, but also with spike density, a trait determined before heading/anthesis.

Under HS, the correlation between the three major determinants of GY, i.e.,

fertile spike density, spike fertility and kernel size, were of noticeable magnitude.

NDVI measured at medium milk-soft dough stage under HS was correlated with

both spike fertility and grain weight while under NS it was less predictive of grain

weight but still highly correlated with spike fertility. GSEM modeling suggested

that the causal model of performance under HS directly involves genetic effects

on GY, NDVI, KWS and HD.

Discussion: We identified consistently suitable sources of genetic resistance to

heat stress to be used in different durum wheat pre-breeding programs. Among

those, Desert Durums and CIMMYT’80 germplasm showed the highest degree of

adaptation and capacity to yield under high temperatures and can be considered

as a valuable source of alleles for adaptation to breed new HS resilient cultivars.
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1 Introduction

Wheat (Triticum spp.) is one of the most important staple foods

for the human diet worldwide. In 2022, wheat has been cultivated in

219.2 million ha worldwide with a total production of over 808.4

million tons (FAO, 2024, https://www.fao.org/faostat/en). This

makes it the third most important crop in terms of global

production. Wheat is cultivated across a wide range of latitudes,

from 67° North to 45° South including highly diverse

environmental conditions (FAO, 2021). About 10% of wheat

production is attributed to durum wheat (Triticum durum Desf.),

a species of strategic importance in Mediterranean countries. The

lower genome content of tetraploid wheat as compared to hexaploid

wheat makes durum wheat a simplified proxy to better understand

the complex, highly quantitative response of polyploid wheat to

environmental factors at a physiological and molecular level

(Adamski et al., 2020).

Wheat plays a crucial role in the human diet (Shewry and Hey,

2015), but different environmental conditions, including high

temperatures, frequently cause significant yield losses in this crop

(Pequeno et al., 2021). The current situation is predicted to become

worse, especially due to climate change effects and the resulting

increase in temperatures. The Intergovernmental Panel on Climate

Change (IPCC) predicts that the increase in temperature will range

from 2.7 to 4.8°C by 2100 (IPCC (IPCC, 2023). Semenov and

Shewry (2011) predicted that heat stress (HS) will have a stronger

negative impact on wheat production in Europe than drought

stress. Indeed, it has been reported that, on average, each 1°C of

further temperature increase will reduce grain yield in wheat by 6%

(Graziani et al., 2014; Asseng et al., 2015; Martre et al, 2017; Zhao

et al., 2017).

Heat stress (HS) negatively affects wheat in several ways. It

imposes a reduction in photosynthetic capacity (Feng et al., 2014;

Posch et al., 2019), an alteration in the plant water relations

(Hasanuzzaman et al., 2013) and metabolic activities (Farooq

et al., 2011), increases the production of reactive oxygen species

(Sharma et al., 2019; Chen and Yang, 2020), and reduces spike

fertility and grain filling when occurring at flowering or during the

grain filling period (Akter and Islam, 2017; Balla et al., 2019; El

Hassouni et al., 2019; Fabian et al., 2019; Balla et al., 2021). At the

vegetative stage, the primary effect of HS on wheat is a reduction of

seed germination, potentially leading to a poor stand establishment

(Hossain et al., 2013; Akter and Islam, 2017). When occurring at

tillering, HS negatively affects the survival/growth of fertile tillers,

significantly compromising the yield potential of the crop (Poudel

et al, 2021; Poudel et al., 2022). According to Porter and Gawith

(1999), HS can reduce the number of fertile tillers by 15.38%.

Additionally, HS impairs meristem development and reduces plant

growth due to leaf senescence and abscission (Balla et al., 2019), and

reduction of photosynthesis (Posch et al., 2019) leading to lower

biomass production as well as reduced grain yield.

Although HS has a significant impact on plants during

vegetative stages (seedling growth, tillering and stem elongation),

it is during the reproductive stages (booting, flowering, and grain

filling) that has a more pronounced effect on plant development,

fertility, and crop performance (Akter and Islam, 2017; Hussain
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et al., 2018; Telfer et al., 2018; Balla et al., 2019; Fabian et al., 2019;

Sharma et al., 2019; Balla et al., 2021). According to Porter and

Gawith (1999), the negative effect of HS depends on the timing,

duration, and magnitude of the stress imposed on the plants. The

optimal temperatures for plant growth and function vary depending

on the developmental stage of the plant. The optimal temperature

for wheat growth is around 21°C during anthesis and grain filling.

In an extensive review, Porter and Gawith (1999) reported that

wheat can withstand up to 31°C at anthesis and 35.4°C during grain

filling, when even a short period of stress might seriously damage

grain yield and yield components. Additionally, HS at anthesis

reduces pollen fertility and/or its viability and growth leading to

poor fertilization as well as abnormal ovary development, hence

reducing seed setting and the number of kernels per spike

(Djanaguiraman and Prasad, 2014; Fabian et al., 2019; Ullah

et al., 2022) hence grain yield directly. After anthesis (‘terminal

stress’), HS reduces thousand kernel weight and volumetric weight

(Rehman et al., 2021).

Depending on the timing and duration, HS can directly affect

plant development, hence phenology and more specifically tillering,

time of heading and flowering, particularly under conditions of

early HS and relatively high night and day temperatures during

early development (Mamrutha et al., 2020). On the opposite,

variation for heading date caused by genetic determinants other

than heat stress (e.g., photoperiod response, vernalization

response), indirectly affects HS response and should be

considered as a co-variate, rather than a directly causing the

physiological response (Tuberosa, 2012). As pointed out by van

Eeuwijk et al. (2019) traits related to phenology such as flowering

time can make it difficult to evaluate and dissect the genetic control

of other traits that are indirectly influenced by phenology itself.

Moreover, breeders are interested in defining the causal relationship

among the traits involved in stress tolerance, to define which traits

to consider for predicting breeding values. This knowledge can be

also be deployed to reduce the number of traits to consider for GY

prediction (Abdalla et al, 2021; Powell et al., 2021).

Structural Equation Models (SEM) (Wright, 1921) can be

applied to study relationships among phenotypes in multivariate

systems and can produce an interpretation of relationships among

traits different from that obtained with standard multiple trait

models, where all relationships are represented by linear

associations among random variables. Unlike in multiple trait

models, in SEM a given trait can be treated as a predictor of

another one, providing a functional (causal) link between both

(Rosa et al., 2011). SEM has been described and used in quantitative

genetics models (Gianola and Sorensen, 2004), pre-selecting the

causal relationships based on prior knowledge. More recently,

Valente et al. (2013) proposed searching for recursive causal

structures in the context of mixed models for the genetic analysis

of multiple traits, showing that it may be possible to infer

phenotypic networks and causal effects even without QTL or

marker information (Rosa et al., 2011). In SEM a primary trait

can be modeled in terms of its component traits, as in factorial

regression and crop growth models, but they are also suitable for

modeling other biological components of traits (van Eeuwijk et al.,

2019) which can be considered in designing an ideotype, helping
frontiersin.org

https://www.fao.org/faostat/en
https://doi.org/10.3389/fpls.2024.1393349
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Groli et al. 10.3389/fpls.2024.1393349
breeders to define a selection strategy. Network models can be

extended to multiple environments since variation in genetic

correlations between traits across environmental conditions is an

important cause of G×E and SEM could make such changes visible

in a biologically meaningful way (Topner et al., 2017; Momen et al.,

2019; van Eeuwijk et al., 2019; Kruijer et al., 2020; He et al., 2021).

This study was designed to evaluate the response to crop cycle-

long heat stress under field conditions with respect to non stressed

optimal conditions in a diverse durum wheat panel from different

countries. The aim of this study was to dissect the diverse impacts of

heat stress on key yield traits and to identify the most promising

sources of alleles for heat tolerance. We considered phenological

traits, grain yield and its components as a function of the extent of

heat stress and weather covariates. We investigated the use of

different SEMs to identify a network of traits that could help in

the identification of heat tolerant genotypes. We took into account

the genetic population structure and origin of the analyzed

germplasm, drawing on a collection representing genetic diversity

from around the world, to identify those to be considered as suitable

sources of genetic tolerance to heat stress for use in durum wheat

breeding programs.
2 Materials and methods

2.1 Genetic materials

The plant material used in this study consisted of a durum

wheat diversity panel (namely UNIBO-Durum Panel) of 183

accessions (cultivars and elite breeding lines) from Mexico

(CIMMYT), USA and Mediterranean countries (Italy, Morocco,

Spain, Syria, Tunisia), which were selected from a larger panel (336

accessions) based on their pedigree and heading date to minimize

variation due to phenology while maximizing variation in origins.

