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Synchrotron tomography of
magnetoprimed soybean plant
root system architecture grown
in arsenic-polluted soil
Anis Fatima1†, Sunita Kataria2,3*, Meeta Jain2,
Rajkumar Prajapati2 and Lovely Mahawar3,4*

1Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India, 2School of Biochemistry,
Devi AhilyaVishwavidyalaya, Indore, MP, India, 3Department of Plant Physiology, Faculty of
Agrobiology and Food Resource, Slovak University of Agriculture, Nitra, Slovakia, 4Department of
Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
The present study evaluated the repercussions of magnetopriming on the root

system architecture of soybean plants subjected to arsenic toxicity using

synchrotron radiation source based micro-computed tomography (SR-µCT).

This will be used evey where as abbreviation for the technique for three-

dimensional imaging. Seeds of soybean were exposed to the static magnetic

field (SMF) of strength (200 mT) for 1h prior to sowing. Magnetoprimed and non-

primed seeds were grown for 1 month in a soil–sand mixture containing four

different levels of sodium arsenate (0, 5, 10, and 50 mg As kg−1 soil). The results

showed that arsenic adversely affects the root growth in non-primed plants by

reducing their root length, root biomass, root hair, size and number of root

nodules, where the damaging effect of As was observed maximum at higher

concentrations (10 and 50 mg As kg−1 soil). However, a significant improvement

in root morphology was detected in magnetoprimed plants where SMF

pretreatment enhanced the root length, root biomass, pore diameter of

cortical cells, root hair formation, lateral roots branching, and size of root

nodules and girth of primary roots. Qualitative analysis of x-ray micro-CT

images showed that arsenic toxicity damaged the epidermal and cortical layers

of the root as well as reduced the pore diameter of the cortical cells. However,

the diameter of cortical cells pores in magnetoprimed plants was observed

higher as compared to plants emerged from non-primed seeds at all level of As

toxicity. Thus, the study suggested that magnetopriming has the potential to

attenuate the toxic effect of As and could be employed as a pre-sowing

treatment to reduce the phytotoxic effects of metal ions in plants by improving

root architecture and root tolerance index. This study is the very first exploration

of the potential benefits of magnetopriming in mitigating the toxicity of metals

(As) in plant roots utilizing the micro-CT technique.
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Introduction

In recent decades, heavy metal (HM) pollution has emerged as a

serious problem for soils and aquatic ecosystems worldwide due to

rapidly increasing urbanization and industrialization (Narayanan

and Ma, 2023). Among the various stresses [salinity, ultraviolet

(UV), drought, HMs, temperature, insects, pests etc.] in the

terrestrial environment, HMs are regarded as the chief hazardous

culprit due to their highly toxic, irreversible, and enduring nature

(Kataria and Jain, 2018; Prajapati et al., 2020; Kashyap et al., 2021).

Excessive concentrations of HMs in the soil not only alter its

physiochemical properties but also severely impact the plants and

animal health (Mahawar et al., 2021). Arsenic (As) is a non-

essential noxious metalloid naturally present in the soil (range

between 1 and 40 mg kg−1) (EPA, 2001) that possesses severe

threats to all forms of life including plants, animals, and human

beings (Hasanuzzaman et al., 2015; Chandrakar et al., 2018; Nahar

et al., 2022). The level of As is affected by the increased

anthropogenic activities, such as, extensive use of agrochemicals,

fossil fuels, metal mining, smelting slags, and the disposal of

industrial and municipal waste (Mehmood et al., 2017).

Terrestrial arsenic is easily accessible and is taken up by plant

roots, translocated into leaf tissue, and accumulated in the edible

parts. This enables the entry of As into the food chain and causes

serious threats to human health (Han et al., 2017). Moreover, high-

arsenic concentration leads to several morpho-physiological,

phenotypic, and genotypic damages in plants (Garg and Singla,

2011; Gusman et al., 2013; Li et al., 2023). The preliminary

symptoms of As toxicity on plants are inhibition of seed

germination, chlorosis, decrease in photosynthesis, transpiration

rate, decrease root growth, yield, alteration in plant metabolism, and

DNA damages that ultimately leads to reduced growth and

productivity (Fatima et al., 2021b; Li et al., 2023).

