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Algorithm for UAV path planning
in high obstacle density
environments: RFA-star
Weijian Zhang1†, Jian Li1,2*†, Weilin Yu1, Peng Ding1,
Jiawei Wang1 and Xuen Zhang1

1College of Information Technology, Jilin Agricultural University, Changchun, China, 2Bioinformatics
Research Center of Jilin Province, Changchun, China
Path planning is one of the key elements for achieving rapid and stable flight

when unmanned aerial vehicles (UAVs) are conducting monitoring and

inspection tasks at ultra-low altitudes or in orchard environments. It involves

finding the optimal and safe route between a given starting point and a target

point. Achieving rapid and stable flight in complex environments is paramount. In

environments characterized by high-density obstacles, the stability of UAVs

remains a focal point in the research of path planning algorithms. This study,

utilizing a feature attentionmechanism, systematically identifies distinctive points

on the obstacles, leading to the development of the RFA-Star (R5DOS Feature

Attention A-star) path planning algorithm. In MATLAB, random maps were

generated to assess the performance of the RFA-Star algorithm. The analysis

focused on evaluating the effectiveness of the RFA-Star algorithm under varying

obstacle density conditions and different map sizes. Additionally, comparative

analyses juxtaposed the performance of the RFA-Star algorithm against three

other algorithms. Experimental results indicate that the RFA-Star algorithm

demonstrates the shortest computation time, approximately 84%-94% faster

than the RJA-Star algorithm and 51%-96% faster than the Improved A-Star. The

flight distance is comparable to the RJA-Star algorithm, with slightly more

searched nodes. Considering these factors collectively, the RFA-Star algorithm

exhibits a relatively superior balance between computational efficiency and path

quality. It consistently demonstrates efficient and stable performance across

diverse complex environments. However, for comprehensive performance

enhancement, further optimization is necessary.
KEYWORDS

precision agriculture, RFA-star algorithm, plant protection UAV, feature attention
mechanism, path planning
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1 Introduction

Over the past few years, with continuous advancements in

science, technology, and productivity, UAV have successfully

integrated into various industries (Fang et al., 2023b). Especially

in agriculture and forestry (de Castro et al., 2021; Jurado et al., 2022;

Raparelli and Bajocco, 2019), geological exploration (Giordan et al.,

2020; Ren et al., 2019), wildfire detection (Bouguettaya et al., 2022;

Ghali et al., 2022), disaster rescue (Wang et al., 2019), and military

(Xiaoning, 2020), the use of UAVs is increasingly widespread,

including the study of single UAVs or UAV formations (Fang

et al., 2023a; Fang and Xie, 2023). As a crucial component of

precision agriculture, crop inspection and monitoring research is of

significant importance (Castro et al., 2023). Utilizing various

sensors to acquire diverse plant characteristics provides a key

information foundation for real-time or future decision-making

in plant management (Su et al., 2023; Zhang et al., 2022). UAVs

equipped with various sensors can capture multiple crop features,

which are used to monitor planting areas and crop growth

conditions, assess biological and physical characteristics, predict

yields, and detect stress levels. UAV-based crop monitoring has

become a critical tool for aiding agricultural producers and

improving agricultural management (Gao et al., 2023; Li et al.,

2024; Su et al., 2023). However, UAVs often encounter various

obstacles during ultra-low-altitude flights for crop monitoring

(Wang et al., 2022; Zhu et al., 2023). In environments such as

orchards, where plant inspection and monitoring occur, trees and

flocks of birds are the primary obstacles for UAVs (Ghaddar and

Merei, 2020; Yu et al., 2022). UAVs often operate in environments

characterized by high-density obstacles, especially in orchards.

Consequently, a key challenge in UAV technology is how to

adeptly navigate around these hindrances during task execution.

To tackle this issue, numerous researchers have delved into a variety

of path planning, formation control, and obstacle avoidance

algorithms (Fang et al., 2020b, 2020a). Encompass ant colony

algorithms (Gao et al., 2021), Dijkstra's algorithm (Dhulkefl and

Durdu, 2019), A-star algorithm (Cai et al., 2019), and artificial

potential field methods (Pan et al., 2021), among others. The A-star

algorithm has gained widespread usage due to its simple principles

and computational convenience (Zhang et al., 2021). However,

traditional A-star algorithms exhibit certain limitations. The A-

star algorithm necessitates traversing a substantial number of

nodes, leading to computational complexity and inefficient

pathfinding. As the map area expands, the computational load

experiences an exponential growth (Wang and Sun, 2023). In

response to these challenges, scholars both domestically and

internationally have undertaken extensive research endeavors

aimed at optimizing and enhancing these algorithms.

In the realm of A-star algorithm improvement, Zhang et al.

introduced a global A-Star path planning algorithm, enhancing the

A-Star algorithm based on a bidirectional search strategy. This

innovative approach successfully achieved a significant

improvement in computational speed, ranging from 47.6% to

52.4%, while substantially reducing the number of traversed

nodes by 68.2% to 75.4% (Zhang et al., 2023). Shang et al.,

utilizing key points around obstacles, introduced a variable step-
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length A-star to reduce the algorithm's computation time (Erke

