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1Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of
Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China, 2Heilongjiang Provincial Key
Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of
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Introduction: Rice blast disease caused by Magnaporthe oryzae has long been

the main cause of rice (Oryza sativa L.) yield reduction worldwide. The quinone

external inhibitor pyraclostrobin is widely used as a fungicide to effectively

control the spread of pathogenic fungi, including M. oryzae. However, M.

oryzae can develop resistance through multiple levels of mutation, such as

target protein cytb mutation G143A/S, leading to a decrease in the

effectiveness of the biocide after a period of application. Therefore, uncovering

the possible mutational mechanisms from multiple perspectives will further

provide feasible targets for drug development.

Methods: In this work, we determined the gene expression changes inM. oryzae

in response to pyraclostrobin stress and their relationship with DNA methylation

by transcriptome and methylome.

Results: The results showed that under pyraclostrobin treatment, endoplasmic

reticulum (ER)-associated and ubiquitin-mediated proteolysis were enhanced,

suggesting that more aberrant proteins may be generated that need to be

cleared. DNA replication and repair processes were inhibited. Glutathione

metabolism was enhanced, while lipid metabolism was impaired. The number

of alternative splicing events increased. These changes may be related to the

elevated methylation levels of cytosine and adenine in gene bodies. Both

hypermethylation and hypomethylation of differentially methylated genes

(DMGs) mainly occurred in exons and promoters. Some DMGs and

differentially expressed genes (DEGs) were annotated to the same pathways by

GO and KEGG, including protein processing in the ER, ubiquitin-mediated

proteolysis, RNA transport and glutathione metabolism, suggesting that

pyraclostrobin may affect gene expression by altering the methylation patterns

of cytosine and adenine.
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Discussion: Our results revealed that 5mC and 6mA in the gene body are

associated with gene expression and contribute to adversity adaptation in M.

oryzae. This enriched the understanding for potential mechanism of quinone

inhibitor resistance, which will facilitate the development of feasible strategies for

maintaining the high efficacy of this kind of fungicide.
KEYWORDS
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Introduction

Magnaporthe oryzae is the main causative agent of rice blast

outbreaks and has severely restricted rice yield in all rice-producing

countries worldwide (Shahriar et al., 2020). Blast causes a 10-30%

loss in rice yield annually, an amount that is enough to feed more

than 60 million people (Sella et al., 2021). Due to the widespread

distribution, destructive power and strong adaptability of rice blast

fungus, various control methods, such as the use of fungicides or the

cultivation of resistant varieties, have been used to eliminate this

fungus. However, this pathogen rapidly develops adaptive

mutations that render fungicides and resistant varieties ineffective.

The “tactical” response or escape strategy of rice blast fungus has

long been the focus of research efforts.

The reasons for the variation in the fungal response to adverse

stress and plant host resistance have been extensively studied by

various techniques, and epigenetic modifications have been shown

to be involved in this process (Jeon et al., 2015; Dubey and Jeon,

2017; He et al., 2020). DNA methylation, including cytosine

methylation (5mC) and adenine methylation (6mA), is a

common DNA epigenetic modification that has crucial effects on

gene activity (Moore et al., 2013). A study onMetarhizium robertsii

showed that the DNA 5mC level was 0.38%-0.42%, and differential

DNA methylation may contribute to the temporal and spatial

regulation of gene expression and the development of mycelia

and conidia in this organism (Li et al., 2017). A study on M.

oryzae showed that 5mC accounted for 0.22% of all genomic

cytosines in mycelia, which underwent global reprogramming

during fungal development, and this process occurred in and

around genes as well as transposable elements, contributing to the

silencing of transposable elements and transcript abundance of

genes (Jeon et al. , 2015). In Saccharomyces cerevisiae ,

Schizosaccharomyces pombe, Caenorhabditis elegans, and

Tetrahymenather mophila, 5mC is absent; however, 6mA is

present in these organisms and is involved in the regulation of

DNA replication, repair, transposition, and transcription (Hattman,

2005; Liang et al., 2018; Xiao et al., 2018a). Mondo et al. reported

that 6mA is widespread in fungi, with levels as high as 2.8% in some

fungi. It mainly appears symmetrically in the ApT sequence at the
02
transcription initiation point (Mondo et al., 2017). Additional

studies have shown that 6mA may be a common epigenetic

marker in eukaryotes, including humans, pigs, mice, fishes, frogs,

flies, worms, ciliates, Chlamydomonas and fungi, and potentially

functions in transcriptional activation or silencing, chromatin

regulation, and the stress response (Fu et al., 2015; Greer et al.,

2015; Mondo et al., 2017; Liang et al., 2018; Xiao et al., 2018b).

Although much progress has been made in understanding the

adaptation ofM. oryzae to fungicides (Kim and Kim, 2009; Bohnert

et al., 2019; Xu et al., 2020; Zhang et al., 2020), the contribution of

epigenetic factors, such as DNA methylation, to this enigmatic

process remains to be studied. As shown by Jeon et al. (2015), 5mC

could be a dynamic epigenetic factor contributing to fungal

development and genome defense in M. oryzae. In this work, we

evaluated the gene expression response ofM. oryzae to the fungicide

pyraclostrobin and its relationship to changes in 5mC and

6mA methylation.

Pyraclostrobin is an exoquinone inhibitor that can bind to

ubiquinone site of the cytochrome bc1 complex to prevent

electron transport on the inner mitochondrial membrane. This

interferes with the process of oxidative phosphorylation, resulting

in insufficient production of cellular energy ATP and ultimately

leading to fungal death. M. oryzae strain is sensitive to

pyraclostrobin, with half maximal effective concentration (EC50)

of 0.0012-0.0128 mg/mL (Ruan et al., 2022a). The sensibility was

higher than other popular fungicides such as tebuconazole,

carbendazim, propiconazole (Ruan et al., 2022a). However, the

rapid development of resistance in M. oryzae to the fungicide and

consequent control failure has become increasingly problematic.

