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Small target tea bud detection
based on improved YOLOv5 in
complex background
Mengjie Wang1,2†, Yang Li2†, Hewei Meng1, Zhiwei Chen2,
Zhiyong Gui2, Yaping Li1* and Chunwang Dong3*

1College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China, 2Key Laboratory
of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute,
Chinese Academy of Agricultural Sciences, Hangzhou, China, 3Tea Research Institute of Shandong
Academy of Agricultural Sciences, Jinan, China
Tea bud detection is the first step in the precise picking of famous teas. Accurate

and fast tea bud detection is crucial for achieving intelligent tea bud picking.

However, existing detection methods still exhibit limitations in both detection

accuracy and speed due to the intricate background of tea buds and their small

size. This study uses YOLOv5 as the initial network and utilizes attention

mechanism to obtain more detailed information about tea buds, reducing false

detections and missed detections caused by different sizes of tea buds; The

addition of Spatial Pyramid Pooling Fast (SPPF) in front of the head to better

utilize the attention module’s ability to fuse information; Introducing the

lightweight convolutional method Group Shuffle Convolution (GSConv) to

ensure model efficiency without compromising accuracy; The Mean-Positional-

Distance Intersection over Union (MPDIoU) can effectively accelerate model

convergence and reduce the training time of the model. The experimental

results demonstrate that our proposed method achieves precision (P), recall rate

(R) andmean average precision (mAP) of 93.38%, 89.68%, and 95.73%, respectively.

Compared with the baseline network, our proposed model’s P, R, and mAP have

been improved by 3.26%, 11.43%, and 7.68%, respectively. Meanwhile, comparative

analyses with other deep learningmethods using the same dataset underscore the

efficacy of our approach in terms of P, R, mAP, and model size. This method can

accurately detect the tea bud area and provide theoretical research and technical

support for subsequent tea picking.
KEYWORDS

object detection, deep information extraction, lightweight, MPDIoU, YOLOv5,
attention mechanism
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1 Introduction

China is a leading tea-producing country, boasting vast tea

cultivation areas and high yields. In 2021, China’s tea gardens covered

a total area of 3,217 thousand hectares, yielding 3.16 million tons of tea

(Statistics Bureau of the People’s Republic of China, 2021). Despite the

extensive cultivation area and output, the picking method for famous

teas remains primarily manual, which is both time-consuming and

costly. In recent years, the scarcity of tea-picking laborers and the

shortened tea-picking season have posed challenges to harvesting

famous teas. Consequently, within the current trend of artificial

intelligence, the automation and intelligent picking of high-quality tea

are becoming imperative. Mechanized tea picking in China currently

relies on indiscriminate picking using reciprocating cutting, suitable only

for low-quality teas and unable to meet the requirements for the precise

bud-by-bud picking of famous tea varieties. Therefore, as artificial

intelligence continues to develop, hand-picking methods will likely be

replaced by intelligent picking. The intelligent picking of high-quality tea

has emerged as a recent research hotspot. Key to this endeavor is the

recognition of tea buds, and achieving accurate and rapid tea bud

detection will drive the intelligent picking and industrial development of

famous teas, holding significant practical significance. This study will

thus focus on the precise and rapid detection of tea buds to contribute to

the advancement of intelligent tea picking methodologies.

Currently, in the agricultural field, two primary target detection

methods are utilized: traditional image segmentation and deep learning

(LeCun et al., 2015). Traditional image segmentation methods rely on

distinguishing targets such as litchi (Yu et al., 2021), apples (Li et al.,

2021), and passion fruits (Tu et al., 2018) from complex backgrounds

by leveraging image color, texture, and other features, alongside

manually crafted segmentation criteria. For tea bud detection, Zhang

et al. (2021) proposed an enhanced watershed algorithm, yielding

favorable results in tea bud recognition. Wu et al. (2015) discovered

that within the Lab color space, the K-means clustering method

exhibited the highest tea bud recognition rate at a shooting distance

of 5cm. In these studies, segmentation targets were delineated based on

disparities in color and shape. While commendable results have been

attained, the intricate tea plantation backgrounds depicted in images

present a significant challenge influencing segmentation recognition.

Diverse growth environments, lighting conditions, and shooting angles

can substantially impede tea bud recognition. Consequently, traditional

image segmentation methods often struggle to achieve robust detection

outcomes in real-world tea plantation settings.