et al., 2020). He et al. addressed the multi-ship encounter problem

in complex scenarios by proposing a dynamic collision-avoidance

A-star algorithm. This algorithm is designed to prevent collisions in

the presence of known moving obstacles (He et al., 2022). Mandloi

et al. introduced a time cost function to overcome computational

challenges of A-star in three-dimensional space (Mandloi et al.,

2021). By integrating and enhancing the A-star algorithm, To better

align the path planning of unmanned aerial vehicles (UAVs) with

real operational scenarios, Zhang et al. combined A-star with

artificial potential field methods and improvement (Zhang et al.,

2021). Rostami improved the repulsive function in the artificial

potential field method by introducing an adjustment factor

(Rostami et al., 2019). In order to enhance the flexibility of

unmanned surface vessels and alleviate computational burdens,

Yan et al. integrated virtual structures with the artificial potential

field method (Yan et al., 2021). In scenarios characterized by high

obstacle density, Andriy et al. proposed a decentralized algorithm

designed to manage UAV swarms in environments with high

obstacle density. This approach integrates local planning loops

with bio-inspired swarm rules to guide the compact UAV swarm

within the operational workspace without relying on external

infrastructure. By introducing a specially designed on-board

UVDAR system, mutual localization among team members is

achieved around each UAV, ensuring the stability and coherence

of the entire swarm (Dmytruk et al., 2021). Ahmad et al. presented a

fully decentralized bio-inspired control method that relies solely on

on-board sensor data to safely organize UAV swarms in the

environment without the need for communication with other

agents. The feasibility and performance of the proposed method

were validated and assessed through multiple experiments in

both a realistic robot simulator and a natural forest setting

(Ahmad et al., 2021).

However, the aforementioned UAV studies primarily focus on

flights above the obstacle space (Radoglou-Grammatikis et al.,

2020). Although this simplifies operations, it significantly limits

the scope of measurements. Relying solely on overhead data makes

it difficult to accurately assess the size and health of individual fruits

or measure tree diameters. UAVs capable of flying beneath the

canopy can overcome these limitations by achieving a good balance

between coverage and sensor resolution. Nevertheless, developing a

UAV system that can fly at multiple altitudes in large-scale

environments and autonomously navigate between tree rows or

even beneath the canopy remains a significant challenge (Liu et al.,

2022). Therefore, one of the core issues for UAVs flying beneath the

canopy is how to effectively avoid these high-density obstacles

during task execution. The ability to navigate to a predetermined

destination while avoiding obstacles in the path is a fundamental

element of autonomous flight. However, UAVs operating at low

altitudes often encounter unexpected obstacles, requiring an

obstacle avoidance system that is both quick and effective. This

often leads to a reduction in operating speed, necessitating a

specially designed obstacle avoidance system to ensure safety

(Butt et al., 2024). In scenarios characterized by high-density

obstacles, the computational time and complexity of the A-star

significantly escalates in 3D environments, potentially hindering the
frontiersin.org
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smooth attainment of the target position. To address this issue, this

study, grounded in a three-dimensional context, introduces an

improved algorithm named RFA-Star (R5DOS Feature Attention

A-star plus). Leveraging the R5DOS(Regions Connection Calculus-

5 Direction Octant Strongly-exists) model for the abstract

representation of simple objects, this algorithm incorporates a

feature attention mechanism around obstacles based on the

perceived obstacle information by the UAV, the RFA-Star

algorithm is employed for obstacle avoidance. Built upon the

matrix representation of the R5DOS model and integrating a

feature attention mechanism, this model enhances the search

efficiency of the A-star algorithm in complex environments. It

addresses the challenge of safely navigating through high-density

obstacles, thereby averting potential safety issues.

The main emphasis of this research centers on enhancing the A-

star within three-dimensional settings by employing a topological

relationship matrix. The efficacy of the RFA-Star algorithm in

environments with high obstacle density and its enhanced

capabilities are substantiated through simulation experiments

based on models. The subsequent section delineates the

contributions and novel aspects presented in this manuscript.
Fron
1. Addressing the path planning challenges in complex

environments with high obstacle density, such as UAVs

needing to inspect and monitor plant information beneath

the canopy in orchards, this study improves the A-Star

algorithm based on a spatial topological relationship model

and proposes the RFA-Star algorithm.

2. Upon detecting obstacles, the RFA-Star algorithm selectively

searches for feature points, reducing interference from

irrelevant obstacles to the UAV.

3. In scenarios with complex and high obstacle density maps,

the RFA-Star algorithm incorporates an improved local A-

star algorithm and a feature attention mechanism to guide

the UAV successfully around obstacles.
This paper’s organization is structured as follows: Section 2

presents a detailed elaboration of improvements to the A-star and

the overarching architecture of the RFA-Star algorithm. In Section

3, the effectiveness of the RFA-Star in path planning is

comprehensively validated through simulation and comparative
tiers in Plant Science 03
experiments. Section 4 delves into a comprehensive discussion of

the experimental results and scrutinizes the limitations of the RFA-

Star algorithm. The concluding Section 5 encapsulates the findings

of this study and probes potential future research directions.
2 Materials and methods

2.1 Abstraction of UAV

Li et al. proposed an R5DOS model based on the region

connection calculus (RCC) theory in 2020, demonstrating the

model's completeness and mutual exclusivity, the model can

represent 11,038 possible topological directional relationships

among three simple regions in three-dimensional space.

Subsequently, they improved and applied it in UAV swarm

algorithms and UAV path planning algorithms, providing

detailed insights into the improvements made to the R5DOS

model (Li et al., 2020, 2022, 2023). This study adopts the

improved R5DOS model to define UAVs and obstacles, dividing

UAVs into the body region and detection region. The UAV's body

region represents the area that ensures absolute safety during flight,

while the detection region is responsible for detecting obstacles and

target points. As indicated by reference (Li et al., 2022), there are

five types of topological relations: Discrete (DR), Partial Overlap

(PO), Proper Part (PP), Equal (EQ), and Proper Part Inverses (PPI).

The corresponding topological situations are illustrated in Figure 1.

Among them, RCC-8 is a boundary-sensitive topological relation

model (Jonsson et al., 2021).