Accordingly, accessions with high identity-by-descent value based

on pedigree and molecular markers data (Maccaferri et al., 2007b;

Maccaferri et al, 2007a) and/or with differences higher than 7 days

in heading date in Mediterranean countries (Maccaferri et al., 2011)

were excluded to reduce possible bias caused by phenology.

Additional information about UNIBO-Durum Panel is reported

in (Maccaferri et al., 2005; Maccaferri et al., 2007a; Maccaferri et al.,

2007b);. Additionally, five elite cultivars used as parental lines in

different Recombinant Inbreed Lines (RILs) populations at

CIMMYT and the University of Bologna were added to the

experiment in order to evaluate their response to HS

(Supplementary Table 1) (Condorelli et al., 2018).
2.2 Environment characterization

The field experiment was carried out at the Campo

Experimental Norman E. Borlaug (CENEB), CIMMYT’s

experimental station, near Ciudad Obregon (Sonora) located in

northwest Mexico (27° 33’ N; 109° 09’W; 38 masl) (Honsdorf et al.,

2020). The weather at the CENEB station is characterized by an arid

climate with highly variable rainfall (Verhulst et al., 2011). The
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annual mean temperature is approximately 23.5°C ranging from

16.0°C in January to 31.0°C in July (Honsdorf et al., 2020). Based on

the World Reference Base (Verhulst et al., 2009), classified the soil

at CENEB location as a Hyposolic Vertisol (Calcaric, Chromic),

with low soil organic matter (SOM< 12 g kg-1 of soil) as well as

slight alkalinity (pH 8) which is well within the non-toxic range for

wheat. According to the world Mega-Environments (MEs)

classification system developed by CIMMYT, the CENEB location

includes ME1 (temperate, completely irrigated optimal conditions)

when wheat is sown at optimal time (November 15-December 15)

and ME5 (high heat exposure with non-water limiting conditions)

when wheat is planted late (February 15-March 1) for heat tolerance

evaluation (Mondal et al., 2013). Meteorological data from the

2017/18 and 2018/19 were collected at a meteorological station

approximately 2 km from the experimental area.
2.3 Experimental design and
field evaluation

The UNIBO durum panel was evaluated in two crop seasons

(2017/18, 2018/19 – referred to as 2018 and 2019 hereafter,

respectively) as well as two different environmental conditions,

namely (i) control (non-stressed NS) with optimal sowing date,

last week of November/first week of December, and (ii) heat-

stressed (HS) with late sowing date, last week of February/first

week of March to expose plants to higher than the normal

temperature during their entire cycle.

The experiment was carried out in a complete randomized

block design with two replicates, arranged in a rectangular grid with

10 rows by 56 columns. Each experimental unit (plots) consisted of

two rows of 2.1 meters accounting for a plot area of 1.68 m2. Plot

management, including fertilizer regimes, weed, pest, and disease

control followed CIMMYT agronomic practices to optimize

growing conditions regardless of testing environment and

maintain plots free of weeds and diseases or pests. To avoid

any confounding effects due to drought stress, plants received at

least four auxiliary irrigations per season using a furrow

irrigation system.

The following traits were measured and are described in details

in Supplementary Table 2: days to heading (HD), days to maturity

(DTM), grain filling period (GFP), plant height (PH), number of

spikes per linear meter (SPM), kernel number per spike (KNS),

kernel weight per spike (KWS), number of spikelets per spike

(SKT), grain yield (GY), thousand kernel weight (TKW), test

weight (TWT), kernel length (KLE) and kernel width (KWI).

Additionally, as a proxy for total biomass, normalized difference

vegetation index (NDVI) was estimated on different dates during

the whole cycle for both experiments (NS, HS) and for both crop

seasons. NDVI was estimated with individual measurements during

the vegetative and grain filling growth stages as reported in

Supplementary Table 3. NDVI was measured by canopy

reflectance using the GreenSeeker RT100 equipment (Optical

Sensor Unit, NTech Industries, Inc.). After performing all

individual measurements, for each experiment we chose the single

most significant NDVI measurement identified by ANOVA to
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represent the trait, which corresponded to the reading taken at

Zadoks stage 75–83, corresponding to medium milk-soft dough

stage (Supplementary Table 3) (Zadoks et al, 1974). Furthermore,

the four most significant NDVI measurements were used to derive

an index (IT_NDVI), calculating the area under NDVI progress

curve by adapting equation (Equation 1) reported in (Simko and

Piepho, 2012).

IT _NDVI =on−1
i=1 (

NDVIi +  NDVIi+1
2

) ∗ (GDDi+1 − GDDi)

� �

(1)

Where:NDVIi is NDVI at i
th measurement;GDDi is accumulated

growing degree days at the ith measurement and n is the total number

of measurements. GDD refers to the number of heat units, degree

days in °C, required for a crop to progress from stage 1 to stage X. In

this study we used the method proposed by Davidson and Campbell

(1983) (Equation 2).

GDD =o   (
Tmax + Tmin

2
) − Tb

� �
(2)

Where: GDD is growing degree days in °C; Tmax is maximum

daily temperature; Tmin is the minimum daily temperature in °C; Tb is

base temperature, for wheat is 0°C). The chosen NDVI measurements,

either for the NDVI or for the IT_NDVI, were almost at the sameGDD

accumulation level (Supplementary Table 3).
2.4 Weather parameters

Tomonitor the environmental conditions specific of each genotype

based on its specific phenological stage, four additional temperature

parameters were calculated independently for each single plot within

each experimental condition as described by (Telfer et al., 2018).

According to Dreccer et al. (2008), the anthesis period is defined as

the period from 300 GDD before to 100 GDD post-anthesis time.

Similarly, the grain filling period is defined as the period from 100

GDD to 600 GDD post-anthesis time. We did not collect data for

anthesis time, and for the purpose of this study we considered HD as a

rough indicator of the beginning of anthesis period. The following

temperature-derived variables were calculated for anthesis (A) as well

the as for grain filling (GF) growth stage as described above. The

temperature-derived variables used to quantify the duration and

intensity of heat stress were: average maximum temperature (AMT),

number of days with temperature > 30°C (NDTH30), number of days

with temperature > 35°C (NDTH35) and heat degree days (HDD)

(Table 1). HDD was estimated by adapting the equation of (Liu et al.,

2016) (Equation 3).

HDD =o   (Tmax − Th) (3)

Where:HDD is the accumulated heat degree days in °C; Tmax is

the maximum daily temperature in °C; Th is the temperature

threshold for heat stress. Considering the results obtained from

the literature (Farooq et al., 2011; Liu et al., 2016, Liu et al, 2016;

Telfer et al., 2018) we defined 30°C as the temperature threshold for

heat stress.
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2.5 Statistical analyses

2.5.1 Data analyses
Analyses were performed separately for the different treatments,

control (non-stress, NS) and heat-stress (HS), in two crop seasons

(2018 and 2019) as well as jointly. The best linear unbiased

estimates (BLUEs) for each trait in each treatment and year were

calculated using the following mixed model (Equation 4):

yijkl = m + ɡi + tj + sk(j) + rl(jk) + (ɡ� t)ij + (ɡ� s)ik(j) + (ɡ� t � s)ijk(j) + eijkl
(4)

where yijkl is the observed trait, m is the overall mean, gi is the

fixed effect of the genotype, tj is the fixed effect of the treatment, sk(j)
is the random effect of the season (year) within the treatment, rl(jk) is

the random effect of the replicate within the treatment, and the year

and ϵijkl is the residual assumed to be normally and independently

distributed (0, s2). BLUEs were calculated using the lmer4 package

(Bates et al., 2015).

The statistical analysis was also performed within treatments

with the following linear model (Equation 5):

yikl = m +  ɡi +   sk + rl(k) + (ɡ� s)ik + eikl (5)

Broad-sense heritability for each treatment as well as crop

season was calculated with the equation (Equation 6) using the

function repeatability of the package repeatability (Wolak et al,

2012) in R software.

h2 =
s 2
ɡ

s 2
ɡ +   s

2
e
r

(6)

Where:   h2 is the broad-sense heritability, s 2
g and s 2

e are the

genotype and error variance, respectively, and r is the number

of replicates.

For the combined analysis, broad-sense heritability was

calculated as (Equation 7) using the same function and software

previously described.
TABLE 1 Weather variables calculated independently for each single
plot to determine the heat stress experienced by plants from yield trials
conducted under in Non-Stressed control and late planted Heat Stressed
conditions involving the UNIBO-Durum Diversity Panel evaluated at
CENEB-Cd. Obregon, Mexico, in 2018 and 2019.