The main mechanism conferring resistance involves mutations in

the cytochrome b gene CYTB, causing the substitution of glycine by

alanine or serine at position 143 (G143A/S) (Li et al., 2022; Peng

et al., 2022; Ruan et al., 2022b). The overexpression of alternative

oxidase gene (AOX) in the alternative oxidation pathway and efflux

transporter ATP-binding cassette (ABC) gene MoABC-R1 are also

likely to contribute to the resistance (Gisi et al., 2002; Fernández-

Ortuño et al., 2008; Hu et al., 2023). This study will enhance the

understanding for potential mechanism of quinone inhibitor

resistance, which will facilitate the development of drug targets as
frontiersin.org
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well as feasible strategies for keeping the high efficacy of this kind

of fungicide.
Methods

Strain culture conditions and
pyraclostrobin treatment

M. oryzae Y34 stored on paper filters at -20°C in our laboratory

was cultured at 28°C on complete agar media for assessment of

growth traits. The mycelia used for DNA and RNA extraction were

cultured in 250 mL of liquid CM (1 g/L yeast extract, 0.5 g/L casein

enzymatic hydrolysate, 0.5 g/L casein acid hydrolysate, 10 g/L

glucose, 1 g/L Ca(NO3)2·4H2O, 0.2 g/L KH2PO4, 0.25 g/L

MgSO4·7H2O, 0.15 g/L NaCl) at 28°C and 150 rpm. After three

days, pyraclostrobin (CAS:175013-18-0) was added, and the final

concentration reached 7.4 µg/L (the EC50 data are shown in

Supplementary Table 1). The control group was treated with the

same volume of sterile water. Each treatment was repeated three

times. After 24 hours, the mycelia were collected by filtration and

washed three times with deionized water. The collection in each flask

was divided equally into 2 replicates for DNA and RNA extraction.
Transcriptome and methylome sequencing

As shown in Figure 1, The mycelia for transcriptome and

methylome sequencing were cultured from the same batch of
Frontiers in Plant Science 03
flasks. The collection from each flask was divided into two parts

with three biological replicates per treatment. The mycelia collected

were frozen in liquid nitrogen and stored at -80°C until DNA and

RNA isolation. Total RNA was extracted using a TRIzol kit

(Invitrogen, CA, USA), and mRNA was enriched with oligo-dT

primers. A cDNA library was generated for transcriptome

sequencing on the HiSeq X Ten platform. The nanopore

sequencing method was applied to detect methylated bases in

genomic DNA; this method is reported to be sensitive enough to

detect chemical modifications on genomic DNA (Rand et al., 2017;

Simpson et al., 2017). A nanopore library was constructed

according to the protocol provided by Oxford Nanopore

Technologies as follows: Genomic DNA was extracted; the DNA

concentration was quantified using a Nanodrop spectrophotometer

and a Qubit fluorometer, and DNA integrity was detected by 0.35%

agarose gel electrophoresis. Genomic DNA was fragmented into 8

kb fragments using a gTube. Library construction was performed

using the SQK-LSK109 kit (Oxford Nanopore Technologies,

Oxford, UK). All library preparation and sequencing were

conducted by Wuhan Benagen Technology Company Limited

(Wuhan, China). The raw data has been deposited in NCBI

(BioProject accession number PRJNA1096937).
Gene expression and functional
enrichment analysis of DEGs

After quality assessment and data filtration, clean reads were

obtained. Multiple sequence alignments of DNA were performed

using Star 2.7.0d software (Dobin et al., 2012). The quality control

and data management software used was QoRTs (Hartley and

Mullikin, 2015). HTSeq software (Trapnell et al., 2010) was used

to obtain the number of reads aligned to each gene for each sample.

The quantitative results are expressed as FPKM values (expected

number of fragments per kilobase of transcript sequence per

millions base pairs sequenced) corrected by TMM (EdgeR’s

trimmed mean of M values). Based on the expression levels of all

genes in each sample, differential expression analysis was completed

by DESeq2 (Anders and Huber, 2010). The filtration thresholds

were q value<0.05 and |log2FoldChange|>1. Functional enrichment

analysis of differentially expressed genes (DEGs) was performed

using clusterProfiler (Yu et al., 2012), including Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analyses. GO enrichment analysis can provide molecular

function information on DEGs. KEGG pathway analysis was used

to analyze the biochemical metabolic processes. P values ≤ 0.05 were

considered to indicate significant enrichment.
DNA methylation analysis

The original ionic current signal was base called by Guppy

software (Wick et al., 2019) to obtain the raw reads. The raw reads

were filtered by removing low-quality reads and adaptor sequences.
FIGURE 1

Schematic overview of the methyl-seq and RNA-seq protocol.
Mycelia cultured after 24 h treatment (Final concentration of
pyraclostrobin was 7.4 µg/L, and control was added the same
volume of sterile water) were collected from each flask and were
divided into two parts for DNA extraction and RNA extraction. After
nanopore sequencing and Illumina sequencing, data analysis was
performed to obtain differentially methylated genes and differentially
expressed genes, and then possible metabolite process was
analyzed by both GO and KEGG pathway.
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Then, the clean and high-quality reads were aligned to the

M. oryzae reference genome (http://fungi.ensembl.org/

Magnaporthe_oryzae/Info/Index) (Dean et al., 2005) using

minimap2 software (Li, 2018). The mapping ratios were

determined, and the matched reads were used for subsequent

methylation analysis. The Tombo program (Stoiber et al., 2017)

was used to associate the raw ionic current signals with specific

genomic bases, and the 5mC, mCpG and 6mA sites were identified.

RepeatMasker (Chen, 2004) was used to identify repetitive elements

in the genomic sequence; the repeat regions, upstream 2 kb region,

and downstream 2 kb region were divided into 50 bins, and the

average methylation level of each bin was evaluated. Based on the

differentially methylated sites (DMSs) identified by MethylKit

(Akalin et al., 2012), the genome was segmented and then divided

into differentially methylated regions (DMRs), which were analyzed

using MethCP (Gong and Purdom, 2020). Fisher’s test was used to

test the differences in regions, and the significance threshold was

0.01. Genes containing DMRs in exons, introns, 2 kb regions

upstream of translation start sites or 2 kb regions downstream of

transcription termination sites were considered differentially

methylated genes (DMGs).
Frontiers in Plant Science 04
Results

Methylomic and transcriptomic features

The data of the methylome and transcriptome are shown in

Table 1. We obtained an average of 1,293,690 and 65,179,085 clean

reads from the M. oryzae methylome and transcriptome,

respectively. All our results were obtained from these filtered

reads, of which 1,160,010 and 61,878,247 reads were mapped

uniquely to the reference genome (http://fungi.ensembl.org/

Magnaporthe_oryzae/Info/Index) (Dean et al., 2005). The

proportion of both exceeded 89.64%.