According to the R5DOS model, this study provides the

following definitions. For the detection region B, it must contain

the UAV body A, satisfying the PP topological relation, denoted as

PP(B, A). As for the relationship between obstacles, the UAV, and

the detection region, three possible scenarios are most likely to

occur, as illustrated in Figure 2.

In the figure, A represents the UAV body region, B1

represents the detection region, and C1 represents the obstacle.

Figure 2A illustrates the scenario where the obstacle does not

intersect with the detection region or the UAV, indicating that the

UAV has not detected any obstacles and is in a relatively safe

state. The corresponding topological relation matrix is denoted as
FIGURE 1

Mathematical expressions and abstract representations corresponding to topological relations.
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R5a =
0 1 0 0

0 1 1 1

0
@

1
A. Figure 2B depicts the scenario where the

obstacle is within the detection region but has not yet intersected

with the UAV. In this case, the obstacle is inside the detection

region but has not collided with the UAV, placing the UAV in a

relatively dangerous situation. The corresponding topological

relation matrix is denoted as R5b =
0 1 0 0

1 1 1 1

0
@

1
A. Figure 2C

illustrates the scenario where the obstacle is within the detection

region and intersects with the UAV. In this case, the UAV collides

with the obstacle, posing a dangerous situation. The corresponding

topological relation matrix is denoted as R5c =
1 1 0 0

1 1 1 1

0
@

1
A.

2.2 Modification of the R5DOS spatial
topological relationship model

To better represent the spatial relationships between UAVs and

obstacles, an improvement to the R5DOS model is essential. The

induction matrix of the R5DOS model is divided into the R5 layer

and the DOS layer, which are used to express topological and spatial

relationships, respectively. For detected obstacles, the UAV needs to

store their information to determine the location of the obstacles

and their corresponding topological spatial relationships. However,

the R5DOS model can only express the topological relationships of

three simple objects, which is evidently impractical for high-density

obstacle maps. To better express and store the topological spatial

relationships between multiple obstacles and UAVs, we have

modified the DOS layer of the R5DOS model to be a 4×4 matrix,

defined as follows.

DOS =

1NE 2NE 3NW 4NW

1EN 2EN 3NW 4NW

5ES 6ES 7WS 8WS

5SE 6SE 7SW 8SW

0
BBBBB@

1
CCCCCA (1)
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The spatial relationships corresponding to each matrix element

are as follows.

1NE; xc ≥ 0, yc ≥ 0, zc ≥ 0, qac ∈ 0, p4
� �

2NE; xc < 0, yc ≥ 0, zc ≥ 0, qac ∈ 0, p4
� �

1EN ; xc ≥ 0, yc ≥ 0, zc ≥ 0, qac ∈ p
4 ,

p
2

� �
2EN ; xc < 0, yc ≥ 0, zc ≥ 0, qac ∈ p

4 ,
p
2

� �
 

5ES; xc ≥ 0, yc ≥ 0, zc < 0, qac ∈ p
2 ,

3p
4

� �
6ES; xc < 0, yc ≥ 0, zc < 0, qac ∈ p

2 ,
3p
4

� �
5SE; xc ≥ 0, yc ≥ 0, zc < 0, qac ∈ 3p

4 , p
� �

6SE; xc < 0, yc ≥ 0, zc < 0, qac ∈ 3p
4 , p

� �

8>>>>><
>>>>>:

8>>>>><
>>>>>:

8SW ; xc ≥ 0, yc ≥ 0, zc < 0, qac ∈ p , 5p4
� �

7SW ; xc ≥ 0, yc ≥ 0, zc ≥ 0, qac ∈ p , 5p4
� �

8WS; xc ≥ 0, yc < 0, zc < 0, qac ∈ 5p
4 , 3p2

� �
7WS; xc < 0, yc < 0, zc < 0, qac ∈ 5p

4 , 3p2
� �

 

4WN ; xc ≥ 0, yc < 0, zc ≥ 0, qac ∈ 3p
2 , 7p4

� �
3WN ; xc < 0, yc < 0, zc ≥ 0, qac ∈ 3p

2 , 7p4
� �

4NW ; xc ≥ 0, yc < 0, zc ≥ 0, qac ∈ 7p
4 , 2p

� �
3NW ; xc < 0, yc < 0, zc ≥ 0, qac ∈ 7p

4 , 2p
� �

8>>>>><
>>>>>:

8>>>>><
>>>>>:

(2)

Wherein, 1-8 represent the eight hexagram limits in three-

dimensional space, and “c” represents an obstacle. qac represents the
dihedral angle between the UAV (a) and the obstacle (c). Therefore,

regardless of the number of obstacles, as long as an obstacle appears

in any octant, it can be recorded in the matrix. Thus, irrespective of

how many obstacles are present in a particular octant, we can

provide the following definitions.

e(DOS) =
0 :  There are no obstacles in the area

n :  There are n obstacles in the area
  n ∈ ½1, +∞)

(

(3)

Through the improvements made to the R5DOS model, we gain

the capability to articulate the spatial relationships between UAV

and any number of obstacles. Consequently, the refined R5DOS

model allows for a comprehensive representation of the spatial

topology including UAVs, obstacles, and target points. Building

upon the improvements introduced in the D5DOS model, we can

further refine the node selection process of the A-Star algorithm.
2.3 Introduction to A-star algorithm and
corresponding improvements

The space complexity of the traditional A-star exhibits

exponential growth, showing a noticeable increase in

computational requirements as the map size expands (Li et al.,

2022). This issue primarily manifests during the execution of the
FIGURE 2

Topological situations between the UAV, detection region, and obstacles: (A) No intersection among the three; (B) Obstacle within the detection
region; (C) Obstacle intersects with the UAV.
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A-star algorithm, where a substantial number of nodes are visited

without considering whether these nodes are relevant to the final path.