Growth stage Range of degree days

Anthesis (A)
300°C days before to 100°C
post anthesis

Grain filling (GF) 100°C days to 600°C post anthesis
Weather variables1 Description

AMT_A and AMT_GF Average maximum temperature (°C);

NDTH30_A and NDTH30_GF
Number of days with temperature >
30°C

NDTH35_A and NDTH30_GF
HDD_A and HDD_GF

Number of days with temperature >
35°C
Heat stress Degree Days °C
1_A and _GF: indicate Anthesis and Grain Filling, respectively.
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h2 =
s 2
ɡ

s 2
ɡ +  

s 2
ɡs

s +   s
2
e
sr

(7)

Where the new term s 2
gs   is the genotype × season interaction

and s is the number of seasons (years) in the experiment.

2.5.2 Relationships among traits and structural
equation models

Relationships among phenotypic traits were studied within each

environmental condition (treatment), i.e., control (non-stress, NS)

and heat-stress (HS) treatments. The BLUEs were then used in all

the subsequent analyses as adjusted phenotypic means. The

relationships among all variables, i.e., both plant traits and

environmental covariates, were first evaluated by using Pearson

phenotypic correlation calculated within treatment. To investigate

the role of correlated traits in determining the final yield in the NS

and in the HS environment, i.e., to choose the most important traits

to be included in a multi-trait model, the stepwise regression and

LASSO (least absolute shrinkage and selection operator)

(Tibshirani, 1996, Tibshirani, 2011) allowed us to select a subset

of variables according to the results obtained and to previous

knowledge. In addition, structural equation modeling (Gleason

et al., 2019) was used to represent the relative importance of the

yield component under NS and HS conditions. The final set of

variables was combined into a SEM, where traits were treated as

predictors (exogenous) or responses (endogenous) in a system of

simultaneous equations, hence allowing us to establish functional

(causal) links between phenotypes. The initial phenotypic SEM

model was tested and then subjected to optimization by removing

non-significant paths, one path at a time, in model testing and

selection (He et al., 2021). For individual traits in the SEM the R2

statistic was calculated. Analyses were performed using the R

package lavaan (Rosseel, 2012). Finally, based on SEM path

coefficients, the net effects for each trait were estimated for both

NS and HS environments.

In addition, the causal genotypic effects of traits on yield were

investigated using Genetic-SEM (GSEM), as proposed by Kruijer

et al. (2020) and implemented in the R package pcgen. The GSEM

model was investigated by using the BLUEs from the two years for

each stress treatment and assuming a threshold alpha at P = 0.01,

obtained by bootstrapping. Only traits with direct or indirect

genotypic effect on yield were retained in the final model and

proposed as informative for prediction.

2.5.3 Identification of sources of genetic
tolerance to heat stress

Genotypes considered to be possible sources of genetic

tolerance to heat stress were identified as those better performing

under high temperature and/or those that registered the smallest

decline from the NS to the HS treatment. Moreover, in the attempt

to take into account the different phenology observed in the present

study, performances were estimated as marginal means after

adjusting for HD as covariate. We then fitted the BLUE data of
Frontiers in Plant Science
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HS and NS in the two seasons to a linear model including genotypes

and HD as GDD as covariate, and calculating the marginal means

with the package emmeans in R (Lenth, 2024).
3 Results

3.1 Effect of the growing conditions

The first aim of this study was to evaluate the effect of increased

temperatures on morpho-physiological traits relevant to grain yield

and yield components, and their relationship with environmental

parameters, using a panel of durum wheat of diverse origins. The

elite durum panel previously assembled at the University of Bologna

(Maccaferri et al., 2005, Maccaferri et al., 2011) was evaluated in

Obregon, Mexico, under field conditions in two contrasting

environments, namely, timely-sown, optimal growth and

management conditions (control or not stressed, NS) and late-

sown with otherwise optimal management conditions, simulating a

scenario of long exposure to supra-optimal temperatures and heat

stress (HS) during all growing stages.

The difference in GDD and HDD accumulation across two

consecutive crop seasons were considered. Figure 1 reports the

minimum, maximum and mean temperature during both crop

seasons and shows that in 2018 the maximum temperature

frequently, and right around heading, reached levels above 35°C

during the grain filling period (GFP) in the HS experiment where

values > 40°C were recorded in several days. This was the most

important factor influencing the higher accumulation of HDD in

2018. On the other hand, the maximum temperature did not reach

35°C until the end of the plant growth cycle in 2019. The difference

in HDD is thus one of the most important environmental

parameters, accounting for the differences in phenotypic values

for all traits in crop season 2018 when compared with the 2019 crop

season. Plants evaluated over 2018 and 2019 accumulated different

amounts of GDD and HDD to reach HD and DTM phenological

growth stage (Table 2).

Slightly higher levels of GDDwere observed in the NS treatment

than in the HS, for both time to heading and time to maturity.

However, the late sowing-generated heat stress did not have a very

pronounced effect on GDD, with about 15.0% of difference in GDD

between the timely and late planting treatments. The HDD was

lower in NS than in HS for both HD and DTM, with late sowing

dramatically increasing HDD, especially when considering DTM.

This result is obviously consistent with a higher level of temperature

stress in the late sowing trials. The level of heat stress was slightly

different in the two years, more pronounced in 2018 than in 2019.

HDD accumulation was more pronounced in 2018 with 32.8%

more HDD from sowing to HD and 42.8% from sowing to DTM

(Table 2). However, since the mean square for the year × treatment

interaction was consistently lower than those for year and treatment

for all traits (Table 3), we hereafter report the analyses combined

over years.
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3.2 Phenotypic field response to
heat stress

The analysis of variance (ANOVA) showed significant effects

for all single factors (year, treatment, and genotype) as well as for all

interactions (genotype x treatment, year x genotype, year x

treatment, year x genotype x treatment) for almost all traits

Table 3. Summary statistics combined over years are reported in

Table 4, while the results for a single year and a single treatment are

reported in Supplementary Tables 4, 5. The heat stress experienced

by plants during both crop seasons significantly reduced the

phenotypic value for all traits. The effect of heat stress was

particularly pronounced for GY (-56.6%), NDVI as a proxy

measurement for total biomass (-51.3%) and KWS (-40.5%). All

yield components were affected, from SPM (-23.9%) through KNS

(-29.2%) to TKW (-14.7%). It also substantially affected

phenological traits with reductions of 25.8% for HD, 30.6% for

DTM and 38.7% for GFP. TWT (-2.8%) and other kernel shape

measurements (KLE, -2.7% and KWI, -7.6%) were the least affected.
3.3 Relationship among traits and modeling
of the stress response

Phenotypic correlations among plant traits in NS and HS

treatments are presented numerically in Table 5 and graphically
Frontiers in Plant Science 06
in Supplementary Figure 1. The analysis of relationships among

traits revealed that the phenological parameters (HD, DTM) were

negatively, but weakly, correlated with GY in both testing

conditions, suggesting a very weak trend that earlier genotypes

were, to some extent, higher yielding than later ones under optimal

conditions, a trend that maintained its small magnitude under HS.

On the other hand, the association between phenological

parameters and the most important kernel characteristics (TKW

and TWT) indicated a different dynamic. Correlations of

intermediate magnitude indicated that genotypes heading or

maturing earlier generally had larger kernels with greater test

weights under non-stressed conditions. These relationships

changed under heat stress, with no significant association

observed between HD and TKW and a reversed positive, albeit

very weak, association between DTM and TKW. The intermediate

strong associations between phenological parameters and TWT

observed under NS conditions were maintained under HS but

with an observable or substantial decrease in magnitude. There

was no association detected between phenological parameters and

spike number (SPM) under NS conditions, while a weak negative

association was detected between HD and SPM under HS

suggesting, to a small extent, that earlier genotypes tended to

produce more spikes than later ones. Both phenological

parameters were strongly and positively associated with spike size,

as determined by SKT, under NS and, to a somewhat smaller extent,

under HS conditions, indicating a strong and across-environment
TABLE 2 Growing degree days (GDD) and heat degree days (HDD) accumulated up to heading (HD) and maturity (DTM) by plants from yield trials
conducted under in Non-Stressed (NS) control and late planted Heat Stressed (HD) conditions involving the UNIBO-Durum Diversity Panel evaluated
at CENEB-Cd. Obregon, Mexico, in 2018 and 2019.