In recent years, with the development and popularization of deep

learning techniques, advanced detection technology has found

applications across various agricultural fields. In the detection of

small targets such as tea buds, Qian et al. (2020) proposed a

semantic segmentation network for tea buds based on TS SegNet,

and Hu et al. (2021) proposed a semantic segmentation method based

on DP-NET for segmenting and recognizing tea buds in a natural

scene, both of which achieved good segmentation results. Although the

semantic segmentation method can segment the target significantly, it

is complex, slow and difficult to produce a dataset, which is not suitable

for large-scale detection models. Therefore, Zhu et al. (2022) explored

the Faster R-CNN model and VGG16 feature extraction network to

detect the category of tea buds, which significantly improved the
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model’s detection effect when removing individual buds. Xu et al.

(2022) proposed a variable-domain two-level fusion network detection

and classificationmethod, which combined the fast detection capability

of YOLOv3 and the high-precision classification capability of

DenseNet201 to achieve 95.71% accuracy in detecting side buds. Gui

et al. (2023) proposed a lightweight tea bud detection model based on

YOLOv5_l. Using the Ghost_conv module instead of the original

convolution, a floating point operation reduction of 52.402G and a

parameter reduction of 22.71Mwere achieved. Li et al. (2023) proposed

a tea bud detection algorithm based on SE-YOLOv5_m. SENet was

introduced into the CNN, and the accuracy reached 91.88% by using

weights to filter the key features of each convolutional channel.

Ultimately, although numerous scholars have conducted research

on tea bud recognition using deep learning, practical application still

faces significant challenges such as low detection accuracy, slow

processing speed, and high computational costs. These limitations

render existing methods unsuitable for deployment on mobile

devices, necessitating further research. During the special period of

tea bud picking, it is crucial to recognize tea buds quickly and

accurately. In this study, we employ YOLOv5 as the foundational

network and integrate lightweight and other modules to enhance

model accuracy, reduce computational overhead, and enable rapid

detection of tea buds amidst complex backgrounds. The specific

improvement method is as follows:
1. A Coordinate Attention (CA) mechanism has been

integrated after the C3 module in the backbone network

to enhance the network’s focus on tea buds.

2. Spatial Pyramid Pooling Fast (SPPF) is applied to the head

to deeply extract the semantic information introduced by

the enhanced feature extraction network, overcoming the

large amount of low-level semantic information in the

shallow network that cannot better uti l ize the

information fusion function of the CA_block.

3. A cross-stage partial network (VoV_GSCSP) is used to

replace the C3 module in the neck network, ensuring that

the model is lightweight without affecting accuracy.

4. Replace the GIoU in the initial network with a new metric

of the high-precision boundary regression loss function

Mean-Positional-Distance Intersection over Union

(MPDIoU), thereby accelerating model convergence and

reducing model training time.
In the remainder of the paper, the second section outlines the

details of image acquisition, data enhancement, and the overall

network structure. The third section presents the test results, while

the fourth section concludes the paper.
2 Materials and methods

2.1 Image acquisition and preprocessing

The tea bud images utilized in this study were obtained from the

Shengzhou Tea Base of the Tea Research Institute at the Chinese

Academy of Agricultural Sciences (120.825542E, 29.748715N).
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White tea variety was selected, and the images were captured in

March 2022 using Huawei Mate40 and Xiaomi10 smartphones.

During the capture, the phones were positioned approximately 0.4

meters away from the tea trees, resulting in a total of 730 images of

white tea buds. The images were taken under various conditions,

including strong light after rain, cloudy days after rain, and sunny

days. The dataset was annotated using Labelimg software. To

evaluate the model’s training effectiveness, 73 samples were

chosen from the original 730 unprocessed images as the test set.

To enhance the generalization capability of the target detection

model with limited data, the remaining 657 images underwent

augmentation techniques such as mirroring, brightness

adjustments, rotation within a range of ±45°, and the addition of

Gaussian noise. This augmentation resulted in a total of 1314 tea

bud images, which were split into training and validation sets at a

ratio of 9:1. Specifically, the training set contained 1182 images,

while the validation set contained 132 images. Figure 1 illustrates an

example of the initial dataset and the data augmentation process.
2.2 YOLOv5 algorithm

In recent years, the YOLO series has undergone several

iterations, with the release of YOLOv5 (Glenn, 2020) in 2020

marking significant advancements in both small target detection

accuracy and speed. This model excels in extracting deeper

semantic information, rendering it highly adaptable to evolving

working scenarios (Gao et al., 2019; Da Costa et al., 2020), resulting

in improved recognition precision and robustness (Khosravi et al.,

2021). Compared to other YOLO series models, YOLOv5 emerges

as the optimal choice for real-time detection of tea gardens in

unstructured environments due to its simple network architecture,

smaller model size, efficient deployment and operation, and the

potential for further speed enhancement through lightweight

module integration. In the context of picking famous tea, where

detection efficiency directly impacts picking efficiency, selecting
Frontiers in Plant Science 03
YOLOv5 with its superior detection efficiency serves as the initial

network for tea bud detection in this study.