Consequently, this further increases the algorithm’s runtime.

To address this challenge, this study introduces a custom feature

attention mechanism to enhance the A-star algorithm. In the A-star

algorithm, its cost function, typically denoted as ‘Fcot(n)’, is commonly

expressed through the expression ‘Fcot(n) = H(n) + G(n)’. In this

study, we employed Euclidean distance to calculate the movement

cost, which is particularly suitable for the representation of three-

dimensional space using the grid-based approach. Here, ‘H(n)’

represents the cost function for estimating the path from the nth

feature point to the target, while ‘G(n)’ denotes the movement cost

function for the shortest path from the starting point to the nth

feature point. For the grid-based representation of three-dimensional

space, the formula for calculating the movement cost ‘f (n)’ is given

by Equation 4.

f (n) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xn − xn−1)

2 + (yn − yn−1)
2 + (zn − zn−1)

2
q

(4)

Here , ‘ (xn, yn, zn)’ and ‘ (xn−1, yn−1, zn−1)’ represent the

coordinates of nodes ‘n’ and ‘n-1’, respectively. This study

redefines the nodes for UAV path search. In three-dimensional

space, the number of nodes that a UAV can choose for its next move

is significantly greater than the cardinal directions available in two-

dimensional space. To better apply the A-star algorithm, this study

redivides the space into 16 regions based on the R5DOS model.

However, this partitioning method is not very friendly to the node

evaluation of the A-star algorithm. To improve this, this study is

based on eight octants, assuming the orange point represents the

UAV’s position. In this case, all vertices of the neighboring octants

can be considered as neighboring nodes for the current node,

resulting in a total of 26 potential search nodes. Having too many

nodes can impact the efficiency of the algorithm. Therefore, based

on the UAV’s next move direction, the study filters out the closest

four nodes (yellow points). After the first round of searching does

not yield the optimal node, it then searches for the neighbors of the

yellow nodes (blue points), as illustrated in Figure 3.

Simultaneously, based on the definition of the improved DOS

layer, we can further enhance the search mechanism. By retrieving

the spatial topology matrix of the current UAV, the R5 layer is

divided into two scenarios.

In case R5 =
0 1 0 0

0 1 1 1

0
@

1
A is satisfied, employ the search

method illustrated in Figure 3 to filter nodes.

In case R5 =
0 1 0 0

1 1 1 1

0
@

1
A is satisfied, indicating the detection

of an obstacle, under the search mechanism depicted in Figure 3,

proceed to eliminate nodes with non-zero DOS. By redefining the

method for searching nodes, it is possible to significantly reduce

unnecessary node searches, thereby enhancing the search efficiency

of the improved algorithm in three-dimensional environments.

This approach facilitates the more effective identification of the

optimal path.
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2.4 Feature attention mechanism

Although the R5DOS model-based search mechanism defined

in Section 2.2 can eliminate most unnecessary nodes, there are still a

significant number of invalid nodes in three-dimensional space that

cannot be filtered out using this method. Therefore, this study

incorporates a feature attention mechanism module into the A-Star

algorithm, which is activated when the UAV detects obstacles. After

integrating this module, the UAV focuses more on the local features

of obstacles during path planning. The dual-node filtering

algorithm, combining the R5DOS model with the feature

attention mechanism, effectively removes a large number of

unnecessary nodes, as shown in Figure 4.

In the illustration, green nodes represent the UAV (xUAV , yUAV
, zUAV ), orange nodes represent the target point (xT , yT , zT) and

black blocks represent obstacles. When a UAV needs to avoid

obstacles in a three-dimensional space, it must focus on the primary

characteristics of the obstacles, particularly the vertices and special

points along the edges. By concentrating on these features and

ignoring other insignificant nodes, the UAV can significantly

reduce its computational load, thus alleviating much of the

processing burden. For obstacles in three-dimensional space, their

features include vertices and edges. Therefore, based on these

features, the following definitions are made. The obstacle grid

representation is denoted as Gobs(n) (xG, yG, zG), with a value of

1 for obstacle grids, and the non-obstacle grid representation is

denoted as GN-obs(n), with a value of 0. This study defines a feature

attention estimation function, A(n), which represents the number

of adjacent obstacles to the nth node. Typically, a node has 8

adjacent grids, and A(n) is expressed as formula 5.

A(n) =oGobs(n),A(n) ⊂ ½0, 8� (5)

For feature points, the following definitions can be obtained:
1. The evaluation function for the characteristic points at the

vertices is: A(n) = 1.

2. 2.The evaluation function for the characteristic points

located along the edges of the obstacles is defined as: A(n)

∈ ½2, 7� ∩ min½fG−U (n)� or A(n) ∈ ½2, 7� ∩ min½fT−G(n)�.
FIGURE 3

Search mechanism of the improved A-star algorithm.
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‘fG−U (n)’ represents the path cost function between obstacles

and the UAV, while ‘fT−G(n)’ denotes the path cost function

between the target point and obstacles. According to the above

definitions, the feature points that can be filtered by this attention

mechanism include the vertices of obstacles and the points on the

edges of obstacles that are closest to the UAV or the target point.

The characteristic points that meet the conditions are stored in List

Al(n). By employing this filtering method, the UAV can focus on

the critical features of the obstacles that need to be avoided, thereby

reducing the interference of irrelevant nodes in the algorithm.

During path planning, the characteristic points in List Al(n) are

prioritized for visitation. First, the R5DOS model filters out most of

the nodes, followed by the feature attention mechanism, which

further filters the nodes around the obstacles. This approach allows

the UAV to focus on the key features of obstacles that need to be

avoided, thereby reducing the interference of irrelevant nodes in

the algorithm.