Evaluation
condition
(Treatment)

Trait
GDD (d) HDD (d) Difference in GDD

between years
Difference in HDD
between years

2018 2019 Mean 2018 2019 Mean % %

NS
HD 1481.7 1360.2 1421.0 6.6 0.8 3.7 8.2 87.9

DTM 2280.0 2296.6 2288.3 26.1 25.9 26.0 0.7 0.8

HS
HD 1251.0 1202.5 1226.8 93.0 62.5 77.8 3.9 32.8

DTM 1912.5 1896.9 1904.7 230.5 131.8 181.2 0.8 42.8
BA

FIGURE 1

Maximum, minimum, and mean temperature near testing site of CENEB-Ciudad Obregon, Mexico from the sowing date of Non Stressed (NS)
control experiment to the maturity date of the Heat Stressed (HS) experiment during the wheat growing season. (A) 2017/2018 growing season.
(B) 2018/2019 growing season.
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TABLE 3 Summary, two-years combined, ANOVA for days to heading (HD), days to maturity (DTM), grain filling period (GFP), plant height (PH), grain
yield (GY), thousand kernel weight (TKW), test weight (TWT), spikes per linear meter (SPM), spikelets per spike (SKT), kernel number per spike (KNS),
kernel weight per spike (KWS), kernel length (KLE), kernel width (KWI), normalized difference vegetation index (NDVI), and area under heat stress
progress curve for NDVI (IT_NDVI) collected on plants from yield trials conducted under in Non-Stressed control and late planted Heat Stressed
conditions involving the UNIBO-Durum Diversity Panel evaluated at CENEB-Cd. Obregon, Mexico, in 2018 and 2019.

Mean squares

Trait Year Treatment Genotype Gen×Treat1 Year×Gen Year×Treat
Year×Gen×-

Treat

HD 24.0*** 165203*** 176.0*** 31.0*** 7.0*** 467.0*** 5.0***

DTM 11657*** 580606*** 119.0*** 24.0*** 6.0*** 1771*** 4.0***

GFP 10367*** 124619*** 23.0*** 17.0*** 7.0*** 480.0*** 8.0***

PH 12087*** 263490*** 481.0*** 103.0*** 29.0*** 6.0ns 19.0***

GY 456.0*** 4780*** 3.1*** 0.8*** 0.7** 49.0*** 0.5***

TKW 12724*** 26371*** 156.0*** 35.0*** 8.0*** 1356*** 5.0***

TWT 32.0*** 1968*** 19.0*** 3.0*** 1.0*** 96.6*** 0.67***

SPM 13848*** 329166*** 755.0*** 298.0*** 228.0*** 1664*** 166.0**

SKT 336.0*** 2503*** 11.0*** 4.0*** 2.0*** 216.0*** 1.0***

KNS 14005*** 94141*** 279.0*** 54.0*** 32.0*** 2539*** 23.0***

KWS 164.0*** 594.0*** 0.7*** 0.2.0*** 0.1*** 3.0*** 0.1*

KLE 0.3*** 17.0*** 0.5*** 0.03*** 0.01*** 8.3*** 0.01***

KWI 3.0*** 27.0*** 0.1*** 0.02*** 0.005*** 0.003ns 0.004**

NDVI 0.57*** 57240*** 0.017*** 0.009*** 0.004*** 0.022*** 0.003***

IT_NDVI 6639333*** 12181038*** 4596*** 2137*** 865.0*** 3178566*** 905.0***
F
rontiers in Plant Sc
ience
 07
1 Gen×treat, genotype per treatment interaction; Year×Treat, year per treatment interaction, and Year×Gen×Treat, year per genotype per treatment interaction.
***P-v alue< 0.001, **P-value< 0.01, *P-value< 0.05, ns, not significant at P< 0.05.
TABLE 4 Two-years combined summary statistics for days to heading (HD), days to maturity (DTM), grain filling period (GFP), plant height (PH), grain
yield (GY), thousand kernel weight (TKW), test weight (TWT), spikes per linear meter (SPM), spikelets per spike (SKT), kernel number per spike (KNS),
kernel weight per spike (KWS), kernel length (KLE), kernel width (KWI), normalized difference vegetation index (NDVI), and area under heat stress
progress curve for NDVI (IT_NDVI), observed in a yield trials conducted under in Non-Stressed control and late planted Heat Stressed conditions
involving the UNIBO-Durum Diversity Panel evaluated at CENEB-Cd.

Trait

Non Stressed Heat Stressed

% of change 4

Mean Range Std 1 CV
(%) 2

h2 3 Mean Range Std
CV
(%)

h2

HD (d)
80.3

67.0–
108.0 6.60 2.71 0.97 59.6 52.0–84.0 3.84 2.54 0.95 25.8

DTM (d)
126.9

116.0–
147.0 6.51 1.80 0.74 88.1

80.0–
104.0 4.19 2.13 0.86 30.6

GFP (d) 46.8 32.0–59.0 4.62 9,64 0.21 28.7 18.0–40.0 3.26 10.44 0.43 38.7

PH (cm)
83.6

60.0–
150.0 11.17 5.23 0.93 57.5

30.0–
105.0 8.38 7.68 0.82 31.2

GY (t/ha) 6.2 2.9–10.3 1.26 13.13 0.34 2.7 0.2–5.4 0.94 21.90 0.72 56.6

TKW (g) 56.1 37.1–71.6 5.92 3.74 0.92 47.8 30.7–65.7 6.21 4.56 0.70 14.7

TWT (kg/hL) 80.4 70.2–83.9 1.76 0.84 0.96 78.1 70.7–82.3 1.81 1.13 0.91 2.8

SPM (n)
122.0

82.0–
190.0 18.57 11.66 0.65 92.8

48.0–
138.0 15.48 13.44 0.53 23.9

(Continued)
frontiersin.org

https://doi.org/10.3389/fpls.2024.1393349
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Groli et al. 10.3389/fpls.2024.1393349
trend that later heading and/or maturing genotypes tended to

produce more spikelets per spikes and therefore larger spikes,

regardless of heat stress. The relationships between phenological

traits and biomass indicators (NDVI and IT-NDVI) were among

the strongest observed under NS and, while somewhat decreased in

magnitude under HS for HD, they were maintained, indicating that

later and/or later-maturing genotypes tended to produce more

biomass in normal conditions as well as under heat.

To adjust for differences in phenology among the diverse

genotypes included in the panel, we performed again the analysis

for all traits using HD as covariate. To get HD-unbiased indications

of trends, the adjusted data (marginal means) were again inspected

for correlation patterns (Supplementary Figure 2). The adjusted

correlation data clearly pointed out that under non-stressed

conditions GY was primarily and positively associated with spike

size and fertility (GY-SKT, r = 0.79; GY-KNS, r = 0.77), with kernel

size (GY-TKW, r = 0.25; GY-KWS, r = 0.85) and moderately but

negatively associated with spike number (GY-SPM, r = -0.29). This

indicated that with bigger and more fertile spikes, producing larger

grains and generally having less spikes per area, tended to be those

which yielded the most under optimal conditions. Under the heat

stress condition of this experiment, the association between GY

spike size/fertility (SKT, KNS) or kernel size (KWS, TKW), was

either lower or similar in magnitude (GY-SKT, r = 0.37; GY-KNS, r

= 0.59; GY-KWS, r = 0.77; and GY-TKW, r = 0.59). The association

with spike number was significantly modified under heat becoming

moderately positive (GY-SPM, r = 0.36);. The adjustment for HD

covariate made a considerable difference in detecting the association

between GY and biomass indicators (NDVI and IT_NDVI) under

NS conditions. Although no significant correlation was initially

found between GY and biomass indicators under optimal

conditions using the non-adjusted data, the adjustment revealed a

very strong positive association between these traits. This indicates

that, with similar phenology, genotypes with higher biomass

production tend to have higher yields (GY-NDVI, r = 0.88;

IT_NDVI, r = 0.87). Under heat stress, the adjustment

transformed weak positive correlations into very strong ones

(GY-NDVI, r = 0.77; IT_NDVI, r = 0.78), confirming that the
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relationship between GY and biomass indicators persists even

under thermal stress. NDVI measured at medium milk-soft

dough stage under non-stressed conditions was only weakly

associated with grain weight (TKW-NDVI, r = 0.25) but highly

correlated with spike fertility (KNS-NDVI, r = 0.78). Under HS

however, the biomass indicator became strongly associated with

grain weight (TKW-NDVI, r = 0.74), maintaining a relatively

robust association with spike fertility parameters (SKT-NDVI, r =

0.49; KNS-NDVI, r = 0.44).

Table 6 reports the correlations between original non-adjusted

phenotypic traits and weather variables. Under both NS and HS

conditions, GY and temperature-related variables showed always

negative correlations, but very weak, if at all significant. The

associations involving PH or TKW were moderate under NS

conditions and non-significant under HS. SPM, weakly correlated

with temperature variables in grain fill under NS, became slightly

negatively correlated under heat. All other yield components

showed generally low correlations with weather variables,

especially under HS. TWT was variably correlated with

temperature variables under NS, especially to those indicative of

high temperatures during grain fill, but showed correlation

generally non-significant in HS condition. In terms of the

biomass indicators, NDVI and IT_NDVI showed the highest

magnitude associations with temperature derived variables, more

so with those related to temperatures during grain fill under non-

stressed conditions and these associations remained significant

under heat stress, albeit with a reduced strength.