In the YOLOv5 network, its size can be adjusted by modifying its

width and depth, resulting in four different versions: YOLOv5_s,

YOLOv5_m, YOLOv5_l and YOLOv5_x, each with corresponding

parameters 7.30 × 106, 2.14 × 107, 4.71 × 107 and 8.78 × 107,

respectively. Generally, fewer parameters generally lead to faster

computation time but lower precision. Selecting the appropriate

variant is key to fully utilizing the power of the YOLOv5 assay. In

this study, these four models were trained using the initial dataset

without data augmentation, and the results are shown in Table 1.

YOLOv5_m exhibits the highest detection precision, while

YOLOv5_x has the highest recall and average precision.

Considering both accuracy and effectiveness in tea bud detection,

YOLOv5_m was chosen as the initial network for tea detection, and

enhancements were made to its structure for improved performance.

The improved YOLOv5 network structure is shown in

Figure 2C. In the backbone network, the CA attention

mechanism is integrated after all the C3 modules to enhance the

model’s focus on target regions and improve its attention towards

specific features and contextual details. Additionally, the SPP

module is replaced with the SPPF module, enabling the model to

effectively capture target information across various scales, thus

expanding its perception range and enhancing target detection

performance. The backbone module before and after the

improvement is shown in Figure 2A. In the neck, all the C3

modules are replaced with VoV_GSCSP modules, which aims to

fully combine the CA attention mechanism in the backbone with

the degree of attention to the target, so that the model can better

understand the global information and local details of the target in

the image, and ensure the accuracy of the model while making the

model lightweight. The neck module before and after the

improvement is shown in Figure 2B. In the head, to address

the challenge of utilizing deep semantic information from the

VoV_GSCSP module in the neck layer, an SPPF module is

introduced before the head. This module extracts deep semantic
FIGURE 1

Initial dataset and data augmentation examples.
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features from the neck, further refining the model’s accuracy

and performance.
2.3 Attention mechanism

To better focus on the overall tea bud, this study introduced the

CA_block (Hou et al., 2021) into the C3 module to better extract the

deep features of tea buds. Location information is crucial for

capturing target structures in visual detection. CA_block is a

method of enhancing the interaction and correlation between

different channels, which can not only be easily inserted into the
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core module of a lightweight network, but also capture channel and

position information of images, strengthen regions of interest,

reduce redundant information, and improve the expression ability

of the model to achieve overall attention to tea buds. Its structure is

shown in Figure 3. It overcomes the problem of the Squeeze-and-

Excitation networks (Hu et al., 2018) module only focusing on

channel confidence while ignoring spatial information.

CA_block performs global average pooling of feature maps with

input size C * H * W from both X and Y directions by obtaining

channel and position information, to obtain remote spatial

interaction of position information. Mathematical expressions for

the feature maps in both directions Equations 1, 2.
TABLE 1 Test results of the model.

Model P R mAP@0.5(%) FLOPs(G) Model size(MB)

YOLOv5_s 80.61 78.61 85.23 16.477 26.95

YOLOv5_m 85.20 78.95 87.78 50.598 80.32

YOLOv5_l 83.39 81.66 88.58 114.559 177.88

YOLOv5_x 82.20 84.69 89.09 217.795 332.81
Bold values is the optimal value of the comparison results of the four models.
A B

C

FIGURE 2

(A) The backbone network structure before and after improvement, (B) the neck network structure before and after improvement, and (C) structure
of the improved YOLOv5_m model.
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Zh
c hð Þ = 1

Wo0≤i≤Wxc(h, i) (1)

 Zw
c (w) =

1
Ho0≤i≤Hxc(j,w) (2)

Here, the variable c refers to the channel, and H and W

represent the height and width of the input feature map.

Specifically, xc   represents the input x in channel c.