Finally, we conduct a two-sample t-test on the algorithm results

to analyze the simulated experimental outcomes, considering

whether the differences between the proposed algorithm and

other algorithms are significant. The formula for the t-test

statistic for independent samples is shown below:

t =
�X1 − �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1−1)S21+(n2−1)S
2
2

n1+n2−2
( 1
n1
+ 1

n2
)

q (6)

In which, S21 and S
2
2 represent the sample variances of two sets of

data, while n1 and n2 denote the sample sizes.
2.5 RFA-star algorithm

Building on the preceding definitions, this paper provides the

definition of the RFA-Star algorithm. Detection is performed within

the exploration area, and the environmental and obstacle detection

results are stored in the feature matrix of R5DOS. If the UAV

detects an obstacle, a custom feature attention mechanism is

introduced to search for the feature points of the obstacle. This

scenario is defined as condition A.

Condition A :  oe(DOS) ≥ 4 (7)

‘e(DOS)’ represents the DOS layer of the R5DOS model

(Li et al., 2023). When the UAV encounters conditions

corresponding to Condition A, the local map of the detection area

is gridded. An improved A-star algorithm and a feature attention

module are then utilized to filter feature points. Subsequently, guiding

the UAV through obstacle avoidance involves a process outlined by

the RFA-Star algorithm, as illustrated in the following steps.
Fron
1. Initialize the map.

2. Detect the topological relationships of the R5 layer to

determine the presence of obstacles. If obstacles are

detected, check if condition A is satisfied.

3. If Condition A is met, a feature attention mechanism is

introduced to visit the characteristic points in List Al(n).
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4. Repeat steps 2-4 until the UAV has searched all characteristic

points or has escaped from the minimum value trap.

5. Calculate the cost function for all nodes and select the

optimal path.

6. The UAV moves according to the nodes until it reaches the

target location.
Based on the above process, the corresponding pseudocode of

the algorithm is provided in Table 1.

Figure 5 illustrates the flowchart of the algorithm.
3 Results

3.1 Experimental details

To assess the efficacy of the RFA-Star algorithm in path

planning within high-density obstacle environments and to

compare its performance with other algorithms, this study

designed two experiments:
1. In a randomly generated map with dimensions of 90m ×

90m × 15m, five different obstacle densities were deployed,

ranging from 0.4 to 0.8 obstacles per square meter (obs./

m²). Figure 6 (A–E) illustrates the projections of these maps

on the xy-plane at varying obstacle densities.

2. For the second experiment, five maps with varying lengths

and widths but the same height were created, all with a

fixed obstacle density of 0.8 obs./m². The specific details of

these maps are provided in Table 2.
TABLE 1 Pseudocode of the Algorithm.

RFA-Star Algorithm Pseudocode

1 initialize_map()

2 while not search_complete:

3 topological_relationships = detect_topological_relationships(R5_layer)

4 if obstacles_present(topological_relationships):

5 if satisfies_condition_A(topological_relationships):

6 continue

7 else:

8 feature_points = feature_attention_module()

9 update_search_status()

10 calculate_cost_function()

11 optimal_path = select_optimal_path()

12 for node in optimal_path:

13 move_UAV_to(node)

14 end if

15 end if

16 end while
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FIGURE 5

Flowchart of PARA-Star algorithm.
FIGURE 4

The custom feature attention mechanism governs the process of selecting feature points.
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This study undertook a comparative analysis of the RFA-Star

algorithm against other state-of-the-art spatial reasoning-based

path planning methods, namely RJA-Star (Li et al., 2023)

Improved A-Star (Li et al., 2022)., and the A-Star. The RJA-Star

integrates an enhanced jump point search algorithm into the A-

Star, effectively diminishing the number of nodes, computation

time, and computational complexity. In contrast, the Improved A-

Star algorithm enhances the A-Star by incorporating the R5DOS

model to reduce search nodes. Furthermore, given the similar path-

searching approaches employed by the RFA-Star and RJA-Star

algorithms, this study extends the comparison to include A-Star,
Frontiers in Plant Science 08
RJA-Star, and RFA-Star across five distinct map sizes. Detailed map

information is available in Table 2.

For better comparison, this study set the obstacle density of the

map to 0.8 obs./m2, with the starting point designated as (0, 0, 0).

MATLAB was employed in this research to randomly generate

obstacle maps, and all simulations were conducted on a 13th Gen

Intel(R) Core(TM) i5-13600KF 3.50 GHz CPU and NVIDIA

GeForce RTX 4080 GPU.
3.2 Results Comparison for Different
Obstacle Densities

For each obstacle density level, this simulation experiment

generated 10 distinct maps randomly, with the recording of three

experimental outcomes: average flight distance, computation time,

and the number of search nodes. To maintain variable consistency,

this study set the starting coordinates at (0,0,0) and the target

coordinates at (90,90,15).

As illustrated in Figure 7, the RFA-Star algorithm’s flight

distance is only 0.06% to 0.49% longer than that of the RJA-Star

algorithm, but 3.88% to 6.83% shorter than that of the Improved A-

Star algorithm. The number of explored nodes is 19.42% to 36.51%

higher than that of RJA-Star, while it accounts for only 0.59% to
FIGURE 6

Projections of maps on the xy-plane at varying obstacle densities: (A) 0.4 obs./m²; (B) 0.5 obs./m²; (C) 0.6 obs./m²; (D) 0.7 obs./m²; (E) 0.8 obs./m².
TABLE 2 Detailed settings information for different maps.