After considering direct or simple correlations between

variables and to better understand the complex picture of the

factors involved and their interactions, multiple models were

considered. Stepwise regression and LASSO were used to evaluate

which traits were the best predictors for GY under the two testing

conditions and the best set of variables for the comparison between

NS and HS environments (Table 7). Results from the stepwise

regression showed that in non-stress conditions, 11 out of 22 traits

were retained, with the Adj. R2. i.e., the R2 adjusted for the number

of traits, increasing from 0.441 to 0.453 while under heat stress

conditions, 12 of the 23 traits resulted in an increased Adj. R2 from
TABLE 4 Continued

Trait

Non Stressed Heat Stressed

% of change 4

Mean Range Std 1 CV
(%) 2

h2 3 Mean Range Std
CV
(%)

h2

SKT (n) 18.4 14.2–28.0 2.15 7.08 0.74 15.9 12.2–20.0 1.29 5.55 0.82 13.8

KNS (n) 53.7 31.2–84.5 9.49 9.16 0.77 38.0 14.7–65.2 6.75 10.88 0.83 29.2

KWS (g) 3.1 1.6–4.8 0.59 9.40 0.55 1.8 0.5–3.3 0.42 11.76 0.50 40.5

NDVI 7.6 6.6–8.5 0.28 1.14 0.95 7.4 6.4–8.2 0.29 1.51 0.91 2.7

IT_NDVI 3.5 3.1–3.9 0.15 1.59 0.91 3.2 2.7–3.8 0.15 2.02 0.89 7.6

KLE (mm)
0.8

0.546–
0.870 0.04 4.92 0.64 0.4

0.163–
0.727 0.10 20.44 0.73 51.3

KWI (mm)
435.9

208.2–
598.6 114.12 29.81 0.20 257.3

122.6–
418.0 52.49 16.58 0.64 41.0
1 std, standard deviation. 2 CV (%), coefficient of variation. 3 h2, broad-sense heritability. 4% of change, percentage of variation in heat stress treatment relative to value under optimal conditions.
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TABLE 5 Pearson correlation coefficient between traits observed under in Non-Stressed Control (below diagonal) and under late planted Heat Stress (above diagonal) conditions in a durum diversity panel
(N=187) evaluated at CENEB-Cd Obregon, Mexico in 2018 and 2019 (values are 2-years average BLUEs). Traits: days to heading date (HD), days to maturity (DTM), grain filling period (GFP), plant height (PH), grain

per spike (SKT), kernel number per spike (KNS), kernel weight per spike (KWS), kernel length (KLE), kernel
e for NDVI (IT_NDVI).

at Stressed

TWT SPM SKT KNS KWS KLE KWI NDVI
IT_
NDVI

-0.35** -0.23** 0.54** -0.01ns -0.10ns -0.04ns -0.01ns 0.56** 0.50**

-0.22** -0.10ns 0.57** 0.08ns 0.13ns 0.02ns 0.22** 0.77** 0.71**

0.14ns 0.15 * 0.22** 0.17 * 0.36** 0.09ns 0.42** 0.53** 0.52**

0.36** 0.40** 0.13ns 0.26** 0.37** -0.03ns 0.18 * 0.47** 0.47**

0.49** 0.58** -0.05ns 0.49** 0.64** 0.19 * 0.09ns 0.36** 0.44**

0.07ns 0.02ns -0.02ns -0.23 * 0.31** 0.65** 0.82** 0.32** 0.33**

0.47** -0.12ns 0.30** 0.36** -0.14ns -0.11ns 0.11ns 0.12ns

0.01ns -0.10ns 0.16 * 0.18 * 0.02ns -0.12ns 0.19 * 0.28**

-0.45** -0.01ns 0.31** 0.27** -0.07ns -0.02ns 0.45** 0.42**

0.06ns -0.31** 0.35** 0.82** -0.23 * -0.24 * 0.25** 0.25**

0.28** -0.55** 0.02ns 0.69** 0.16 * 0.18 * 0.36** 0.38**

-0.21** -0.13ns -0.19 * -0.32 * 0.14 * 0.32** 0.11ns 0.17 *

0.24** -0.29** -0.37** -0.41** 0.22** 0.29** 0.18 * 0.20**

-0.29** 0.02ns 0.53** 0.16 * -0.06ns -0.02ns -0.28 * 0.95**

-0.28** 0.01ns 0.56** 0.20** -0.02ns -0.07ns -0.28** 0.92**
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yield (GY), thousand kernel weight (TKW), test weight (TWT), spikes per linear meter (SPM), spikelets
width (KWI), normalized difference vegetation index (NDVI), and area under heat stress progress curv

He

HD DTM GFP PH GY TKW

N
o
n 
S
tr
es

se
d

HD 0.82** -0.03ns -0.03ns -0.29** -0.04ns

DTM 0.93** 0.54** 0.27** -0.06ns 0.21**

GFP -0.69** -0.37** 0.51** 0.32** 0.43**

PH 0.45** 0.44** -0.27** 0.51** 0.24**

GY -0.20** -0.25** 0.02ns -0.05ns 0.29**

TKW -0.42** -0.44** 0.21** -0.25** 0.18**

TWT -0.49** -0.51** 0.24** -0.09ns 0.43** 0.26**

SPM 0.12ns 0.10ns -0.10ns 0.49** 0.11ns -0.28**

SKT 0.75** 0.77** -0.37** 0.37** -0.16** -0.45**

KNS 0.19** 0.17 * -0.15 * 0.02ns 0.19** -0.46**

KWS -0.13ns -0.17 * 0.01ns -0.16 * 0.36** 0.28**

KLE -0.09ns -0.17 * -0.10ns -0.17 * 0.06ns 0.61**

KWI -0.38** -0.36** 0.24** -0.18 * 0.08ns 0.87**

NDVI 0.75** 0.73** -0.45** 0.15 * 0.06ns -0.26**

IT_NDVI 0.79** 0.78** -0.45** 0.21** 0.04ns -0.28**

*p<0.1; **p<0.05; ***p<0.01; ns, non significant.
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0.761 to 0.771. With LASSO lambda min, 12 traits were retained

under normal conditions, with Adj. R2 0.of 430 while 18 traits were

left in the set selected for the HS treatment, with an Adj. R2 of 0.766.

Stepwise regression and LASSO revealed that three plant variables
Frontiers in Plant Science 10
most affecting GY under both testing conditions were DTM

(negatively), SPM (positively) and biomass (NDVI or IT_NDVI,

both positively) and the temperature-related variables with most

impact on GY were AMTGF (negatively) and HDD_GF
TABLE 6 Pearson correlation coefficient between plant traits (see text for description) measured in yield trials conducted under in Non-Stressed
control and late planted Heat Stressed conditions involving the UNIBO-Durum Diversity Panel evaluated at CENEB-Cd. Obregon, Mexico, in 2018 and
2019 and weather variables: average maximum temperature at anthesis (AMT_A) and grain filling period (AMT_GF), number of days with temperature
higher than 30°C at anthesis (NDTH30_A) and grain filling period (NDTH30GF), number of days with temperature higher than 35°C at anthesis
(NDTH35_A) and grain filling period (NDTH35_GF), and heat degree days at anthesis (HDD_A) and grain filling period (HDD_GF).