Next, concatenate the obtained feature maps, using 1 × 1

convolution module reduces the dimension by 1/r (r is the

reduction rate), and after batch standardization and activation

function processing, F1 is obtained. F1 is then activated by the

sigmoid function to obtain an intermediate feature map f that

encodes spatial information in both horizontal and vertical

directions. The intermediate feature map f can be described as

Equation 3.

f = d (F1(½Zh,Zw�) (3)

Where d denotes the nonlinear activation function.

Subsequently, along the spatial dimension, perform a split

operation on f to obtain fh and fw, using 1 × 1 convolution to

dimensionality up operation, and then the feature maps Fw and Fh
are obtained. Then, the attention weights gw and gh of the feature

maps in height and width are obtained through Sigmoid. It can be

mathematically defined as Equations 4, 5.

gh = s (Fh(f
h))   (4)

gw = s (Fw(f
w)) (5)

Where s denotes the sigmoid function.

Finally, the attention weight feature map for both the h and w

directions is obtained by multiplying and weighting the feature

map. The calculation method is shown in Equation 6.

yc(i, j) = xc(i, j)� ghc (i)� gwc (j) (6)
2.4 Cross-stage partial network

To improve the detection efficiency of the model and reduce the

number of model parameters, this study introduces a lightweight

convolution method, Group Shuffle Convolution (GSConv) (Li

et al., 2022), which can decrease the model complexity while
Frontiers in Plant Science 05
maintaining essentially unchanged accuracy. Current lightweight

models typically reduce the number of parameters and FLOPs

through Depth Separated Convolution (DSC). However, the

channel information of DSC input images is separated during the

calculation process. When used DSC alone, it can reduce the feature

extraction and fusion capabilities. The convolutional structure of

DSC and Standard Convolution (SC) is shown in Figure 4A.

GSConv is a convolutional method that combines SC and DSC

through shuffle, which can mix the information generated by SC

into DSC, overcoming the problem of lower feature extraction and

fusion capability compared to SC when using DSC alone.

In addition, based on the study of enhancing network learning

capabilities such as DensNet (Huang et al., 2017), VoVNet (Lee

et al., 2019), and CSPNet (Wang et al., 2020), GSConv was

introduced into the bottleneck to form the Group Shuffle

bottleneck (GSbottleneck) module. Finally, a one-time

aggregation method was used to apply GSbottleneck to the C3

module, forming a cross-stage partial network VoV-GSCSP, which

achieved a reduction in model computation without affecting

accuracy. When GSConv is applied in a backbone network, it will

increase the depth of the network, increasing the computational

complexity of each layer, and thus increasing the computational

complexity of the model. After passing through convolutional and

pooling layers in the feature map of the neck section, the width and

height of the feature map are reduced, while the number of channels

increases. When the feature map is transmitted through multiple

layers of the network, the feature map of the neck section becomes

slender, which can be better transformed into more expressive

features. Therefore, this study only applies GSConv to the neck

section. Figures 4B–D illustrates the structural diagrams of GSConv,

GSbottleneck, and VoV_GSCSP, respectively.
2.5 SPP and SPPF

The Spatial Pyramid Pooling (SPP) layer is instrumental in

capturing multi-scale features of the target by focusing on spatial

information. Typically integrated into the last layer of a

convolutional neural network, the SPP layer divides the input

feature map into grids of varying sizes, extracting feature vectors

from each grid. This process involves three parallel max-pooling

operations and an input branch, followed by concatenating the

resulting features to obtain multi-scale representations, which helps

the network to better capture the feature information of the target at
FIGURE 3

Coordinate attention structure diagram.
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different scales, and improves the accuracy and robustness of

the network.

SPPF is an optimization of the structure based on SPP, which

introduces more pooling layers to improve the performance of the

model while including the feature extraction and fusion techniques

of the SPP module. Notably, SPPF replaces the parallel branches of

SPP with serial connections, sequentially outputting feature vectors

layer by layer. This modification includes adding downward output

branches to the first and second layers of the three maximally

pooled serial connections, thereby increasing the module’s pooling

depth. The structure of SPP and SPPF is shown in Figure 5. In this

study, SPPF is mainly used to solve the problem of too large a scale

of object scale change for local and global feature inputs of tea buds.

Moreover, SPPF achieves a better balance between performance and

speed, which is very suitable for models such as tea buds that need

detection accuracy and need to satisfy detection speed. Therefore,

this study replaces the SPP in the backbone network with SPPF to

enhance the multi-scale feature extraction of the network.