Map name Map size
obstacle density
(obs./m2)

Target
point

Map 1 50m×50m×15m 0.8 (50,50,15)

Map 2 60m×60m×15m 0.8 (60,60,15)

Map 3 70m×70m×15m 0.8 (70,70,15)

Map 4 80m×80m×15m 0.8 (80,80,15)

Map 5 90m×90m×15m 0.8 (90,90,15)
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1.17% of the nodes explored by Improved A-Star. The computation

time for RFA-Star ranges from 84% to 94% of that required by RJA-

Star, and from 51% to 96% of that required by Improved A-Star.

While RFA-Star shows minimal differences from RJA-Star in terms

of flight distance and explored nodes, it significantly outperforms

RJA-Star in computation time. For UAVs, the ability to quickly and

efficiently generate safe paths is crucial. Compared to the other

three path planning algorithms, RFA-Star demonstrates the

capability to swiftly generate high-quality paths while maintaining

relatively shorter routes.

This study presents distribution plots of the experimental results

for flight distance, computation time, and search nodes. It is

important to note that, due to the significantly higher computation

time and search nodes associated with the A-Star and Improved A-

Star algorithms compared to the RJA-Star and RFA-Star algorithms,

corresponding distribution plots for A-Star and Improved A-Star were

not generated for clarity, as shown in Figure 8. The box plots of the

experimental results reveal that the RFA-Star algorithm demonstrates

more concentrated outcomes across various obstacle densities

compared to the other three path planning algorithms, with less

fluctuation in results due to changes in the environment. However, as

observed in Figure 8A, the A-Star algorithm maintains a nearly

consistent flight distance across maps of the same size. Although it

does not achieve the shortest distances in this study, its stability is one

of the reasons why the A-Star algorithm has become a classic.

We conducted a t-test to analyze the search node results of the

RJA-Star algorithm and the RFA-Star algorithm, with the findings

presented in Table 3. The t-test was performed with a significance

level of 0.05 to determine if there were statistically significant
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differences in the number of search nodes between the two

algorithms across various obstacle densities.

As shown in Table 3, at obstacle densities of 0.4, 0.5, 0.6, and

0.8, no significant difference was observed (H = 0), indicating that

the two algorithms perform similarly in these conditions. However,

at an obstacle density of 0.7, a significant difference was detected

(H = 1, p = 0.04), suggesting that the algorithms differ in their

efficiency or behavior under this specific condition. The t-test thus

highlights where the algorithms diverge in performance,

particularly in their handling of search nodes.
3.3 Results Comparison for Different
Map Sizes

Since the RFA-Star, RJA-Star, and A-Star can all utilize grid

maps for search, this study evaluated the effectiveness of these three
FIGURE 7

Results of four path planning algorithms in maps generated with different obstacle densities.
TABLE 3 T-test results of the RJA-Star algorithm and the RFA-
Star algorithm.

Density(obs./m2) H P-value

0.4 0 0.22

0.5 0 0.09

0.6 0 0.25

0.7 1 0.04

0.8 0 0.35
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algorithms under different map sizes. Under the precondition that

the obstacle density across all maps is set to 0.8 obs./m², the paper

compares the flight distance, computation time, and search nodes of

these three algorithms across five different map sizes. Ten maps

were randomly generated for each size to conduct experimental

comparisons. As depicted in Figure 9, the path planning scenarios

for Map 1 and Map 5 are illustrated.

In Figure 9, it is shown that among the results of Map1 and

Map5, the A-star algorithm produces the longest path compared to

the other three algorithms. Additionally, as depicted in Figure 9B,

the A-star algorithm generates a wavy path for obstacle avoidance,

which is not in line with typical UAV motion patterns. Although

the RJA-star algorithm results in the shortest path, it does so by

closely hugging obstacles during avoidance. This approach

compromises the UAV’s safety in favor of a shorter route.

However, in practical UAV operations, this close proximity to

obstacles is highly dangerous, increasing the risk of collision.

Therefore, considering both safety and flight distance, the RFA-

star algorithm offers the most balanced and optimal solution by

planning a relatively short path while ensuring safety.

From the t-test results and the findings presented in Table 4, it is

evident that influenced by the map size, the values of all three

experimental metrics exhibit an increasing trend. Particularly
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noteworthy is the exponential increase observed in the average

computation time and average search nodes for the A-Star

algorithm. From the results, it can be observed that the average

flight distance of the RFA-Star algorithm proposed in this study is

comparable to that of the RJA-Star algorithm. Although the average

search nodes for RFA-Star are higher than those for RJA-Star, it

outperforms the other two algorithms in the crucial aspect of

computation time. Moreover, in different map sizes, the average

computation time of the RFA-Star algorithm is 85% to 92% of that

of the RJA-Star algorithm, indicating a significant improvement.

This suggests that the RFA-Star algorithm, even with an increase in

map size, can maintain stable computation performance, providing

rapid and stable path planning.
4 Discussion

This paper establishes a UAV path planning model based on

spatial topological relationships, offering rapid and stable path

planning services for UAVs operating in high-density obstacle

environments. Leveraging the R5DOS model, the study improves

the A-Star algorithm by introducing a feature attention mechanism

to enhance obstacle avoidance capabilities during UAV flight
FIGURE 8

Comparison of the distribution of experimental results of four path planning algorithms under different obstacle densities.
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operations. In the path planning process, the map is first initialized.

Subsequently, topological relationships are detected in the R5 layer

to identify obstacle presence. If obstacles are present, condition A is

checked to determine the need for obstacle avoidance. If condition

A is satisfied, the feature attention mechanism is introduced, and

path planning is conducted by selecting characteristic points. The

process continues until the UAV completes the search for all

characteristic points. Next, by calculating the cost function for all

nodes and considering both the cost of the path and the importance

of characteristic points, the path with the minimum cost is chosen

as the optimal path. Finally, the UAV moves along the nodes of the

optimal path until reaching the destination point. The

comprehensive application of topological relationship detection,

feature attention mechanism, and A-Star in the RFA-Star algorithm

achieves efficient and intelligent UAV path planning. Additionally,

it enables the rapid and stable planning of UAV operational paths.