AMT_ A AMT_ GF NDTH
30_A

NDTH
35_A

NDTH
30_GF

NDTH
35_GF

HDD_ A HDD_ GF

Non Stressed

HD 0.39** 0.73** 0.55** 0.97** 0.73** 0.24** 0.97**

DTM 0.33** 0.65** 0.51** 0.90** 0.69** 0.21** 0.90**

GFP -0.33** -0.54** -0.39** -0.67** -0.48** -0.18 * -0.65**

PH 0.20** 0.29** 0.35** 0.48** 0.24** 0.21** 0.42**

GY -0.08ns -0.18 * -0.16 * -0.22** -0.18 * -0.22** -0.20**

TKW -0.24** -0.32** -0.28** -0.43** -0.35** -0.10ns -0.43**

TWT -0.25** -0.37** -0.29** -0.49** -0.49** -0.25** -0.51**

SPM 0.11ns 0.10ns 0.11ns 0.17 * 0.22** 0.10ns 0.17 *

SKT 0.33** 0.53** 0.51** 0.75** 0.59** 0.27** 0.75**

KNS 0.16 * 0.13ns 0.18 * 0.14ns -0.02ns -0.05ns 0.13ns

KWS -0.05ns -0.11ns -0.04ns -0.18 * -0.30** -0.15 * -0.21**

KLE 0.03ns -0.12ns 0.01ns -0.10ns -0.09ns 0.11ns -0.12ns

KWI -0.25** -0.28** -0.28** -0.38** -0.30** -0.12ns -0.38**

NDVI 0.27** 0.54** 0.35** 0.71** 0.54** 0.07ns 0.71**

IT_NDVI 0.27** 0.60** 0.36** 0.75** 0.54** 0.05ns 0.74**

Heat Stressed

HD 0.72** 0.94** 0.32** 0.79** 0.61** 0.25** 0.60** 0.95**

DTM 0.59** 0.80** 0.25** 0.65** 0.51** 0.22** 0.50** 0.81**

GFP -0.04ns 0.01ns -0.03ns -0.02ns 0.01ns 0.02ns -0.01ns 0.02ns

PH 0.01ns 0.02ns 0.04ns -0.06ns 0.07ns 0.12ns 0.05ns -0.01ns

GY -0.22** -0.24** -0.10ns -0.28** -0.06ns 0.03ns -0.15 * -0.24**

TKW -0.03ns 0.01ns -0.04ns -0.05ns 0.05ns 0.11ns 0.02ns -0.02ns

TWT -0.23** -0.32** -0.01ns -0.35** -0.10ns -0.09ns -0.19 * -0.35**

SPM -0.12ns -0.21** 0.02ns -0.23** -0.09ns 0.02ns -0.09ns -0.21**

SKT 0.32** 0.53** 0.20** 0.35** 0.34** 0.14ns 0.24** 0.51**

KNS -0.05ns -0.02ns 0.12ns -0.12ns 0.05ns -0.05ns -0.10ns -0.02ns

KWS -0.11ns -0.07ns 0.04ns -0.16** 0.05ns -0.01ns -0.11ns -0.09ns

KLE -0.02ns -0.02ns -0.01ns -0.08ns 0.10ns 0.06ns 0.01ns -0.03ns

KWI 0.01ns 0.01ns -0.02ns 0.01ns 0.01ns 0.06ns 0.05ns -0.01ns

NDVI 0.41** 0.55** 0.25** 0.38** 0.43** 0.16 * 0.35** 0.55**

IT_NDVI 0.37** 0.49** 0.22** 0.33** 0.37** 0.18 * 0.33** 0.50**
*p<0.1; **p<0.05; ***p<0.01.
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TABLE 7 Multiple regression models fitted in Non Stressed or Heat Stressed treatments from yield trials involving the UNIBO-Durum Diversity Panel
evaluated at CENEB-Cd. Obregon, Mexico, in 2018 and 2019, with the dependent variable grain yield (GY).

Dependent variable GY (t ha-1)

Non Stressed Heat Stressed

Independable
variable No selection

Stepwise
selection

LASSO
selection No selection

Stepwise
selection

LASSO
selection

HD 1.554 1.531 -0.017 -0.018 -0.014

(0.962) (0.928) (0.021) (0.494) (0.062)

DTM -1.683* -1.639* -0.046* -0.059 -0.079*** -0.069***

(0.964) (0.929) (0.025) (0.479) (0.018) (0.02)

GFP 1.630* 1.599* -0.01

(0.966) (0.931) (0.478)

PH 0.001 0.016*** 0.017*** 0.016***

(0.006) (0.006) (0.005) (0.005)

TKW 0.026 0.004 0.042* 0.061*** 0.043*

(0.034) (0.012) (0.024) (0.011) (0.023)

TWT 0.079** 0.083*** 0.073** 0.020 0.021

(0.039) (0.03) (0.036) (0.025) (0.025)

SPM 0.025*** 0.024*** 0.025*** 0.018*** 0.019*** 0.018***

(0.005) (0.004) (0.004) (0.004) (0.003) (0.003)

SKT 0.056 -0.055 -0.056* -0.054

(0.046) (0.034) (0.032) (0.033)

KNS -0.007 0.053*** 0.056*** 0.053***

(0.023) (0.019) (0.005) (0.018)

KWS 1.027** 1.024*** 0.913*** 0.074 0.054

(0.402) (0.144) (0.153) (0.396) (0.381)

KLE -0.084 0.064 0.17 0.17

(0.323) (0.244) (0.204) (0.194)

KWI -0.77 -0.279 -0.582* -0.282

(0.864) (0.491) (0.351) (0.463)

NDVI 7.242** 11.004*** 7.472** 0.102

(3.545) (2.024) (3.456) (1.441)

IT_NDVI 0.009 0.008 0.008*** 0.008*** 0.008***

(0.006) (0.006) (0.003) (0.001) (0.001)

AMTA 0.424* 0.319* -0.292 -0.288

(0.227) (0.186) (0.795) (0.781)

AMTGF -0.101* -0.089* -0.05 -1.157** -1.122** -1.183**

(0.059) (0.052) (0.048) (0.579) (0.461) (0.564)

NDTH30A -0.062 0.082 -0.344** -0.340*** -0.310***

(0.228) (0.2) (0.154) (0.078) (0.111)

(Continued)
F
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(positively). These models also revealed several variables which

contributed to GY in only one or the other testing environment:

TWT and KWS only under NS conditions while PH, TKW and

KNS exclusively under HS conditions. In terms of the temperature-

related variables affecting GY only in one testing environment,

NDTH30A was detected by both stepwise regression and LASSO as

negatively affecting performance under heat stress.

The final network was translated into a SEM, where phenotypes

can be treated both as predictor (exogenous) and response

(endogenous) in a system of simultaneous equations, hence

allowing to postulate functional (causal) links between traits

(Supplementary Figure 3). SEM coefficients were estimated and

standardized path coefficients are represented by arrows, with the

green indicating a positive relationship while the red ones indicate a

negative relationship, the thickness being proportional to the

relative coefficient size. The results of the analysis are reported in

Supplementary Table 6. The final set of variables reached an R2

0.423 in NS and 0.712 under HS conditions. These values are not

much lower than those obtained with the whole model. In the best-

fitted model, in NS conditions, GY appeared to be directly related to

TKW, TWT, SPM, KNS, and HDD did not show significant adverse

effects regardless of when, up to anthesis or during grain filling, it
Frontiers in Plant Science 12
was accumulated. Under HS conditions, the plant variables PH,

TKW, SPM, KNS and IT_NDVI were directly related to GY while

HDD during grain fill showed a negative effect on GY.

The PCgen reconstruction of networks is presented in Figure 2.

PCgen was applied to the BLUEs of the single year for each

treatment rather than to single plot values, and for this reason the

genetic relationship among traits is not affected by the residual

genotype by year interaction. With this method, the genetic effects

are incorporated in the network reconstruction and thus direct

genetic effects can be detected. In timely-sown control conditions,

only PH, TKW, KNS showed a direct genetic effect, while GY

showed an indirect effect through TKW. Under HS conditions, a

direct significant genetic effect was detected for HD, PH, NDVI,

KNS, and GY. The other traits showed edges not significant at P

0.01 (Supplementary Table 7). The reconstruction of networks,

reported in Figure 2, also includes the effects of HDD. In control

conditions, the HDD_GF showed no connection with other traits,

while HDD_A was connected with NDVI and KWS, even though

not through genetic effects. Under stress conditions HDD_A was

connected with HD, PH, TKW, and KWS. On the other hand,

HDD_GF was in turn connected in a cluster with GFP-DTM and

KWS, in accordance with what was already seen in SEM analysis.
TABLE 7 Continued

Dependent variable GY (t ha-1)

Non Stressed Heat Stressed

Independable
variable No selection

Stepwise
selection

LASSO
selection No selection

Stepwise
selection

LASSO
selection

NDTH35A -0.063

(0.194)

NDTH30GF -0.128 -0.054 -0.025

(0.171) (0.154) (0.119)

NDTH35GF -0.776 0.068 0.088

(0.74) (0.142) (0.12)

HDD_A -0.099 -0.148** -0.112 0.058 0.026** 0.049

(0.148) (0.07) (0.121) (0.054) (0.012) (0.046)

HDD_GF 0.174* 0.084** 0.074** 0.066** 0.074**

(0.092) (0.04) (0.037) (0.031) (0.036)

Constant -10.143 -10.822** -6.548 45.143* 38.963*** 45.168*

(8.197) (5.175) (4.953) (25.03) (13.396) (24.556)

Observations 183 183 183 181 181 181

R2 0.505 0.486 0.467 0.790 0.787 0.790

Adjusted R2 0.441 0.453 0.430 0.761 0.771 0.766

Residual Std. Error 0.544 0.538 0.549 0.348 0.340 0.345

F Statistic 7.826*** 14.690*** 12.429*** 27.098*** 51.645*** 31.945***

(df = 21; 161) (df = 11; 171) (df = 12; 170) (df = 22; 158) (df = 12; 168) (df = 19; 161)
*p<0.1; **p<0.05; ***p<0.01.
Models were defined as No selection, with all plant and environmental independent variables; Stepwise selection, with independent variables selected with stepwise procedure; LASSO selection,
with dependent variable were selected by the least absolute shrinkage and selection operator method (Tibshirani, 1996, Tibshirani, 2011). (SE in parentheses).
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3.4 Identification of sources of genetic
tolerance to heat stress

The performances of varieties in NS and HS conditions, and the

GY loss due to heat stress were considered in order to identify

potential sources of tolerance to heat stress. Based on a significant

confounding effect of phenology on yield performance in the

different testing conditions, the performances of genotypes were

also estimated as marginal means from the average response to HD

(see the Supplementary Tables 8 and S9 for the detailed non

adjusted or adjusted values based on HD covariate genotype values).