Pyraclostrobin treatment led to the differential expression of 564

genes. Among these genes, 340 were upregulated, and 224 were

downregulated (Figure 2A). KEGG pathway analysis revealed that

these alterationsmainly affected pathways associated withmetabolism,

genetic information processing, environmental information

processing, cellular processes, and organismal systems (Figure 2B),

such as protein processing in the ER (ko04141), ubiquitin-mediated

proteolysis (ko04120), glutathione metabolism (ko00480), fatty acid

metabolism (ko01212) and aminoacyl-tRNA biosynthesis (ko00970).
BA

FIGURE 2

Gene expression changes and differentially expressed genes (DEGs) involved in metabolic processes under pyraclostrobin stress. (A) Volcano plot of
differentially expressed genes after pyraclostrobin treatment; (B) KEGG pathway analysis of differentially expressed genes. Among the 564 (DEGs)
detected, 340 genes were upregulated, and 224 genes were downregulated. These genes were clustered into five main classes: metabolism, genetic
information processing, environmental information processing, cellular processes, and organismal systems.
TABLE 1 Overview of the methylome and transcriptome data of Magnaporthe oryzae.

Sample name Clean reads Unique mapped reads
Ratio
/%

Depth
/%

GC content/%

Methylome

Control 327608 297174 90.73 78.76 –

Pyraclostrobin 472599 423024 89.64 82.00 –

Sum 1293690 1160010 – – –

Transcriptome

Control 23056733 21857783 94.80 – 56.09

Pyraclostrobin 20390357 19394627 95.12 – 56.15

Sum 65179085 61878247 – – –
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Protein processing in the ER and ubiquitin-
mediated proteolysis were enhanced

As shown in Table 2, multiple DEGs encoding molecular

chaperones in the endoplasmic reticulum (ER), such as BiP,

HYOU1, and Hsp40, which recognize and bind nascent peptides

during the transport of functional proteins, were upregulated 1.20-

to 2.60-fold. In addition, the proteins UBE2G1, UBE2G2, HSP40,

HSP70, and CHIP, which are involved in the formation of the

ubiquitin ligase complex, and the proteins sHSF, p97, HSP90,

DOA1, PNG1, UBE1, BTRC, UBE3C, UBE2R, and MGG_05584,

which facilitate the entry of ubiquitin-binding proteins into the

proteasome, were also upregulated. These proteins jointly

participate in ER-associated and ubiquitin-mediated proteolysis

(Figure 3). The above results suggest that many polypeptides may

not be able to form functional proteins with correct spatial

conformations in the ER and may not directly enter the

degradation program. For example, the expression of GluII, a

protein involved in the folding of glycoproteins in the ER

(Wilkinson et al., 2006), was downregulated, suggesting that more

misfolded proteins may be produced.

In addition, a tripeptidyl-peptidase (TPP1, MGG_07404)

located in lysosomes that can degrade aging and abnormal

proteins was found to be upregulated 2.58-fold. This suggests that

in response to pyraclostrobin stress,M. oryzaemay also prevent cell
Frontiers in Plant Science 05
damage caused by abnormal protein accumulation by enhancing

the lysosomal degradation pathway. Additionally, a 41 kDa

peptidyl-prolyl cis-trans isomerase (PPID, MGG_08104) was

upregulated 3.05-fold. PPID can accelerate the isomerization of

proline peptide bonds that assist protein folding (Keogh et al.,

2019). Taken together, these results show that the post-translation

stage is an important stage for the response of M. oryzae to

pyraclostrobin stress.
The fidelity of genetic information
transmission was altered

The fidelity of genetic information transmission was

differentially affected by pyraclostrobin at the DNA, RNA and

protein levels (Table 3). Multiple enzymes involved in DNA

replication and repair pathways, such as DNA polymerase

subunit (POLE1), DNA ligase (DNL4), DNA helicase subunit

(KU70), and serine/threonine-protein kinase (TEL1), and some

related proteins, such as MCM7, SLD2, TOF1, RAD5, and ER6L2,

were downregulated 1.53- to 2.82-fold, suggesting that the fungicide

pyraclostrobin can inhibit DNA replication and DNA repair

processes, which may further affect cell division and proliferation

and may result in the generation of structurally abnormal proteins.

At the RNA level, the RNA polymerase subunit (ABC4) was
TABLE 2 Differentially expressed genes involved in protein processing in the endoplasmic reticulum and ubiquitin mediated proteolysis.

Involved processes Protein name
Gene
name

Annotation
log2Fold
Change

P adj

Protein processing
in ER

sHSF MGG_04358 Belongs to HSP20 family 2.60 0.0018

HYOU1 MGG_06648 Hypoxia up-regulated protein 1 2.20 7.24E-05

Hsp90 MGG_06759 Heat shock protein 90 homolog 2.15 0.0005

DOA1 MGG_14014 Ubiquitin homeostasis protein lub1 2.12 1.20E-07

BIP MGG_02503 Endoplasmic reticulum chaperone BiP 1.96 3.14E-06

Hsp40 MGG_04462 Mitochondrial protein import protein mas5 1.93 6.20E-07

Hsp70 MGG_06958 Heat shock 70 kDa protein 1.68 0.0203

UBE2G1 MGG_14071 Ubiquitin-conjugating enzyme E2 15 1.63 0.0019

CDC48 MGG_05193 Cell division control protein 48 1.48 0.0068

UBE2G2 MGG_04081 Ubiquitin-conjugating enzyme E2-18 kDa 1.28 0.0215

CHIP MGG_08035 Peptidylprolyl isomerase 1.23 0.0164

PNG1 MGG_03598 Protein PNG1 1.20 0.0158

GlcII MGG_08623 Glucosidase 2 subunit alpha -1.25 0.0121

Ubiquitin mediated proteolysis

— MGG_05584
Ubiquitin-dependent protein
catabolic process

2.01 0.0057

UBE1 MGG_01409 Ubiquitin-activating enzyme E1 1 1.88 0.0007

BTRC MGG_00261 Beta-TrCP 1.30 0.0029

UBE3C MGG_09504
Probable E3 ubiquitin protein
ligase C167.07c

1.25 0.0086

UBE2R MGG_14266 Ubiquitin-conjugating enzyme E2-34 kDa 1.03 0.0270
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TABLE 3 Differentially methylated genes involved in the high-fidelity transmission of genetic information within KEGG Ontology annotations in
M. oryzae.