Several approaches have been employed to neutralize/lessen the

effect of As toxicity on plants. For instance, exogenous application

of salicylic acid, silicon, and 24-Epi-Brassinolide has been shown to

mitigate As stress in Triticum aestivum (Sil et al., 2018; Maghsoudi

et al., 2020). Similarly, supplementation of melatonin-selenium

nanoparticles, phosphorus, and silicon fertilizers detoxified As

effects in Brassica napus (Farooq et al., 2022), and Oryza sativa

(Li et al., 2009), respectively. In other studies plant growth

promoting Acinetobacter sp. was observed to mitigate arsenic

stress in Cicer arietinum (Srivastava and Singh, 2014).

Recent progress has been made to explore the potential of SMF to

improve the development and stress tolerance of As-treated plants.

The magnetopriming is a biophysical, non-invasive, environmental

friendly method to promote plant growth and productivity in both

normal and stressed environments (Sarraf et al., 2020). Studies

reported that seeds primed with magnetic field prior to sowing

promotes seed germination, root/shoot growth, seedling vigor, early

growth characteristics, photosynthetic rate, and yield of various

plants such as Cicer arietinum (Vashisth and Nagarajan, 2008),

Helianthus annuus (Vashisth and Nagarajan, 2010), Solanum

lycopersicum (Anand et al., 2019), Zea mays (Kataria et al., 2017a,

2019; Kataria et al., 2020a, b), and Oryza sativa (Florez et al., 2004).

Involvement of magnetopriming in providing cellular defense against
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oxidative stress induced by HM toxicity, salinity, UV-B and drought

has been reported in Vigna radiata (Chen et al., 2011), Glycine max

(Baghel et al., 2016, Baghel et al., 2018; Kataria et al., 2017a, b; Kataria

et al., 2020a, b; Prajapati et al., 2024), Zea mays (Kataria et al., 2017a)

and Cicer arietinum (Thomas et al., 2013).

It is becoming increasingly evident that the uptake of HMs by

roots seems to trigger a structural alteration in root system with

potential functional consequences (Armendariz et al., 2016). Since

roots are the primary tissues exposed to almost all kinds of soil

stresses including metal toxicity and forced to modify their

structural development accordingly. Previous research

demonstrated the negative outcome of arsenic on root

morphology and anatomy in Raphanus sativus, Brassica oleracea,

Brassica juncea (de Freitas-Silva et al., 2016), and Phaseolus aureus

(Singh et al., 2007). Arsenic toxicity has been found to decrease the

root growth, disturbs root vascular cylinder diameter, and causes

anatomical alterations like protoplast retraction, cell hypertrophy,

cellular plasmolysis, and necrotic regions in plant roots (de Freitas-

Silva et al., 2016). Plant roots absorb, uptake, and translocate water

and minerals to the foliar tissues of the plants as well as serve as a

bridge between plants and soil (Kul et al., 2020). Root system

architecture (RSA; spatiotemporal configurations of roots) such as

root hairs, main root growth, root length, branching, and lateral

root development are the main components of root responsible for

maintaining the nutritional status, growth, and development of

plants under stress conditions (Karlova et al., 2021). Many studies

have demonstrated the detrimental effects of arsenic on the growth

of plant roots such as root length, root hair growth, and root toxicity

index (Beniwal et al., 2023; Rakkammal et al., 2024). Investigating

the RSA of plants under As toxicity can provide insight into the

importance of root traits for abiotic stress tolerance. However, due

to the limited capabilities of advanced techniques for observing

roots, the effects of environmental stress on RSA have been less

studied than the above ground parts of plants. In recent years’