In reaction to heat stress, all varieties showed a reduction in HD,

ranging from -3% to -23%. Groups of varieties already adapted to

warm growing environments with relatively short growing cycle like

the Desert Durums (Kofa, Kronos, WestBred881, Bravadur) and

CIMMYT’80s cultivars (Altar 84, Iride, several CIMMYT lines and

Spanish varieties) showed a reduction in HD generally below 10%.

Conversely, Italian and, in part, ICARDA varieties and lines bred

for longer growing cycles showed a more marked reduction in HD.

Based on the marginal means after adjustment for HD

(Supplementary Table 9), the three variables that were most

reduced by heat stress were GY, then biomass (NDVI) and then

the variables related to spike fertility (KWS/KNS). Losses in GY

ranged from -22.8% to -85.8%, with an average loss of -56.0%. In

terms of biomass (NDVI), losses ranging from 28% to 77%, with an

average of 52% were recorded. Losses in spike fertility were

indicated by a loss in KWS ranging from 3% to 70%, averaging

39%. The varieties that showed lower-than-average yield losses were

frequently found again among the Desert Durums, CIMMYT’80s

and with some ICARDA temperate groups. When dissecting the

overall grain yield loss at the level of the less complex grain yield

components, we could identify varieties/varietal groups which

responded to HS different ly . Consider ing the major

subpopulations/groups, Subpop 1 - ITALY-MEDITERRANEAN

and Subpop 2 - ICARDA-DRYLAND were mainly affected for

biomass production (IT_NDVI or NDVI) and therefore canopy

development, growth, biomass accumulation, and photosynthetic

capacity. The Italian varieties were less affected at the level of grain
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weight TKW and test weight TWT but with marked reductions

observed in spike fertility. Subpop 3 - ICARDA-TEMPERATE, also

including some Desert Durums, showed a wide range of responses

with varieties more resilient in terms of their biomass production

and spike fertility (SKT and KNS). These included the Desert

Durums Bravadur, WB881, Produra, Kofa, and ICARDA

(Cham1, Stojocri). Notably, Subpop 4 - CIMMYT’70 - ICARDA

also showed also a wide range of responses with the absence of a

clear trend. Subpop 5 - CIMMYT’80 included the best materials in

terms of biomass production and fertile culms/spike density, as well

as for maintenance of spike fertility.
4 Discussion

The frequency and severity of high-temperature stress have

increased consistently in the past decade and are expected to reach

worrisome levels soon (Asseng et al., 2017; Zhao et al., 2017; IPCC,

2023), which underlines the urgency for a better dissection of the

genetic control of HS resilience in order to identify native

haplotypes which may allow to mitigate the effects of heat stress

in crops like durum wheat which is prevalently grown in relatively

heat-prone regions such as the Mediterranean Basin (Kutiel, 2019),

and areas already characterized by high heat stress such as Central

and Peninsular India and Iran or west Africa such as Senegal valley

(Sall et al., 2018). The heat stress intensity to which plants were

exposed in this study proved to be very effective, as expected based

on the average temperatures typical of the location and sowing

times. The experimental location was chosen because it is highly

productive when wheat is sown at optimum time, and with a major

constraint due to high temperature associated to late sowing is

applied. The present study was conducted over two years, with

higher GY in 2019, due to less extreme temperatures during grain

filling, both under control and late sowing treatment. Even with this

difference between testing years, the heat stress to which the panel

was subjected reduced GY by 57% on average, with a very wide

range of yield losses observed overall, both within and among the

different germplasm groups represented in this panel. Other authors
BA

FIGURE 2

GSEM estimated networks with P< 0.01 for traits days to heading (HD), days to maturity (DTM), grain filling period (GFP), plant height (PH), grain yield
(GY), thousand kernel weight (TKW), kernel number per spike (KNS), kernel weight per spike (KWS), normalized difference vegetation index (NDVI)
and heat degree days at anthesis (HDD_A) and at grain filling period (HDD_GF), collected on plants from yield trials involving the UNIBO-Durum
Diversity Panel evaluated at CENEB-Cd. Obregon, Mexico, in 2018 and 2019. Besides GEN representing the genetic effect in green, GY is highlighted
in orange and the other traits directly connected with GEN were highlighted in pale-orange. Weather variables were highlighted in blue. (A) Non
Stressed control. (B) Heat Stressed.
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(Sukumaran et al., 2018), working at the same location on durum

wheat, have reported a higher reduction of GY (71.7%) due to HS.

As an effect of the HS, the time to maturity was markedly shortened

as well, in agreement with previous observations (Djanaguiraman

et al., 2020). Temperature-related variables that affected yield under

HS were generally those calculated based on temperatures at grain

fill (post anthesis), confirming what has been observed in several

small-grains species, that some of the most important yield-limiting

effects of heat on the present durum panel were related to high

temperatures from flowering through grain filling stages, which

affects several reproductive and/or physiological processes (Cossani

and Reynolds, 2012; Fabian et al., 2019), or grain metabolic

pathways (Wahid et al., 2007; Farooq et al., 2011; Gautam et al.,

2014; Sharma et al., 2017). However, HS prior to anthesis and grain

fill is also critically detrimental, affecting final yield consequent to a

reduced source capacity and/or biomass available to support grain

filling, particularly in its final stages (Xu et al., 2022; Barratt et al,

2024; Sall et al., 2024). In the current study, a substantial reduction

was observed in biomass accumulated up to shortly after anthesis

(NDVI), averaging 52%, second only to the effect on final GY. For

this trait as well, a wide range of losses due to heat were observed

both between and within germplasm groups included in the panel.

Environmental variables were used as covariates when they

were proven to affect genotypes’ performance. Inevitably, different

lines were subjected to different conditions due to their specific

phenology that, notably, was purposedly kept within a 1-week

interval among the tested genotypes. Moreover, the effect of the

stress treatment imposed by delayed sowing likely induced

differential responses depending on the timing of the most

limiting conditions, particularly whether they occurred before or

after heading. For these reasons, to get a comprehensive picture of

the inter-relations among several environmental parameters and

with yield and the other traits, we undertook further analyses

following three steps. First we applied stepwise regression and

LASSO for reducing the confounding factors in the predictive

model to keep only those which mostly affected GY. Based on

this analysis, NDTH30_A and AMT_GF impacted significantly and

negatively final yield to a higher extent as compared to the other

environmental variables that showed some significant effects such

as AMT_A, HDD_A, HDD_GF. Other environmental variables

such as NDTH35_A, NDTH30_GF, and NDTH35_GF did not

affect significantly GY. This means that the negative effects on GY

are already, and mostly, determined by the cumulative number of

days with temperatures passing the relatively mild sensitivity

threshold of 30°C, rather than 35°C which corresponds to the

typical heat stress wave, and are already determined between

anthesis and grain filling, reviewed by Ullah et al. (2022) and

Akter and Islam (2017).

Structural Equation Models (SEMs) have been used to study

recursive and simultaneous relationships among phenotypes in

multivariate systems such as multiple-trait models in quantitative

genetics (Valente et al., 2010) to identify a network of correlated

traits (He et al., 2021), together with genome-wide SNP profiles. As

a second step toward the understanding of the response to HS, we

employed SEM based on phenotypic and environmental variables.

The possible use of SEMs to understand physiological causes of
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genotype by environment or management interaction was explored

by Vargas et al. (2007), who concluded that the approach can

facilitate the understanding of the effects of environmental

covariates on yield performances or can be used to generate

hypotheses (Valente et al., 2013). Under heat stress, SEM

confirmed the role of HDD_A and HDD_GF in controlling

NDVI (as NDVI and IT_NDVI), hence plant growth and

biomass development, which in turn plays a key pivotal role in

influencing of PH, KNS, TKW and finally GY, as recently pointed

out by Kumar et al. (2023).