Meanwhile, SPPF is applied to the header to deeply extract the

deep semantic information introduced by the enhanced feature

extraction network, which overcomes the problem that a large

amount of low-level semantic information in the shallow network
Frontiers in Plant Science 06
cannot be better fused with the deep semantic information

in CA_block.
2.6 Maximized partial intersection
over union

To better locate tea buds, this study introduces a new metric, the

High Precision Boundary Regression Box (BBR) loss function

MPDIoU (Siliang and Yong, 2023), which uses the minimum

point distance intersection ratio to calculate the similarity

measure between the predicted box and the real box, as shown in

Figure 6. MPDIoU is an optimization based on Intersection over

Union (IoU), which optimizes the calculation method of the

overlapping area between the predicted box and the ground truth.

It is used to solve the problem of GIoU failure in the initial network

when the predicted box and the ground truth overlap highly. IoU is

used to calculate the ratio of the intersection and union of predicted

boxes and ground truth boxes, and the calculation formula can be

described as Equation 7.

IoU =
A∩B
A∪B

(7)
FIGURE 5

Structure of SPP and SPPF.
B

C D

A

FIGURE 4

Structural Diagram of (A) Standard Convolution (SC) and Depth Separated Convolution (DSC), (B) Group Shuffle Convolution(GSConv), (C) Group
Shuffle bottleneck (GSbottleneck) and (D) cross-stage partial network (VoV_GSCSP).
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A represents the ground truth box, B represents the predicted

box, A∩B represents the area of the intersection area, and A∪B
represents the area of the union area.

After obtaining the upper left corner coordinates (x1
prd,y1

prd),

lower right corner coordinates (x2
prd,y2

prd) of the prediction box,

the upper left corner coordinates (x1
gt,y1

gt), lower right corner

coordinates (x2
gt,y2

gt) of the real box, and the width (w) and

height (h) of the corresponding feature map, the MPDIoU is

calculated as in Equations 8–11.

MPDIoU = IoU −
d21
d23

−
d21
d23

  (8)

d21 = (xprd1 − xgt1 )
2 + (yprd1 − ygt1 )

2 (9)

d22 = (xprd2 − xgt2 )
2 + (yprd2 − ygt2 )

2 (10)

d23 = w2 + h2 (11)

Among them, d1
2, d2

2, and d3
2 represent the square of the distance

between the upper left corner coordinates of the prediction box and the

ground truth box, the square of the distance between the lower right

corner coordinates of the prediction box and the ground truth box, and

the square of the width (w) and height (h) of the corresponding feature

map, respectively. The introduction of d1
2, d2

2, and d3
2 is aimed at

amplifying the differences between the bounding boxes on both sides,
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in order to better reflect the positional differences between the two

boxes when calculating the similarity between the ground truth box

and the predicted box.

Finally, the loss function can be expressed as in Equation 12.

Loss = 1 −MPDIoU (12)
2.7 Training environment

The deep learning framework used in this study is PyTorch. The

experiments were conducted on a Windows 10 machine with an

Intel (R) Core (TM) i7-10700 CPU with a clock speed of 2.90 GHz,

32.0 GB of RAM, and an NVIDIA GeForce RTX3090 24 G GPU.

The hyperparameters for model training are shown in Table 2.
3 Results and Discussion

3.1 Evaluating indicator

The detection model in this study was evaluated using precision

(P), recall rate (R), and mean average precision (mAP), where P

represents the proportion of accurate predictions in all predicted

examples and R represents the proportion of accurate predictions in

all true examples. The mAP denotes the comprehensive accuracy

indicator to evaluate detection model. The formulae are calculated

for P, R and mAP as in Equations 13–15.

P =
TP

(TP + FP)
(13)

R =
TP

(TP + FN)
(14)

mAP =
oN

1

Z 1

0
P(R)dR

N
(15)

TP: Number of positive samples predicted as positive samples

FP: Number of negative samples predicted as positive samples

FN: Number of positive samples predicted as negative samples

N: Indicates the number of types of buds detected (only one

type of tea buds is studied in this paper, so N equals 1)
TABLE 2 Training model hyperparameters.