synchrotron radiation (SR)–based techniques such as Fourier

transform spectroscopy (SR-FTIR), x-ray fluorescence (SR-XRF),

and x-ray micro-computed tomography (SR-µCT) have emerged as

important tools to examine the structural and anatomical features

of plant tissues including roots (Dhondt et al., 2010; Vijayan et al.,

2015). In previous studies, x-ray micro-CT (a high-resolution three-

dimensional imaging technique that provides qualitative and

quantitative information on the structure of plant parts such as

leaves, roots, and seeds) has been successfully used to investigate the

alterations in leaf veins of soybean plants grown under UV-B stress,

heavy metal, stress, and magnetoprimed conditions (Fatima et al.,

2016, 2017, Fatima et al., 2021a, b). Therefore, it is possible to

implicate x-ray micro-CT (SR-µCT) as an effective imaging

technique to investigate the influence of magnetopriming on the

RSA of arsenic stressed crop plants. Previously, magnetopriming

induced alleviation of adverse effects of cadmium and mercury

toxicity in soybean during seed germination and early seedling

growth has been reported (Prajapati et al., 2024; Vyas et al., 2024).

Magnetopriming has been shown to mitigate the detrimental effects

of arsenic toxicity in soybean and Cd toxicity in mungbean on the

photosynthetic rate and efficiency of PSII (Chen et al., 2011; Fatima

et al., 2021b). However, the lessening of adverse effects of arsenic on
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RSA in soybean by magnetopriming has not been studied yet. It is

therefore time for crop scientists to take advantage of the

underutilized and underexplored range of RSA traits in order to

assure stability and higher productivity in agricultural systems for

future environmental conditions and climate change scenarios.

Glycine max L. (soybean), the most important legume for

nutrition, is used as a test crop in this study due to its high

protein content and nutritional value. For this study, we

hypothesized that soybean seeds treated with static magnetic field

(SMF) before sowing, when exposed to arsenic toxicity, will change

their root morphology to maintain the growth and productivity of

the stressed plants. Therefore, the objectives of the present study

were (i) to analyze the effect of magnetopriming on root length and

root biomass of As-stressed plants and (ii) to observe the RSA of

magnetoprimed As-stressed roots using x-ray micro-CT.
Materials and methods

Soybean [Glycine max (L.) variety JS-9560] breeder seeds

were procured from the Indian Institute of Soybean Research,

Indore, India. The experiments were conducted in ambient

conditions during September 2019 to November 2019 on the

terrace of the School o f Biochemis try , Devi Ahi lya

Vishwavidyalaya, Indore, India (latitude 2243′N). During the

experiment’s period, the average temperature was between 27°C

and 30°C, and the relative humidity ranged between 55% and

75%. Prior to sowing in the nursery bags, the SMF primed and

non-primed (NP) seeds were mixed with 3g kg−1Rhizobium

japonicum strain (National Fertilizer Limited, New Delhi,

India) and the recommended fungicides Bavistin and Dithiane

Mat (2 g kg−1 seeds).
Magnetic field generation and treatment

The fabricated electromagnetic field (EMF) generator (“AETec”

Academy of Embedded Technology, Delhi, India) was designed

with a 5-cm gap between its pole pieces. The generator comprises

cylindrical pole pieces with a 9-cm diameter and a length of 16 cm.

The coil within the generator is with 3,000 turns and possesses a

resistance of 16 W. These electromagnets are connected to a direct

current (DC) power supply with an output of 80 volts and 10

amperes, allowing for continuous adjustment of the current. To

monitor the magnetic field strength within the pole gaps, a Gauss

meter (DGM-30 by Testron Instruments) was utilize. The

electromagnet coil current is regulated to achieve the desired

magnetic field strength between the pole pieces. This EMF

generator produce a magnetic field of strength ranging from 50 to

300 mT in a horizontal direction, as previously detailed in Kataria

et al. (2020b) (Supplementary Figure S1). The sample holder of

cylindrical shape made of nonmagnetic thin cardboard box (42 cm3

capacity) was kept between both the pole pieces. The SMF of 200

mT for 1h was applied for magnetopriming of the soybean seeds in

present study. The dose was selected on the basis of our earlier

research on magnetopriming of soybean seeds (Fatima et al., 2017).
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The temperature around the seeds was sustained at 25°C ± 5°C

throughout the treatment period. Similar seeds not exposed to

magnetic field are served as NP seeds.
Experimental setup and
growth measurements