Finally, as the third step to improve the understanding of the

multiple trait models, we considered one of the methods suggested

to identify which variable most affects genotypes’ performance

(Maathuis et al, 2009; Maathuis et al., 2010; Buhlmann et al,

2014; Buhlmann, 2020). Recently, GSEM has been proposed

(Kruijer et al., 2020), i.e., the linear genetic structural equation

models, which allows for the reconstruction of a causal model

compatible with observed results. The PCgen algorithm used to

obtain GSEM in this study belongs to the recursive causal structure

as represented by a directed acyclic graph, DAG, which is a set of

variables (nodes) connected by directed edges (arrows) representing

direct causal relationships. More precisely, the GSEM can include

genetic effects, and it allows for the reconstruction of a causal model

attempting to explain the observed data. Notably, these methods do

not permit to infer the actual size of causal effects (Buhlmann et al,

2014), while allowing one to rank the importance of variables, and

their prioritization with respect to their causal strength (Maathuis

et al., 2010). We did not consider population structure in the

analysis since statistical inference can become biased under

possible model misspecification, such as epistasis (Kruijer, 2016)

which has proven to play a role for TKW and GY in durum wheat

(Maccaferri et al., 2011). On the other hand, with PCgen, direct

genetic effects and structural relations among traits can be inferred,

regardless of the population structure and genetic architecture

(Kruijer et al., 2020). With GSEM, we revealed that, in our study,

the genetic effect on GY was mainly mediated by TKW in non-stress

condition, while in case of heat stress GY, NDVI, KWS and HD all

showed to be under direct genetic control, then all are expected to

be involved in the response to stress and should be taken into

account during selection for heat prone environments.

The methods herein employed aimed at identify the variables to

be considered in breeding for heat tolerance and therefore reduce

the number of secondary traits to be managed either when

modeling physiological components of a trait or when selecting

those to be considered for genomic prediction (Momen et al., 2018;

Arouisse et al., 2021) and breeding. The screening could be based on

the target trait or on those genetically correlated with it, as for the

indirect selection or for the application of selection indices

(Falconer and MacKay, 1996). Recently, the use of selection index

in breeding and in genomic selection has been explored in

combination with SEM by Hidalgo-Contreras et al. (2021) who

concluded that taking into account the causal effects from the

structural model notably improved the relative effectiveness of the

index with respect to models with no causal information.

The role of environmental covariates is discussed in Arouisse

et al. (2021) while Millet et al. (2019) commented on their role in
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predicting genotypes’ performances in new environments. For this

reason, environmental variables are of great interest, besides their

use as covariates to correct for spurious associations. In fact, the

accurate parametrization of environmental effects is of great

importance in “enviromics” (Costa-Neto et al, 2021; Costa-Neto

and Fritsche-Neto, 2021; Crossa et al., 2021; Fritsche-Neto et al.,

2021) where multi-trait models are integrated with the

environmental information into a powerful prediction model

(Crossa et al., 2021). The relationship between environmental

covariates and the target trait is the first step to pursue the so-

called “enviromic” assembly approach (Costa-Neto et al, 2021),

which may include different parameters so that genome predictions

can be tailored for specific environments. The definition of

“envirotyping” by means of a SEM combining both phenotypic

and environmental variables provides a powerful framework for

synergizing multidisciplinary efforts (Smith et al., 2014) together

with other approaches (Porker et al., 2020; Cooper and Messina,

2021), facilitating the discovery of causal pathways as empirical data

are tested statistically against the model. Recently, applications of

these methods were explored by applying Bayesian estimation for

eco-physiological modeling of wheat yield as a function of its

component and of weather conditions during key stages of

development (Poudel et al., 2022).

This study showed that the response to HS under field

conditions of the durum wheat cultivated germplasm worldwide

is not homogeneous. Overall, the screening pointed out the presence

of a number of genotypes showing relatively tolerant heat stress

responses at different developmental and reproductive stages, and

more specifically for each of the three main and critical yield-

determinants: (i) biomass development/spike number per meter, (ii)

spike fertility/kernel number per spike, (iii) grain filling/kernel

weight. This finding indicates that breeding strategies aimed at

cumulating independent beneficial alleles for different HS tolerance

determinants are feasible and could be pursued within the elite

germplasm, either by classical breeding or marker-assisted aided

breeding. Among the main breeding groups/lineages tested, the best

materials in terms of biomass production and fertile culms/spike

density, as well as for maintenance of spike fertility were found

among the Desert Durum®, CIMMYT’80 and ICARDA breeding

pools. This observation confirms recent finding by Emebiri et al.

(2023) who identified several heat-stress tolerant CIMMYT’80

genotypes in a controlled environment screening of durum

germplasm specifically targeted for heat-induced floret sterility

due to controlled heat exposure at heading/flowering. This finding

is overall relevant for future breeding, in view of the expected impact

of increased average temperatures due to Global Climate Change on

durum wheat production areas such as the Mediterranean Basin. In

this respect, it is appropriate to point out that in practical breeding

improving a single specific component of heat stress tolerance is not

resolutive and could even lead to detrimental side effects. In this
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case, maintenance of fertility under stress should necessarily be

associated to maintenance of physiological senescence and

translocation processes and hormonal balance associated to a

regular, not accelerated grain filling (Ashfaq et al., 2022; Xu

et al., 2022).

This study allowed us to analyze the response to heat stress of a

panel of durum wheat genotypes representing a relevant portion of

the genetic diversity available worldwide. We identified in the panel

a large variability for the performance under heat stress, which will

provide a valuable source of alleles/haplotypes for adaptation to

heat-prone environments. We also considered the relations among

plant variables and environmental covariates identified by means of

a SEM, confirming that heat stress affects yield mostly after anthesis.

The study of structural models, and in particular of GSEM, lays a

foundation for the next steps in elucidating the physiological

response to heat by mapping QTLs controlling the trait (Igolkina

et al., 2020) and to implement either marker-assisted selection, if

large effects QTLs are identified, or genomic prediction tailored to

heat tolerance improvement of durum wheat (Costa-Neto et al.,

2021). Most importantly, we believe that meaningful tools to link

genetic knowledge and environmental specificity, such as those

employed in the present study, can be part of the most needed

translational research aimed at actually improving crop cultivars

(Kole et al., 2015; Millet et al., 2019; Reynolds et al., 2021; Welcker

et al., 2022; Della Coletta et al., 2023; Sall et al., 2024).

In conclusion, the dissection of traits involved in response to

heat showed that the effects of HS were particularly pronounced for

NDVI, KWS, GFP, and GY. Combination of plant and weather

related variables in GSEMmodeling suggested that the causal model

of performance under HS directly involves genetic effects on GY,

NDVI, KNS and HD. Among factors determining response to heat

stress, environmental variables have a role and could be integrated

in multi-trait prediction models. We identified consistently suitable

sources of genetic resistance to heat stress to be used in different

durum wheat pre-breeding programs. Among those, Desert

Durums and CIMMYT’80 germplasm showed the highest degree

of adaptation and capacity to yield under high temperatures and

can be considered as a valuable source of alleles for adaptation to

breed new HS resilient cultivars.

Finally, the next steps should include mapping genomic regions

and characterizing QTLs controlling the traits involved in

performance under high heat stress and/or developing multi-trait

selection criteria to predict genotypes that could be best adapted to

heat-prone environments. From a breeding standpoint, and given

the wide genetic diversity of the present panel, and the fact that

genotypes with low reduction in GY and related traits were

identified in all of the germplasm groups herein tested, the

identification and possibly cloning of heat tolerance QTLs from

the most representative collections of durum germplasm publicly

available (Maccaferri et al., 2019; Mazzucotelli et al., 2020) will
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eventually allow breeders to systematically accumulate the favorable

alleles/hapotypes with outstanding performance under

heat conditions.
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CENEB Campo Experimental Normal E Borlaug

CIMMYT Centro Internacional de Meyoramento de Maize
Y Trigo

DTM Date To Maturity

GFP Grain Filling Period

HD Heading Date

HS heat-stress trial, delayed sowing

LASSO last absolute Shrinkage and selection operator

ME Mega Environment

MTM Multiple Trait Model

NS non-stress trial

QTL Quantitative Trait Locus

RIL Recombinant Inbred Line

SEM Structural Equation Model

GSEM Genetic-SEM

SOM Soil Organic Matter

UNIBO University of Bologna

Environmental
parameters

AMT Average Maximum Temperature

GDD Growing Degree Days

HDD Heat Degree Days

HDD_A HDD during Anthesis

HDD_GF HDD during Grain Filling

NDTH30 Number of Days with Temperature > 30°

NDTH35 Number of Days with Temperature > 35°

Phenotypic traits

GY Grain Yield

IT_INDEX NDVI area under heat stress progress curve

KLE Kernel Length

KNS Kernel Number per Spike

KWI Kernel Width

KWS Kernel Weight per Spike

NDVI Normalized Difference Vegetation Index

PH Plant Height

SKT number of spikelets per spike

SPM number of Spikes per linear meter

TKW Thousand Kernel Weight

TWT Test Weight
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