Method Batch size Learning rate Epochs Optimizer Momentum Weight dedcay

Faster-RCNN 10 1e-3 200 Adam 0.9 0.0005

SSD 10 1e-3 200 Adam 0.9 0.0005

YOLOv3 10 1e-3 200 Adam 0.9 0.0005

YOLOv4 10 1e-3 200 Adam 0.9 0.0005

YOLOv5_m 10 1e-3 200 Adam 0.9 0.0005

Ours 10 1e-3 200 Adam 0.9 0.0005
FIGURE 6

Calculation loss factors for MPDIoU.
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3.2 Test comparison before and after
model improvement

In this paper, the benchmark and improved networks are

compared based on the data augmentation set. The test results

are presented in Table 3. The results indicate that, compared to the

initial network, the improved network yielded an increase of 3.26%,

11.43%, and 7.68% for P, R, and mAP, respectively. And the number

of parameters decreased by 0.319 M, GFLOPs decreased by 1.343 G,

and model size decreased by 1.21 MB. Therefore, it is evident from

the comparison before and after model improvement that the

improved model can achieve higher accuracy while reducing

the complexity of model calculations. Meanwhile, we utilize the

confusion matrix to assess the model’s prediction accuracy for tea

buds and backgrounds, facilitating a comprehensive evaluation of

its performance. Figure 7 shows the number of correct and incorrect

predictions of tea buds on the test set by the model before and after

the improvement. The results reveal that the enhanced model

increases the number of correctly predicted tea buds by 123 and

reduces the misclassification of backgrounds as tea buds by 26,

thereby effectively demonstrating the improved detection

performance of the model.

Additionally, to visually depict the performance disparity before

and after model improvement, this study conducted an analysis of
Frontiers in Plant Science 08
P, R, and mAP using the variance chi-square test. In the ANOVA

chi-square test, setting the significance level at 0.05, a probability

value lower than this threshold signifies a notable difference in

model performance before and after improvement. The probability

values of P, R, and mAP before and after model enhancement in this

study are 0.000567, 0.002694, and 0.000264, respectively. These

values are all below 0.05, indicating a significant difference in model

performance before and after the improvement, further confirming

that the enhanced model achieves higher detection accuracy.
3.3 Grad-CAM visualization

The Grad-CAM (Selvaraju et al., 2017) thermal diagram is used

to visualize the regions of interest in the model related to the target

when extracting the target features. By displaying the regions of

interest through red regions, Grad-CAM can intuitively extract the

regions of interest on the tea bud image. In this study, Grad-CAM is

used to detect the degree of attention paid to tea bud features before

and after model improvement. As the red circle shown in Figure 8,

by improving the contraction and expansion of the Grad-CAM red

regions of the network, the model’s attention is more focused on the

tea buds. This weakens the initial network’s focus on background

information, and the improved network also learns the
TABLE 3 Training results of different target detection methods.

Model P(%) R(%) mAP@0.5(%) Params(M) FLOPs(G) Model size(MB)

Faster-RCNN 56.02 88.95 81.73 136.689 369.719 521.43

SSD 82.80 45.79 69.44 23.612 60.756 90.07

YOLOv3 85.82 66.36 82.28 61.524 65.597 234.69

YOLOv4 87.67 61.00 81.21 63.938 59.953 243.90

YOLOv5_m 90.12 78.25 88.05 21.056 50.598 80.32

Ours 93.38 89.68 95.73 20.737 49.255 79.11
FIGURE 7

The confusion matrix of the model before and after improvement.
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characteristics of the buds that the initial network cannot pay

attention to, thus proving that the improved network is more

effective in paying attention to tea buds. This also verifies that the

improved model improves the precision of the network.
3.4 Ablation test

The results of the ablation test are presented in Table 4, and the

P, R, and mAP of the improved network are significantly improved,

while the size of the model is also reduced. Through analysis of the
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data, the result showed that incorporating the CA_block, SPPF, and

VoV_GSCSP module into the network significantly improves the P,

R, and mAP of the detection network while reducing the model size.

This improvement can be attributed to the integration of depth

feature information from the VoV_GSCSP module, CA_block, and

SPPF module. This integration fully leverages the overall attention

of the network to tea buds, improving the detection accuracy of tea

buds. Furthermore, the lightweight convolution method of GSConv

in the VoV_GSCSP effectively reduces the size of the model.

From Figure 9, a notable contrast emerges between the training

loss and validation loss of GIoU, suggesting inadequate learning of
FIGURE 8

Initial network and improve the network Grad-CAM visualization.
TABLE 4 Results of the ablation test.