The seeds were germinated in nursery bags (34 cmH × 34 cm B)

containing 5 kg of sand, black soil, and cow dung manure in the

ratio of 1:2:1. Five to six seeds were germinated per bag and three

bags are used for every treatment to arrange the experiment in

completely randomized design. Arsenic in the form of sodium

arsenate was added to the sand–soil mixture at four different

levels (5, 10, and 50 mg As kg−1 soil) ranging from normal to

arsenic polluted environment before seed germination. Sand–soil

mixture without sodium arsenate treatment (0 mg As kg−1 of soil)

was termed as control and used to compare the effects of arsenic

toxicity in the plant emerged from NP seeds. The plants were

irrigated regularly to avoid drought conditions. After 30 days of

emergence of the seedlings; the plants were harvested for further

study. The roots of the plants were separated from the aboveground

parts. The length and weight of arsenic treated and control plants

emerged from magnetoprimed, and NP seeds were measured in

centimeters and grams using ruler and weighing balance.
Tolerance index

% Tolerance index (in terms of root mass) of soybean plants

emerged from NP and magnetoprimed seeds grown under different

concentrations of arsenic toxicity were calculated with the formula

given by Iqbal and Rahmati (1992).
Synchrotron micro-computed tomography
for root system architecture

The architecture of the root system, in particular the pore

diameter, the growth of the main root, the development of the

lateral roots, the branching of the roots, the formation of root

nodules, and root hairs were investigated with SR-µCT. Advances

in SR-µCT for research in various disciplines, including agriculture,

have made it possible to characterize plant roots at the micrometer

scale. SR-µCT enables 3D visualization and porosity characterization

of plant roots in a non-destructive manner (Indore et al., 2022). The

technique enables the visualization of roots without physical sections

or staining compared to conventional methods (Keyes et al., 2013).

The experimental facility, Imaging Beamline (BL-4), synchrotron

radiation source Indus-2, was used for the microcomputed

tomographic examination of the samples (Fatima et al., 2021a, b).

The synchrotron beam energy for root tomography is 10 keV and the

CCD detector with a pixel size of 5 microns is used to obtain the 900

projections by rotating the sample in steps of 0.2° (Fatima et al.,

2016). Cross-sectional images of the roots were created from the

recorded projections using the Filtered Back Projection (FBP)
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reconstruction algorithm. Volume rendered images were created

from the reconstructed slice stack for the roots using Drishti

software (Limaye, 2012). The stack of reconstructed slices was

denoised and post-processed further in the Fiji software. In order

to quantify the pores visible in the root cross-sections, segmentation

was performed to select the pores in the image stack and neglect the

remaining part (Fatima et al., 2016).
Statistical analysis

The experiments were conducted in a randomized block design

with three biological replicates-3 nursery bags, were used for each

treatment (5, 10, and 50 mg As kg−1 soil) and control (0 mg As kg−1

soil) for both SMF-primed (MP) and NP soybean seeds. The data

representation form was mean ± SE (n = 3), taking five plants were

in each replica for measurements of all the studied parameters. The

data were evaluated by Student’s t-test, **p < 0.01; ***p < 0.001

signify the difference amongst soybean plants originates from NP

seeds grown under non-stressed and As toxicity conditions; ##p <

0.01; ###p < 0.001 signify the difference amongst NP and MP plants

grown in non-stress and As toxicity conditions.
Results and discussion

Arsenic is a non-essential noxious element for plants and

animals. It is commonly present in the groundwater of heavily

populated river deltas in Southeast Asian countries including India

and used for irrigating agricultural crops. Arsenic from ground

water is easily absorbed by plant roots and accumulates in these

tissues, leading to constant changes in the architecture of the root

system enable plants to survive in the polluted environment

(Ronzan et al., 2018). Root architecture traits such as root

diameter, length, density, branching, and nodulation are

fundamental determinants for promoting robust plant growth

under challenging environmental conditions. Improving these

root traits has the potential to make a significant contribution to

sustainable agricultural development and increased productivity,

especially in the face of soil stress factors such as arsenic toxicity

(Fenta et al., 2011).