Levels
Process
involved

Protein
name

Gene
name

Annotation log2FC P adj

DNA level
Replication
and repair

RAD5 MGG_12155 DNA repair protein RAD5 -2.82 0.0007

POLE1 MGG_03850 DNA polymerase ϵ catalytic subunit A -2.36 0.0017

MCM7 MGG_09300 DNA replication licensing factor mcm7 -2.17 0.0186

SLD2 MGG_11473 DNA replication regulator SLD2 -2.16 0.0363

KU70 MGG_01512 ATP-dependent DNA helicase II subunit 1 -2.09 0.0015

TOF1 MGG_03991 Topoisomerase 1-associated factor 1 -1.96 0.0118

DNL4 MGG_10627 DNA ligase 4 -1.91 0.0278

TEL1 MGG_14764 Serine/threonine-protein kinase tel1 -1.60 0.0008

ER6L2 MGG_06945 DNA excision repair protein ERCC-6-like 2 -1.53 0.0449

RNA level

Transcription

FAP1H MGG_00137
FKBP12-associated protein 1 homolog, DNA-
binding transcription factor activity

2.08 1.60E-05

– MGG_13927
DNA-binding transcription factor activity, RNA
polymerase II-specific

1.88 0.0252

– MGG_00672
DNA-binding transcription factor activity, RNA
polymerase II-specific

1.84 0.0002

ABC4 MGG_11667 RNA pol I, II, and III subunit RPABC4 1.60 0.0003

MNAT1 MGG_03605 RNA pol II transcription factor B subunit 3 1.35 0.0021

TFIIE1 MGG_06909 Transcription initiation factor IIE subunit alpha 1.04 0.0405

ZNFX1 MGG_11779
NFX1-type zinc finger-containing protein 1, DNA-
binding transcription factor activity

-2.37 0.0003

– MGG_04674
DNA-binding transcription factor activity, RNA
polymerase II-specific

-1.74 0.0265

HAP3 MGG_01653 Transcriptional activator HAP3 -1.60 0.0112

Pre-
mRNA
splicing

CWC24 MGG_17908 Pre-mRNA-splicing factor cwc24 1.98 1.83E-06

U2AF1 MGG_09948 Splicing factor U2AF 23 kDa subunit 1.75 0.0190

(Continued)
F
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FIGURE 3

Endoplasmic reticulum-associated and ubiquitin-mediated proteolysis. Red indicates upregulated proteins; green indicates downregulated proteins.
Multiple molecular chaperones that can recognize and bind nascent peptides, proteins involved in the formation of ubiquitin ligase complexes, and
proteins that facilitate the entry of ubiquitin-binding proteins into the proteasome were upregulated, but proteins involved in the correct folding of
glycoproteins were downregulated.
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upregulated 1.60-fold, while the changes in transcription factors

were inconsistent; some transcription factors were upregulated

(FAP1H, MGG_13927, MGG_00672, MNAT1, TFIIE1), while

others were downregulated (ZNFX1, MGG_04674, HAP3). Some

pre-mRNA splicing factors were upregulated, and most of the

protein factors involved in mRNA stability and degradation were

also upregulated, indicating that the drug not only did not obviously

inhibit mRNA expression but also produced more protein to

promote the splicing of pre-mRNA and enhance its stability. The

expression levels of various aminoacyl-tRNA synthetases,

ribosomal synthases and transporters that contribute to protein

synthesis were all upregulated. The above results suggest that both

the transcription and translation processes were enhanced.

However, due to the inhibition of DNA replication and repair

processes, genetic information is damaged. Although the

information encoded by DNA can be faithfully passed on to

mRNAs and proteins, more abnormal proteins are still produced.

These abnormal proteins needed to be degraded, and thus, the

proteolytic capacity needed to be enhanced, which was consistent
Frontiers in Plant Science 07
with the aforementioned enhancement of the proteolytic

process (Table 2).
Glutathione metabolism was enhanced

As shown in Table 4, KEGG annotation indicated that the

expression of enzymes related to glutathione metabolism

(ko00480), including glutathione S-transferase (GST and GTO2),

glutathione reductase (GSR) and glutathione peroxidase (GPX),

which contribute to the removal of hydrogen peroxide and other

toxic substances, and maintain a high reduced glutathione

concentration, was upregulated by pyraclostrobin. This greatly

protects cell tissues and sulfhydryl-containing enzymes from

peroxide damage. In addition, ribonucleoside-diphosphate

reductase M1 (RRM1), which is a subunit of ribonucleotide

reductase, was downregulated. Ribonucleotide reductase catalyzes

the biosynthesis of deoxyribonucleotides from the corresponding

ribonucleotides using thioredoxin, including tryparedoxin and
TABLE 3 Continued

Levels
Process
involved

Protein
name

Gene
name

Annotation log2FC P adj

HSP70 MGG_06958 Heat shock 70 kDa protein 1.68 0.0203

mRNA
stability
and
degradation

GroEL MGG_03165 Heat shock protein 60 2.11 7.06E-06

– MGG_09923 Negative regulation of mRNA polyadenylation 1.77 0.0008

DnaK MGG_04191 Hsp70-like protein 1.30 0.0065

PABPC MGG_09505 Polyadenylate-binding protein 1.10 0.0461

PAN2 MGG_17449
PAN2-PAN3 deadenylation complex
catalytic subunit

-1.19 0.0445

Protein level

Aminoacyl-
tRNA
biosynthesis

– MGG_08103 Alanine-tRNA ligase 2.66 0.0001

YARS MGG_02449 Tyrosine-tRNA ligase 1.82 0.0123

NARS MGG_08897 Asparagine-tRNA ligase 1.65 0.0374

AARS MGG_03607 Alanine-tRNA ligase 1.61 0.0005

VARS MGG_04396 Valine-tRNA ligase 1.19 0.0190

LARS MGG_04042 Leucine-tRNA ligase -1.53 0.0319

Ribosome
biogenesis
and
translation

NMD3 MGG_05817 60S ribosomal export protein NMD3 2.73 9.99E-08

SQT1 MGG_03080 Ribosome assembly protein SQT1 2.64 7.06E-06

EF1B MGG_04436 Elongation factor 1-beta 2.09 0.0006

REI1 MGG_02505
Cytoplasmic 60S subunit biogenesis factor
REI1 homolog

1.90 0.0006

EIF2S1 MGG_01592 Translation initiation factor 2 subunit 1 1.83 0.0008

LSG1 MGG_07525 Large subunit GTPase 1 1.79 0.0017

LTV1 MGG_07524 Ribosomal small subunit biogenesis 1.74 0.0012

RQC2 MGG_02697 Ribosome quality control complex subunit 2 1.65 0.0037

MAK16 MGG_17694 Ribosomal large subunit biogenesis 1.61 0.0005

EIF6 MGG_01671 Translation initiation factor 6 1.36 0.0019
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trypanothione, as H donors (Figure 4). The downregulation of

RRM1 expression contributes to high concentrations of

trypanothione and tryparedoxin.
Lipid metabolism was impaired

Fatty acid anabolism (ko01212) is inhibited by pyraclostrobin.