To further validate the proposed path planning algorithm’s

capability to achieve rapid and stable target reachability in complex,
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high-density obstacle environments, this study conducted a series of

comparative experiments. The RFA-Star algorithm was compared

against the A-Star algorithm and two other state-of-the-art spatial

reasoning-based path planning algorithms under five different

obstacle density conditions. From the experimental results we can

draw the following conclusions: (1) the RFA-Star boasts the shortest

computation time, approximately 84%-94% less than the RJA-Star

and 51%-96% less than the Improved A-Star. The flight distance is

comparable to that of the RJA-Star algorithm, with only a slight

difference, while the search nodes are slightly higher than those of

the RJA-Star algorithm. However, these three results are

significantly lower than those obtained with the Improved A-Star

and the A-Star. (2) The RJA-Star has the fewest searched nodes, as it

selects only the nodes closest to the line connecting the UAV and

the target during the node search. However, this approach still has

the potential to fall into the minimum value trap because it places

greater emphasis on computing the nearest nodes. (3) The

experimental results for the Improved A-Star show a dispersed
FIGURE 9

Trajectories of A-Star (blue), RJA-Star (red) and RFA-Star (green) under different map sizes.
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distribution, indicating that the algorithm is not stable. This

instability becomes more pronounced with increasing obstacle

density. Although the number of visited nodes is lower than that

of the A-Star, it is still significantly higher than that of the RFA-Star

and the RJA-Star. (4) The A-Star, being a traditional and classic

algorithm, exhibits not the shortest but the most stable flight

distance among the four algorithms. In the first 40 random

experiments, the flight distance presented by the A-Star remains

constant. Only in the random map with an obstacle density of 0.8

obs./m2 did different results emerge, with a highly concentrated

distribution of flight distances. However, due to its limitations, the

computation time and search nodes of the A-Star algorithm are

significantly greater than those of the other three algorithms.

The experimental results demonstrate that the RFA-Star

algorithm exhibits strong robustness under varying obstacle

densities. Across three key metrics—flight distance, computation

time, and the number of search nodes—the RFA-Star algorithm

shows relatively stable performance, with minimal impact from

environmental changes. Compared to other algorithms, RFA-Star’s

results fluctuate less, particularly in high obstacle density scenarios

(e.g., 0.8 obs./m²), where both flight distance and computation time

remain within reasonable limits, indicating good stability.

Experiments conducted on maps of different sizes further validate

the robustness of the RFA-Star algorithm. Although all algorithms

show an upward trend in average flight distance, computation time,

and the number of search nodes as map size increases, RFA-Star

maintains a significant advantage in computation time. Even with

larger map sizes (as shown in Figure 9B), RFA-Star’s computation

time is only 85% to 92% of that of the RJA-Star algorithm. This

indicates that the RFA-Star algorithm can maintain stable

computational performance as map size increases, ensuring fast
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and stable path planning. Additionally, the experimental results

show that although the average number of search nodes in RFA-

Star is slightly higher than in the RJA-Star algorithm, its overall

performance still surpasses other algorithms, especially in terms of

the critical metric of computation time. This stability and efficiency

across various map sizes further confirm the robustness of the RFA-

Star algorithm in diverse and complex scenarios.

In summary, the RFA-Star algorithm demonstrates a relatively

short computation time, comparable flight distance to the RJA-Star

algorithm, with slightly more search nodes. The RFA-Star

algorithm exhibits good performance in terms of computational

efficiency and the balance between path quality, but further

optimization is needed to overcome its drawbacks.
4.1 Comparison with Other Path
Planning Algorithms

To further validate the effectiveness and advancement of the

RFA-Star algorithm, we conducted a series of comparative

experiments with other state-of-the-art path planning

algorithms. Although the unique nature of RFA-Star made it

challenging to find directly comparable algorithms, this

approach allowed us to place RFA-Star within the broader

context of modern path planning techniques. By comparing

RFA-Star with diverse algorithms designed for different

environments and operational requirements, we could better

understand its strengths and limitations. This comparison not

only highlights the robustness and efficiency of RFA-Star in

various scenarios but also provides a comprehensive perspective

on its relative performance against other leading methods.
TABLE 4 Comparison of three path planning methods.

Path Planning Algorithm Avg.Flight Distance(m) Avg.Calculating Time(s) Avg.Search nodes

Map 1

A-star 76.16 24.86 30746

RJA-star 73.16 4.55 20

RFA-star 73.28 4.06 24

Map 2

A-star 90.46 48.47 44682

RJA-star 87.20 5.70 30

RFA-star 87.32 5.09 35

Map 3

A-star 104.52 70.12 55454

RJA-star 101.05 6.67 32

RFA-star 102.13 5.93 38

Map 4

A-star 118.66 95.98 64092

RJA-star 117.08 7.67 48

RFA-star 118.61 6.35 56

Map 5

A-star 132.81 143.72 80401

RJA-star 130.92 9.36 51

RFA-star 131.97 9.17 59
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Castro et al. (Castro et al., 2023) combined Rapidly-exploring