Our ongoing research is centered on magnetoprimed soybean

plants and their adaptive responses to arsenic toxicity, with a

specific emphasis on the development of root morphology. In

present investigation, for the first time, we have employed

advanced techniques like synchrotron micro-CT to quantify and

analyze various root parameters, including root length, diameter,

pore size, lateral root branching, and nodule formation in soybean

plants. It is important to note that soybean exhibits a characteristic

allorhizic root system, in which a tap root (originating from the

hypocotyl) serves as the primary root, from which lateral roots

subsequently emerge (Fenta et al., 2011). In the present study, we

found significant reduction (P < 0.01) in the root length and root

mass in NP plants exposed to different levels of As toxicity (5, 10,

and 50 mg kg−1) in comparison to control (0 mg kg−1 soil)

conditions (Figures 1A, B). The impact of arsenic on root growth,
Frontiers in Plant Science 04
specifically in terms of both root length and root mass, became

increasingly pronounced at higher arsenic concentrations. The

maximum inhibition of 22% (10 mg kg−1 soil) and 29% (50 mg

kg−1 soil) in root length (Figure 1A), and 53% (10 mg kg−1 soil) and

56% decrease (50 mg kg−1 soil) was observed in root biomass in

soybean plants from NP seeds (Figure 1B) in comparison to control

plants grown under non-stress conditions (0 mg kg−1 soil). A strong

inhibition of root length at higher arsenic concentration were also

previously reported by Rodrıǵuez-Ruiz et al. (2019) in Pisums

ativum and Singh et al. (2007) in Phaseolus aureus. Conversely, a

progressive increase in the root length (33%) (Figure 1A) and root

biomass (65%) (Figure 1B) was found in magnetoprimed plants in

contrast to plants from NP seeds under control conditions. The use

of SMF pretreatment resulted in a 36% increase in root length

compared to plants from NP seeds when the soil contained 5 mg As

per kg. Similarly, at higher arsenic concentrations of 10 and 50 mg

As per kg in the soil, SMF pretreatment led to root length increases

of 33% and 40%, respectively, compared to their corresponding

plants from NP seeds (Figure 1A). Moreover, in response to As

toxicity plants from magnetoprimed seeds showed 108%, 99%, and

86% improvement in root biomass as contrast to their

corresponding NP ones, respectively, at 5, 10, and 50 mg As kg−1

soil (Figure 1B). The % tolerance index was determined based on

root mass of seedlings that originated from both SMF-primed and

NP seeds, in the presence or absence of As toxicity conditions

(Figure 1C). The results revealed that as the concentration of As

increased, the % tolerance index decreased in both NP and SMF-

primed seedlings. Remarkably, seedlings from SMF-primed seeds

consistently exhibited a higher % tolerance index compared to their

respective NP counterparts across all tested concentrations of As, as

depicted in Figure 1C. This illustrates that SMF pre-treatment to

seeds abridged the phytotoxic effects of As on the roots through

severely reducing the root mass. The magnetopriming positively

influence on plant growth by stimulating root length and root

biomass in plants under non-stress as well as abiotic stress factors

such as salt and drought (Anand et al., 2012; Baghel et al., 2016,

Baghel et al., 2018, 2019). Similarly, Galland and Pazur (2005)

reported that MF pretreatment increased the resistance of plants to

As toxicity by regulating the ionic flow in plant cell membranes. The

comparable effects of magnetopriming were observed in soybean

plants in promoting the growth of above ground parts, efficiency of

PSII, photosynthesis, and water transport under arsenic stress

(Fatima et al., 2021b). Root growth is a multifaceted process

involving several important steps, including cell division in the

root meristems, followed by differentiation and elongation of the

descending cells (Beemster and Baskin, 1998). In particular, EMFs

have been identified as an important factor responsible for

promoting the development of metaxylem cells, which in turn

contributes to an increased rate of root elongation (Bitonti et al.,

2006). Consequently, the observed increase in root length resulting

from SMF pre-treatment in our study may enhance the capacity for

water and nutrient absorption, which is consistent with previous

observations by Radhakrishnan and Kumari (2012).