As shown in Table 5, the genes encoding vital enzymes for the

synthesis of hexadecanoyl-CoA and stearoyl-CoA, including acetyl-

CoA carboxylase (ACACA), fatty acid synthase subunit a (FAS2),

fatty acid synthase subunit b (FAS1), enoy-[acyl-carrier-protein]

reductase (MECR) and 3-oxoacyl-[acyl-carrier-protein] reductase

(FABG), were all downregulated in the presence of pyraclostrobin.

Pyraclostrobin prevents electron transfer between cytochrome b

and c1, inhibiting ATP production. Fatty acid synthesis is an

energy-consuming process that requires large amounts of ATP

and NADPH. Inhibition of fatty acid synthesis can reduce ATP

consumption, which is beneficial for the synthesis of substances

urgently needed for survival, such as many enzymes and proteins.

This is a viable strategy that allows organisms to adapt to

harsh environments.

In the glycerophospholipid metabolism pathway (ko00564), the

expression of the AYR1, PLD1 and CRLS genes was inhibited. AYR1

catalyzes the conversion of 1-acyldihydroxyacetone phosphate to 1-
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acylglycerol-3-phosphate, which is further converted to phosphatidic

acid, a precursor in cardiolipin synthesis. CRLS catalyzes the

conversion of phosphatidylglycerol to cardiolipin, while PLD1

promotes the breakdown of cardiolipin to phosphatidic acid.
Additional alternative splicing events
were discovered

After pyraclostrobin treatment, some alternative splicing events

were detected, including skipped exons and alternative 5′ splice sites
(Figure 5). Five genes, namely, MGG_00470 (Mei2), MGG_09435,

MGG_11079 (nonselective cation channel), MGG_10183 (Enolase-

phosphatase E1, UTR4) and MGG_04006 (Rho-GAP domain-

containing protein), exhibit exon inclusion. Only the MGG_06981

gene (carnitine O-acetyltransferase) exhibited an alternative 5′
splice site. Notably, the meiosis-related gene MGG_00470 (Mei2)

also showed a 2.27-fold decrease in gene expression according to the

transcriptome sequencing results, which may be associated with its

alternative splicing. Two other meiosis-related genes, mcm7

(MGG_09300, DNA replication licensing factor mcm7) and

ANAPC1 (MGG_03314, anaphase-promoting complex subunit 1),

were downregulated 2.17-fold and 1.46-fold, respectively. These

results suggested that pyraclostrobin may disrupt the progression of

the cell cycle.
FIGURE 4

Glutathione metabolism and generation of trypanothione and tryparedoxin. Glutathione S-transferase (GST), glutathione reductase (GSR) and
glutathione peroxidase (GPX) were upregulated and contributed to the removal of hydrogen peroxide and other toxic substances. Ribonucleoside-
diphosphate reductase M1 (RRM1) was downregulated, which contributed to high concentrations of trypanothione and tryparedoxin.
TABLE 4 Glutathione metabolism by KEGG Ontology annotation in M. oryzae.

Protein name Gene name Annotation log2FoldChange P adj

GTO2 MGG_01410 Glutathione S-transferase omega-like 2 2.87 0.0003

GST MGG_06747 Glutathione S-transferase 1.72 0.0206

GSR MGG_12749 Glutathione reductase 1.70 0.0026

GST MGG_06907 glutathione S-transferase 1.40 0.0049

GPX MGG_07460 glutathione peroxidase 1.01 0.0446

RRM1 MGG_07000 ribonucleoside-diphosphate reductase subunit M1 -1.54 0.0049
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DNA methylation levels in the gene body
and flanking regions were increased
by pyraclostrobin

To examine whether gene expression and alternative splicing

are associated with DNA methylation in the gene body and

upstream and downstream regions, in this work, we measured the

methylation levels of 5mC and 6mA in the gene body and 2 kb

upstream and 2 kb downstream flanking regions. As shown in

Figure 6, the 5mC level was greater than the 6mA level. The

methylation levels of 5mC at the transcriptional start site and

transcriptional end site were significantly greater than those in

other regions, which was consistent with the distribution of CpG. In

contrast to the distribution of 5mC, the level of 6mA was high in the

gene body region but low at the transcriptional start site and

transcriptional end site. After treatment with pyraclostrobin, both

5mC and 6mA levels increased throughout the gene body and

flanking regions.
GO and KEGG enrichment analysis
of DMGs

Figure 7 shows the genes with differential methylation of 5mC

and 6mA. A total of 665 genes were differentially methylated with

5mC, 404 of which were hypermethylated, accounting for 60.75%,

and 237 genes were demethylated, accounting for 35.64%. A total of

596 genes exhibited differential methylation of 6mA, of which 263

genes were hypermethylated, accounting for 44.13%, and 321 genes

were demethylated, accounting for 53.86%. The results showed that

when the fungus responds to pyraclostrobin, 5mC is mainly

hypermethylated, while 6mA is mainly demethylated, both of

which occur mainly in exons and promoters, suggesting that

methylation changes occurring in exon and promoter regions are

probably critical for regulating gene expression to prevent damage

under stress.