Random Trees (RRT) with Deep Reinforcement Learning (DRL) to

generate and control UAV trajectories during the inspection of olive fly

traps. Their proposed solution was tested in a simulated environment

with 10 dynamic obstacles within a 300 cubic meter area. The RRT

+DQN algorithm achieved an average runtime of 8.2 milliseconds,

outperforming traditional algorithms like Genetic Algorithm (GA) and

Dijkstra, which had runtimes of 8.7 milliseconds and 2.4 milliseconds,

respectively. The pure RRT algorithm had a runtime of 6.5

milliseconds. Souto et al. (Souto et al., 2023) developed a novel

reinforcement learning-based method aimed at reducing power

consumption during UAV missions in disaster scenarios to mitigate

the negative effects of changing wind directions. Compared to simpler

heuristic methods, the power-saving effect was reduced by 15.93%. The

study showed that Q-learning using an e-greedy decay method was the

most efficient, resulting in shorter mission durations compared to

SARSA and basic Q-learning. While the main focus of this study was

on energy efficiency rather than path planning speed, it highlighted the

importance of algorithm efficiency in extending UAV mission life. Xu

et al. (Xu et al., 2024) proposed a bionic 3D path planning algorithm

for agricultural UAVs, designed to optimize safe flight paths between

work plots obstructed by multiple obstacle zones. The algorithm was

tested in a 100 cubic meter irregular hilly space with several randomly

placed obstacles. The experimental results showed that the bionic 3D

path planning reduced path length by 75.15%, and energy

consumption decreased by 13.91% to 27.35% compared to other

algorithms, including Ant Colony Optimization and Artificial Bee

Colony algorithms. The specific results are presented in Table 5.

The RFA-Star algorithm integrates the enhanced A-Star algorithm

with the R5DOSmodel and incorporates a feature attentionmechanism.

Despite the addition of extra computational steps, its time complexity

remains at O(nlog(n)), demonstrating high computational efficiency

and stability in high-density obstacle environments. In contrast, the RRT

+DQN algorithm combines Rapidly-exploring Random Trees (RRT)

with Deep Q-Network (DQN), making it suitable for path planning in

dynamic environments. Its time complexity is O(nlog(n)), and it shows

better flexibility when handling dynamic obstacles.

The Q-learning-based energy-efficient path planning algorithm

primarily focuses on reducing computational complexity to extend
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UAVmission life, with a time complexity of O(m · n), where mmm is

the number of states and nnn is the number of actions. This method

is appropriate for scenarios requiring high energy efficiency. The

bionic 3D path planning algorithm, which simulates krill swarm

behavior, achieves dual optimization of path length and energy

consumption. Although its time complexity is relatively high

(approximately O(n2), it provides superior path planning and

energy management in complex terrains.

In contrast, the RFA-Star algorithm consistently demonstrates

shorter computation times across various obstacle densities,

underscoring its efficiency in handling complex environments.

Especially in high-density obstacle scenarios, the RFA-Star

algorithm not only maintains a rapid computation speed but also

successfully generates stable, safe, and shorter paths, further

confirming its exceptional performance in complex settings.

Although RFA-Star excels in computation speed, the potential

advantages of the RRT+DQN method in dynamic obstacle

scenarios should not be overlooked, providing a direction for future

improvements in the adaptability of RFA-Star. Additionally, while

RFA-Star may not directly compete with the bionic 3D algorithm in

terms of energy and path length optimization, its rapid computation

and pathfinding capabilities in highly complex environments

showcase its robust and stable solution.
5 Conclusions

To address the issue of high obstacle density that UAVs may

encounter when collecting plant phenotypic information at ultra-

low altitudes. Based on spatial topological relationships, this paper

introduces the RFA-Star algorithm by incorporating a feature

attention mechanism to enhance the A-Star algorithm, providing

rapid and stable path planning services for UAVs in high-density

obstacle environments. In the path search process, the obstacles are

categorized into two situations using condition A, and the feature

attention mechanism is introduced to search for characteristic

points, guiding the UAV safely to its destination. The study

compares the RFA-Star algorithm with RJA-Star, Improved A-

Star and A-Star to validate its effectiveness. Experimental results
TABLE 5 Comparative Analysis of Path Planning Algorithms for UAVs in Various Environments.

Algorithm Map Information Computation Time

RFA-Star 50m×50m×15m
obstacle density:0.8

4.1(s)

RRT+DQN (Castro et al., 2023) 300 m³ area with 10 dynamic obstacles 8.2(ms)

Reinforcement Learning (Q-learning) (Souto
et al., 2023)

30m×30m with 49 dynamic obstacles 5.67 - 37.43(s)

RFA-Star 90m×90m×15m
obstacle density:0.8

9.17(s)

Bionic 3D Path Planning Algorithm (Xu
et al., 2024)

100m×100m×100m with 7 dynamic obstacles 148.99(s)

Ant Colony Algorithm (Xu et al., 2024) 100m×100m×100m with 7 dynamic obstacles 59.52(s)

Artificial Colony Algorithm (Xu et al., 2024) 100m×100m×100m with 7 dynamic obstacles 44.67(s)
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indicate that the RFA-Star algorithm has the shortest computation

time, approximately 84%-94% of the RJA-Star and 51%-96% of the

Improved A-Star algorithm. The flight distance is comparable to the

RJA-Star algorithm, with slightly more explored nodes than the

RJA-Star algorithm. Overall, the RFA-Star algorithm exhibits

relatively superior performance in terms of computational

efficiency and a balanced trade-off between path quality and

efficiency. It demonstrates efficient and stable performance in

diverse complex environments. However, further optimization is

still required to enhance overall performance.

In future work, we plan to enhance the R5DOS model by

introducing the more boundary-sensitive RCC8 model. This

improvement involves initiating obstacle avoidance when the

UAV detects the boundary satisfying the tangent condition with

obstacles, ensuring further safety. Additionally, this study was

conducted in a static environment; however, in future research,

we will consider further refining our algorithm in dynamic and

unknown environments. Finally, future work will involve applying

the proposed algorithm to real-world scenarios for testing and

evaluation, to further confirm its efficiency, safety, and effectiveness.
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