Disturbances in plant–water relation are the primary effect of

HM stress, which induces a series of changes in the whole plant. In

roots, metal toxicity stimulates a reduction in water uptake and
frontiersin.org
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inhibits short distance water transport in the symplast and apoplast

(Rucińska-Sobkowiak, 2016). Arsenic stress imbalances the water

status in plants (Mubarak et al., 2016). For example, in response to

arsenic stress, the substantial reduction in relative water content,

stomatal conductance, water use efficiency and an increase in

transpiration rate have been reported in Triticum aestivum, Pisum

sativum (Garg and Singla, 2012, Hasanuzzaman and Fujita, 2013),

Glycine max (Fatima et al., 2021b), and Lactuca sativa (Gusman

et al., 2013).

Impairment of water uptake by roots is related to the decrease in

primary root length, root hair formation, and water absorbing area/

root pore diameter by metal ions (Mahajan and Kaushal, 2018).

Variations in root cortex pores diameter in response to arsenic

stress are evident in the present study. Our results showed a

substantial decrease in root hairs/complete absence of root hairs
Frontiers in Plant Science 05
in the plants from NP seeds on arsenic exposure at higher

concentration (50 mg As kg−1 soil) (Figures 2B–D) as compared

to control plants where the root layers (epidermis, cortex and

endodermis) were intact and root hairs were turgid (Figure 2A).

A similar effect of As toxicity was observed when quantifying the

diameter of the pores in the root cortex using the stack of

tomography slices (Figures 2, 3). Qualitative analysis of x-ray

micro-CT images depicted that arsenic toxicity, damages the

epidermal and cortex layer of root cells, losing their shape, size

and showing the signs of shrinking and disintegration (Figures 2C,

D). The pore diameter of cortical cells in NP plants decreases with

increase in As concentration and the maximum pore size reduction

was monitored at higher As treatment (50 mg kg−1 soil), which was

15% less as compared to control (0 mg kg−1 soil) (Figure 3). Similar

alterations in root anatomy are observed in Brasicca oleracea and

Brasicca juncea subjected to As toxicity (de Freitas-Silva et al.,

2016). Pita-Barbosa et al. (2015) also found a reduction in the

mitotic index of the apical meristem and parenchymal cell

elongation in the As-treated seedlings, which led to uneven root

cap growth and shorter roots as well as decrease in cellular gaps of

cortex in Cajanus cajan roots. A microscopic analysis by Sofo et al.

(2022) also revealed parallel distortion of the shape and

conformation of root hairs in Arabidopsis thaliana after cadmium

exposure. The root hairs of A. thaliana were strongly inhibited after

Cd treatment (Sofo et al., 2022). However, the diameter of cortical

cells pores in magnetoprimed plants was observed higher as

compared to plants from NP seeds across all the tested

concentrations of As (Figures 2E–H, 3). Thus, the improvement

in cortical pore size in magnetoprimed plants signifies the

detoxification effects of magnetopriming against As stress. The

SMF increases the root hydraulic activity of metal stressed plants

and prevents them from water-stress induced by toxic metal ions.

Our previous study on the effect of arsenic on leaf anatomy of

magnetoprimed soybean plants supports the present results (Fatima

et al., 2021b), as the hydraulic activity in plants comprises of the

roots, stem and majorly the leaf midrib. Inhibition of primary root

growth, alteration in lateral root density, decrease in number and

size of nodules, are some common features of metal toxicity (van

Dijk et al., 2022). HMs even at low concentrations damage and

lower the density of lateral roots and root hairs (Baligar et al., 1998).

In present study, the comparable results of arsenic toxicity on root

traits are depicted in Figure 4. As shown in the figure, the root girth/

thickness of primary root in NP plants (Figures 4A–D) decreases

constantly with increase in arsenic concentration as compared to

control plants. Moreover, arsenic decreased the volume of lateral

roots, root hairs density, and nodules number in NP plants

(Figures 4A–D). The highest reduction in lateral roots, root hairs,

and nodule numbers were observed at the higher As concentration

(50 mg kg−1 soil) (Figure 4D). Several research reported alike

inhibitory effect of arsenic on nodule formation, root proliferation

and extension as they are the primary tissues that come in direct

contact with the metal ions (Kumar et al., 2020; Nahar et al., 2022).