A total of 665 5mC DMGs and 596 6mA DMGs were subjected

to GO and KEGG enrichment analyses, respectively. The
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enrichment results are shown in Figure 8. According to the

results of the GO biological process analysis, both 5mC and 6mA

DMGs were enriched in RNA polymerase II transcription factor,

transcription, ubiquitin protein ligase and proteolysis. KEGG

enrichment analysis revealed nucleotide excision repair and

protein processing in the ER in 5mC DMGs and ubiquitin-

mediated proteolysis and protein processing in the ER in 6mA

DMGs. This finding is consistent with the gene expression results.
Comprehensive analysis of gene
expression and DNA methylation

To further elucidate the effect of DNA methylation on gene

expression, we compared DEGs with DMGs (5mC/6mA), of which

23 DEGs showed differential 5mC or 6mAmethylation, as shown in

Table 6. Unfortunately, there was no consistent trend between

changes in 5mC/6mA and gene expression. Three upregulated

genes were hypermethylated at 6mA sites, including MGG_14014

and EFMOG00000000060 in the promoter and MGG_10588 in the

exon. Three upregulated genes were hypermethylated at 5mC sites,

including MGG_08519 and MGG_10848 in the promoter and

MGG_02210 in the exon. Two upregulated genes were

hypomethylated at 5mC sites, including MGG_05584 in the

promoter region and MGG_00261 in the exon. MGG_14956 was

hypomethylated at the 6mA site in the promoter. MGG_16403 was

hypermethylated at the 5mC site and hypomethylated at a 6mA site

in the promoter region. Three downregulated genes were

hypermethylated at the 5mC site, with MGG_07000 and

MGG_09107 hypermethylated in the promoter region and

MGG_11779 in the exon. MGG_09822 and MGG_03921 were

hypomethylated at a 5mC site in the promoter. MGG_08486 and

MGG_07605 were hypermethylated at a 6mA site in the promoter.

Two downregulated genes, MGG_08315 and MGG_00225, were

hypomethylated at 6mA in the promoter region. KEGG annotation

revealed that the upregulated genes MGG_14014, MGG_00261 and

MGG_10588 were involved in protein processing in the ER,

ubiquitin-mediated proteolysis and RNA transport, respectively.
TABLE 5 Glycerophospholipid metabolism by KEGG Ontology annotation in M. oryzae.

Process involved Protein name Gene name Annotation
log2Fold
Change

P adj

Fatty acid metabolism

FAS1 MGG_04118 Fatty acid synthase subunit b -2.09 0.0054

ACACA MGG_07613 AcetylCoA-carboxylase -1.93 0.0012

FAS2 MGG_12154 Fatty acid synthase subunit a -1.58 0.0482

MECR MGG_02566 Enoy-[acyl-carrier-protein] reductase -1.19 0.0285

FABG MGG_06660
3-oxoacyl-[acyl-carrier-protein] reductase, or
beta-ketoacyl-ACP reductase

-1.00 0.0451

Glycerophospholipid
metabolism

AYR1 MGG_16186
NADPH-dependent 1-acyldihydroxyacetone
phosphate reductase

-2.95 6.10E-10

PLD1 MGG_05804 Phospholipase D1 -1.57 0.0405

CRLS MGG_08851 Cardiolipin synthase -1.07 0.0442
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The downregulated gene MGG_07000 participated in the

glutathione metabolism process. These results suggest that 5mC

and 6mA DNA methylation may participate in the stress response

by affecting gene expression. However, other genes were not

annotated to a pathway. Of course, there were also many genes

that showed changes in methylation levels but nonsignificant

changes in gene expression (data not shown), suggesting that the

connectivity between DNA methylation and gene expression

is complex.
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Discussion

M. oryzae has been reported to have high pathogenic variation

with respect to host range and variety specificity. Pathogenic

variation is the main reason why rice blast fungus breaks through

the resistance barrier of rice plants or makes fungicides ineffective.

M. oryzae has evolved sophisticated strategies to attach and

subsequently infect its hosts, processes that often involve unique

epigenetic changes. Clarifying the metabolism and molecular
TABLE 6 Differentially expressed genes related to methylation changes under pyraclostrobin stress.

Gene name log2FC P adj Gene function annotation
Methylation Change

KEGG pathway
5mC 6mA

MGG_01896 2.98
6.72E-
09

Isonitrile hydratase
hypo and hyper in
P1-2kb

— —

MGG_14014 2.12
1.20E-
07

Ubiquitin homeostasis protein lub1 — hyper in P2-3kb
Protein processing in

ER (ko04141)

MGG_05584 2.01 0.00572 — hypo in P1-2kb — —

MGG_16403 1.74 0.01641 — hyper in P2-3kb hypo in P2-3kb —

MGG_08519 1.73 0.02174 Oxidoreductase sirO hyper in P2-3kb — —

MGG_02210 1.72 0.03529 Vanadium chloroperoxidase hyper in exon — —

MGG_14956 1.64 0.00688 NADH-cytochrome b5 reductase 1 — hypo in P2-3kb —

MGG_10848 1.63 0.00278 — hyper in P0-1kb — —

MGG_05892 1.58 0.00442 —
hypo in P1-2kb and
hyper in P2-3kb

— —

EFMOG00000000060 1.55 0.00829 — — hyper in P0-1kb —

MGG_00261 1.30 0.00289 Beta-TrCP hypo in exon —
Ubiquitin mediated
proteolysis (ko04120)

MGG_10588 1.00 0.04047
Ser-Thr kinase receptor-
associated protein

— hyper in exon RNA transport (ko03013)

MGG_08315 -5.15 0.03844
1-phosphatidylinositol 4,5-
bisphosphate phosphodiesterase 1

— hypo in P1-2kb —

MGG_13430 -3.29 0.01136 — —
hyper in P1-2kb and
hypo in P2-3kb

—

MGG_09107 -2.92 0.04551 — hyper in P0-1-2kb
hyper in P1-2kb and
hypo in P2-3kb

—

MGG_00225 -2.49 0.02539 — — hypo in P0-1kb —

MGG_11779 -2.37 0.00027
NFX1-type zinc finger-containing
protein 1

hyper in exon — —

MGG_08486 -2.24 0.00167 Beta-lactamase-like protein 2 —
hyper in exon and
hyper in P1-2kb

—

MGG_16038 -1.88 0.00781 —
hyper in P1-2kb and
hypo in P2-3kb

— —

MGG_09822 -1.63 0.04787 — hypo in P2-3kb — —

MGG_07000 -1.54 0.00494
Ribonucleoside-diphosphate
reductase subunit M1

hyper in P1-2-3kb —
Glutathione

metabolism (ko00480)

MGG_07605 -1.52 0.02874 — — hyper in P1-2kb —

MGG_03921 -1.46 0.00781 Momilactone A synthase hypo in P2-3kb — —
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changes associated with fungicide action is beneficial for

understanding the mechanism of resistance of rice blast fungus to

drugs, as well as the requisite for the development of effective

disease control strategies. In this work, RNA-Seq was used to

analyze genome-wide changes in gene expression in response to

the popular fungicide pyraclostrobin, and several critical molecules

were shown to play important roles in this process.