Model
Data

enhancement
CA SPPF

VoV_
GSCSP

MPDIoU P(%) R(%) mAP(%)
Model size

(MB)

YOLOv5_m 85.20 78.95 87.78 80.32

YOLOv5_m √ 90.12 78.25 88.05 80.32

YOLOv5_m √ √ 91.67 79.52 89.69 80.88

YOLOv5_m √ √ √ 90.89 79.69 89.74 88.28

YOLOv5_m √ √ √ √ 95.52 86.92 92.86 79.11

YOLOv5_m √ √ √ √ √ 93.38 89.68 95.73 79.11
The meaning of the symbol "√" is to add the corresponding module to the model.
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tea bud characteristics and resulting in suboptimal performance on

the validation set. Conversely, the disparity between the training

loss and validation loss of MPDIoU is comparatively minimal,

indicating effective learning of tea bud features and yielding

satisfactory detection outcomes. Notably, GIoU achieves

convergence after approximately 210 epochs of training, while

MPDIoU reaches convergence around 190 epochs, showcasing

the efficacy of MPDIoU in accelerating model convergence and

reducing training duration.
3.5 Comparison of different models

This study compares the improved YOLOv5_m model with

YOLOv3, YOLOv4, SSD, and Faster R-CNN under data-enhanced

conditions. The test results are presented in Table 3.

The results demonstrated that the method proposed in this

study outperformed other models in terms of P and mAP.

Figure 10A illustrates the detection results of P, R, and mAP for

all models. Additionally, the proposed method exhibits lower

computational complexity in terms of floating-point operations,

number of parameters, and model size. Faster R-CNN, as a two-

stage detector, tends to produce a high number of false detections

when recognizing small targets like tea buds, leading to lower

accuracy. Conversely, the SSD model may experience many

missed detections during the detection process, resulting in a

lower R-value. Although the YOLO series also encounters some

missed detections, its performance is comparatively better than

SSD and Faster R-CNN. YOLOv5, which is an improvement of

YOLOv3 and YOLOv4, is particularly well-suited for detecting

small targets, exhibiting higher detection accuracy and faster

speed compared to YOLOv3 and YOLOv4. Figure 10B displays

the detection results of Faster R-CNN, SSD, YOLOv3, YOLOv4,

YOLOv5 , and the proposed method under vary ing

environmental conditions.

Figure 10B shows that the tea buds are densely packed and

numerous in a single picture, which increases the difficulty of

detection. The method proposed in this study has a better

detection effect than other models in terms of precision detection.

Although there may still be some omissions, the effect is superior to
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that of other models, making it suitable for tea bud detection in real

tea plantations.
4 Conclusion

In this study, due to the density of the tea buds and the

complexity of the background environment, existing detection

methods struggle to obtain accurate results. To address this issue,

we propose an improved YOLOv5_m tea bud detection method to

enhance the accuracy and robustness of the detection algorithm.

The optimization methods and detection results of this study are

as follows:
(1) The fusion of deep feature information from VoV_GSCSP,

CA_block, and SPPF modules enhanced the overall

attention of the network to tea buds and improved the

detection accuracy of tea buds.

(2) Introducing MPDIoU instead of GIoU has achieved rapid

convergence of the model and reduced the training time of

the model.

(3) The improved YOLOv5_mmodel achieved a P of 93.38%, a R

of 89.68%, and anmAP of 95.73%while maintaining its size or

slightly reducing it. These results demonstrate the model’s

effectiveness in detecting tea buds. Additionally, the model

parameters consist of only 20.737 M, the floating point

number is 49.255 G, and the size of the model is 79.11 MB,

all of which are superior to other deep learning methods.
The experimental results show that the improved YOLOv5

model has excellent detection performance, which provides

technical and theoretical support for automatic picking of high-

quality tea leaves. However, the detection accuracy of the model is

still a major challenge in complex lighting environments, color

interference and old leaf occlusion. Future research will be

devoted to collecting tea bud datasets under different scenarios,

optimizing the model structure, and improving the ability to

detect tea buds under typical unstructured environments in tea

gardens. In addition, this study is limited to single-target detection

and does not address tea bud categorization (such as single bud,
FIGURE 9

Training and validation loss functions.
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one-leaf-one-bud, or two-leaf-one-bud) or differentiation between

different tea varieties. Future work will focus on classifying tea bud

classes based on improving the accuracy of tea bud detection, thus

enhancing the practical applicability of the model.
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