However, the magnetoprimed plants showed massive nodules and

high number of root hairs at all the metal concentration (5, 10, and

50 mg As kg−1 soil) used including control as compared to NP

plants (Figures 4E–H). Furthermore, the lateral roots in
A

B

C

FIGURE 1

Effect of magnetopriming (200 mT for 1h) on root length (A), root
biomass (B) and % tolerance index (C) of soybean plants grown for
30 days in different level of As toxicity (0–50 mg kg−1 soil). The
vertical lines on bar indicates ± S.E. for mean (n = 3). The data were
evaluated by Student’s t-test, **p < 0.01; ***p < 0.001 signify the
difference among soybean plants originates from non-primed seeds
grown under non-stressed and As-toxicity conditions; ##p < 0.01;
###p < 0.001 signify the difference among non-primed and MP
plants grown in non-stress and As toxicity conditions. NP, non-
primed and MP, magnetoprimed with SMF.
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magnetoprimed plants are thicker in appearance than plants from

NP seeds. This observation implies that magnetopriming

neutralizes the phytotoxic effect of arsenic on root growth and

development. Thus, the magnetopriming results in the

improvement of RSA and tolerance of plants towards HM stress.

The better root system may possibly enhanced nutrient and water

uptake. Thus, SMF may increase the root hydraulic activity of
Frontiers in Plant Science 06
arsenic stressed plants and prevent them from water-stress induced

by toxic metal ions. It has been found previously that the

magnetopriming improved the hydraulic activity that facilitates

the transport of carbon, water, and nutrients in plants by

increasing the average thickness of midrib and minor veins in

soybean leaves (Fatima et al., 2021b). Some authors claim that

magnetic fields may affect ion channel activation or ion transport
FIGURE 3

Effect of magnetopriming (200 mT for 1h) on diameter of pore size of cortical cells of roots in soybean plants grown for 30 days in different level of
As toxicity (0–50 mg kg−1 soil). The vertical lines on bar indicates ± S.E. for mean (n = 3). The data was evaluated by Student’s t-test, **p < 0.01;
signify the difference among soybean plants originates from non-primed seeds grown under non-stressed and As-toxicity conditions; #p < 0.05;
signify the difference among non-primed and MP plants grown in non-stress and As toxicity conditions. NP, non-primed and MP, magnetoprimed
with SMF.
FIGURE 2

The cross-sectional images of tomography slices for roots of soybean plant (30-day old) grown from NP (upper row, A–D) and MP (lower row, E–H)
seeds under different level of As toxicity (0–50 mg kg−1 soil), illustrates the pores in cortex region and the inner cylinder region of the roots. NP,
non-primed and MP, magnetoprimed with SMF.
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within cells (Garcıá-Sancho and Javier, 1994; Galland and Pazur,

2005). Together, these factors contribute to the overall health and

vigor of the plants ultimately leading to better yields under

HM toxicity.
Conclusion

The present study investigates the role of magnetopriming with

SMF (200 mT for 1h) in alleviating the adverse effects of arsenic on

RSA of soybean plants using synchrotron source base micro-computer

tomography imaging technique. Arsenic vigorously inhibits the root

growth and development by decreasing the root length, biomass, girth

of primary root, root hairs formation, lateral roots branching, pore

diameter of cortical cells, disintegrating the root layers and reducing the

number and size of nodules. However, application of SMF treatment to

soybean seeds prior to sowing results in the significant enhancement in

root growth by improving the abovementioned root traits. Thus, our

study concluded that magnetopriming has the potential to protect the

plant roots from the adverse effect of As toxicity and enhance the

tolerance of soybean plants against As toxicity. The present

information on the impact of magnetopriming on existing plants

under HM toxicity is quite less for its implication in the field

conditions. Hence, future studies are needed on the detailed

mechanism that how SMF priming is improving/altering the RSA,

which signaling pathways/genes are activated by SMF? Further detailed

studies need to be conducted to implement this technique with

promising benefits in the field condition.
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