Chaperones are central to homeostasis in eukaryotic cells and

play essential roles in protein quality control in the ER and in ER-

associated degradation (Nishikawa et al., 2005; Hartl et al., 2011).

Hsp70 is considered a sentinel chaperone that plays an essential role

in aberrant protein degradation in the ubiquitin−proteasome

system by cooperating with other cellular chaperones to form
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dynamic and functionally versatile complexes (Fernandez-

Fernandez et al., 2017; Rosenzweig et al., 2019). For example,

CHIP, a cochaperone of Hsp70, competes for binding to the C-

terminus of Hsp70 and ubiquitinates Hsp70-bound substrates,

thereby directing the substrates to the proteasome for degradation

(Stankiewicz et al., 2010; Rosenzweig et al., 2019). These chaperones

cooperate with cellular degradation machinery to guard cells from

the deleterious effects of various proteotoxic stresses. Although the

functions of the identified DEGs are only recognized at the level of

integrated methylome and transcriptome analysis in this study, it is

well known that when organisms face large-scale gene damage, SOS

repair is initiated, which inevitably leads to many mutations and the

generation of many abnormal functional proteins. These abnormal

proteins need to be degraded through ER-associated degradation

and ubiquitin-mediated proteolysis pathways. In this study, the

expression of genes related to these two pathways increased, which

is beneficial for cell survival because the accumulation of abnormal

proteins is toxic to organisms. If certain mutations allow the

organism to survive, then these mutations will be passed on, and

the organism will become resistant to the drug. Therefore, the

susceptibility of M. oryzae to developing drug resistance may be

related to its strong ability to degrade abnormal proteins. This

prevents cells that have favorable mutations from dying due to the

accumulated toxicity of abnormal proteins.

Ribonucleotide reductases, including tryparedoxin and

trypanothione, can catalyze the biosynthesis of deoxyribonucleotides

from the corresponding ribonucleotides using thioredoxin as H donors

(Figure 4) (Krauth-Siegel et al., 2003; Comini et al., 2007). The

downregulation of RRM1 expression contributes to high

concentrations of trypanothione and tryparedoxin. It has been

reported that trypanothione and tryparedoxin are involved in diverse

cellular functions, including maintenance of thiol redox activity,

oxidant defenses, defense against xenobiotics, ascorbate homeostasis,
FIGURE 5

Alternative splicing after pyraclostrobin treatment. The MGG_00470, MGG_09435, MGG_11079, MGG_10183 and MGG_04006 genes exhibited
exon inclusion. MGG_06981 exhibited an alternative 5′ splice site.
FIGURE 6

DNA methylation levels in gene regions and their changes after
pyraclostrobin treatment. Pyr, pyraclostrobin; CK, control. TSS,
transcriptional start site; TES, transcriptional end site. The m5C level
was greater than the m6A level. At the transcriptional start site and
transcriptional end site, the m5C level was high, while the m6A level
was low.
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sequestration of heavy metals, drug resistance and modulation of the

host immune response (Fairlamb and Cerami, 1992; Schmidt and

Krauth-Siegel, 2002; Comini et al., 2007; Suman et al., 2018; Gonzalez-

Chavez et al., 2019). Moreover, ribonucleotide reductase is responsible

for the de novo conversion of ribonucleoside diphosphates to

deoxyribonucleoside diphosphates, providing the precursors

necessary for DNA synthesis. The reduction in enzyme activity

inhibited DNA replication and repair, decreasing the fidelity of the

DNA-coding genetic information, consistent with the inhibition of

DNA replication and repair, as shown in Table 3.

Cardiolipin is one of the main phospholipids constituting the

inner mitochondrial membrane, improving the fluidity of the inner

mitochondrial membrane and facilitating the lateral diffusion of
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respiratory chain complexes in the membrane lipid bilayer

(Houtkooper and Vaz, 2008; Paradies et al., 2014). Moreover,

cardiolipin is involved in the formation of all enzyme complexes

of the respiratory chain, including complexes I, II, III, IV and V and

flexible cytochrome c (Fry and Green, 1981; Eble et al., 1990;

Robinson et al., 1990; Ott et al., 2002; Yankovskaya et al., 2003).

It has been shown that abnormal cardiolipin can dysregulate

respiratory chain complex I and mitochondrial quality control

(Anzmann et al., 2021). Studies have also revealed that cardiolipin

and phosphatidic acid control mitochondrial division and fusion

and coordinate the balance between these dynamic processes

(Kameoka et al., 2018). Therefore, inhibition of the expression of

the AYR1, PLD1 and CRLS genes not only disrupts the structure of
B

C D

A

FIGURE 8

GO and KEGG enrichment of differentially methylated genes (DMGs) in the pyraclostrobin group compared to the control group. (A) Top 20
enriched GO terms of 5mC DMGs. (B) Top 20 enriched KEGG pathways of 5mC DMGs. (C) Top 20 enriched GO terms of the 6mA DMGs. (D) Top
20 enriched KEGG pathways of the 6mA DMGs. m5C and m6A DMGs were mainly associated with RNA polymerase II transcription factor,
transcription, ubiquitin protein ligase, proteolysis, and nucleotide excision repair and protein processing in the ER. These critical terms were
highlighted by underlines in the figure.
FIGURE 7

Changes in the differential methylation of genes caused by pyraclostrobin. P_0-1k, promoter_0-1 kb; P_1-2k, promoter_1-2 kb; P_2-3k,
promoter_2-3 kb; Hypo, hypomethylation; Hyper, hypermethylation.
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the mitochondrial inner membrane and electron transport but also

leads to an imbalance of phosphatidic acid and cardiolipin, which

interferes with mitochondrial fusion and division. The dynamic

balance of these two processes is vital for maintaining the functional

competence and quality of mitochondria (Youle and van der Bliek,

2012; Ban-Ishihara et al., 2013; Roy et al., 2015; Shirihai et al., 2015).

An increase in alternative splicing events will generate multiple

transcripts from a single pre-mRNA, which contributes to the gain

or loss of some protein functional domains. This produces protein

isoforms that respond to the demands associated with pathogenicity

and environmental pressures such as fungicides in fungi as shown by

Gehrmann et al. (2016) and Fang et al. (2020). Several gene knockout

experiments have confirmed that alternative splicing, which likely

generates protein isoforms, is directly involved in the resistance

mechanism inM. oryzae. For example, the removal of theMoHMT1

gene, which causes genome‐wide alternative splicing, resulted in

increased pathogenicity in M. oryzae (Li et al., 2020). Alternative

splicing of MoPTEN contributes to conidium and appressorium

development and invasive hyphal growth of M. oryzae in plant cells

(Wang et al., 2021). Alternatively spliced SMN orthologs in M.

oryzae are required for stress resistance and disease development

(Liang et al., 2015). Deletion of the splicing factor MoSrp1 verified

that alternative splicing participated in mycelial growth, conidiation,

and virulence in M. oryzae (Shi et al., 2022).

In this study, the expression of several cell cycle-related genes was

downregulated or alternatively spliced. Mei2 is considered an RNA-

binding protein that can form a complex with a specific RNA species

to promote meiosis (Yamamoto, 1996). One study showed that mei2

gene expression is regulated by cAMP (Watanabe et al., 1988).

Moreover, cAMP is generated from ATP, and this process is

blocked by pyraclostrobin. This may be one of the reasons for the

decreased expression of mei2. Additionally, mcm7 (MGG_09300)

and ANAPC1 (MGG_03314), two other meiosis-related genes, were

downregulated 2.17-fold and 1.46-fold, respectively. MCM7 is a DNA

replication licensing factor that is involved in the initiation of

replication by loading onto DNA replication origins (Cvetic and

Walter, 2006; Evrin et al., 2014). ANAPC1 is one of the subunits of

the anaphase-promoting complex (APC), which is an E3 ubiquitin

ligase that targets cell cycle regulatory proteins for degradation by the

proteasome and functions in cell cycle transition (Castro et al., 2005).

These results showed that pyraclostrobin may disrupt cell cycle

progression by inhibiting cell cycle-related proteins. MGG_04006 is

a Rho-GAP domain-containing protein. Ye et al. (2014) reported that

there are eight putative Rho GAP proteins in M. oryzae. Some Rho

GAP proteins, such as MoRga1 and MoLrg1, may play important

roles in vegetative growth, conidiation, conidial morphology,

appressorium formation and pathogenicity. However, MGG_04006

did not affect fungal development of virulence. Nevertheless, exon

skipping occurred in this gene under pyraclostrobin stress, suggesting

that it may be needed for fungal survival. However, further research is

needed to study the function of this gene.

Emerging evidence has shown that DNA methylation in

transcribed regions is involved in the regulation of alternative

splicing through two possible mechanisms. First, DNA methylation

modulates the elongation rate of RNA polymerase II via CCCTC-

binding factor (CTCF) and methyl-CpG binding protein 2 (MeCP2),
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allowing some weak splicing signals to be identified as involved in

splicing (Shukla et al., 2011; Maunakea et al., 2013). Second, DNA

methylation-dependent heterochromatin protein 1 (HP1) can recruit

splicing factors to alternative exons that contribute to alternative

splicing (Yearim et al., 2015). Further study confirmed that DNA

methylation of exon-encoding regions is directly involved in the

regulation of alternative splicing (Shayevitch et al., 2018). However,

additional underlying mechanisms remain to be elucidated

(Lev Maor et al., 2015).

Additionally, the distributions of 5mC and m6A were negatively

correlated. In regions with high levels of 5mC, the 6mA level was

low, and in regions with low levels of 5mC, the 6mA level was high.

A negative correlation between the distributions of 5mC and 6mA

in diverse fungi has been reported by Mondo et al. (2017). After

pyraclostrobin treatment, the levels of both 5mC and 6mA

increased, indicating that pyraclostrobin treatment can increase

the methylation rate in the gene body and 2 kb upstream and 2 kb

downstream flanking regions. The methylation sites alter the

binding of certain proteins, affecting the efficiency of RNA

polymerase or the binding of splicing factors, thereby affecting

transcription and alternative splicing. Studies have shown that 5mC

and 6mA in the gene body are associated with enhanced gene

expression (Arechederra et al., 2018; Zhang et al., 2018). Yang et al.

(2014) reported that there is a causal relationship between C

methylation in gene body and gene expression. 6mA has been

reported to be associated with active genes, especially RNA

polymerase II-transcribed genes (Mondo et al., 2017; Wang et al.,

2017). Further studies suggested that the main function of gene

body methylation is not to modulate expression during

development or respond to the environment but to stabilize gene

expression by preventing aberrant transcription from internal

cryptic promoters and enhance splicing efficiency to reduce

expression variability by excluding the histone variant H2A.Z

(Kim and Zilberman, 2014; Bewick and Schmitz, 2017;

Zilberman, 2017).

Although DNA methylation can change the functional state of

regulatory regions, the connectivity between DNA methylation and

gene expression is complex and poorly understood (Schubeler,

2015; Angermueller et al., 2016). Li et al. (2011) showed that

5mC in the promoter of Pib plays a positive role in inducing the

expression of Pib in M. grisea. Partial demethylation by 5-

azacytidine treatment reduced Pib expression and compromised

blast disease resistance. Singh and Vinod (2020) also reported that

only a small proportion of differentially hypermethylated genes with

5mC showed downregulated expression. These results suggest that

aberrant DNA methylation may play both a positive and negative

role in regulating gene expression (Zhu et al., 2016). This study is

helpful for understanding the adaptation and variation mechanisms

of rice blast fungus, and promoting the control of rice blast disease.
Conclusion

Under pyraclostrobin stress, proteolysis, glutathione

metabolism, and alternative splicing were enhanced in M. oryzae,

while DNA replication, DNA damage repair, and lipid metabolism
frontiersin.org

https://doi.org/10.3389/fpls.2024.1391900
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fang et al. 10.3389/fpls.2024.1391900
were inhibited. These changes may be related to the elevated levels

of 5mC and 6mA in the gene body. This work enriches the

understanding for potential mechanism of quinone fungicides

resistance. Meanwhile, it reflects the complexity of the adaptation

mechanism ofM. oryzae to quinone fungicides and the necessity for

ongoing research in this field.
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