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Editorial on the Research Topic

Crop improvement by omics and bioinformatics
1 Introduction

Crop improvement in modern era by the genetic and breeding tools is being driven by

the requirements of food security and sustainability. The caloric and nutritional needs of

the growing population, and respond to environmental changes are the two demands of

crop productivity (Zeng et al., 2017; Wang et al., 2018; Chen et al., 2021; Ren et al., 2023). In

order to meet these demands, the global food production must increase by one billion tons

in the next few decades, but the current growth rate is far from being reached. Moreover,

rapid changes in the environment are accelerating land degradation, aggravating pests and

diseases, introducing extreme stress and reducing crop productivity (Zeng et al., 2017; Zelm

et al., 2020; Liang et al., 2021; Wang et al., 2023).

In the past few decades, remarkable progresses have been achieved in the discovery of

yield, quality and resistance genes in crops, and the dissection of plant molecular

mechanisms (Zeng et al., 2017; Wang et al., 2018; Zelm et al., 2020; Chen et al., 2021;

Liang et al., 2021; Ren et al., 2023; Wang et al., 2023). With the continuous progress in

sequencing technology, molecular markers and gene editing, a large number of excellent

crop varieties have been cultivated and modern genetic improvement of crops have been

realized (Lei et al., 2021; Qin et al., 2021; Tang et al., 2022; Wang and Han, 2022; Shi et al.,

2023; Wen et al., 2023). But it is far from enough compared with the rapid changes in the

growing population and environment.

Many new omics technologies have been developed in recent years, e.g., genomics,

transcriptomics, proteomics, metabolomics, interactomics, and phenomics (Xie et al., 2021;

Huang et al., 2022; Shang et al., 2022; Wang and Han, 2022; Wang et al., 2022; Marand

et al., 2023; Ren et al., 2023). Integrating multi-omics could clarify the mechanisms of many

biological processes and explore the interactions among various substances (Della Coletta

et al., 2021; Huang et al., 2022; Luo et al., 2022). This will provide a new perspective for

understanding the complex traits of crops and accelerate the breeding programs. The crop

improvement is entering a new era of biological information (Shang et al., 2022; Wang and

Han, 2022; Shi et al., 2023; Wen et al., 2023).
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In this editorial, we set up a Research Topic of Crop

Improvement by Omics and Bioinformatics. The goal of this

Research Topic is to collect all types of research and review

articles describing the latest advances in the discovery of yield,

quality and resistance genes in crops, and the dissection of crop

molecular mechanisms. In addition, recent discoveries derived from

the development or application of new omics technologies in crops

as well as new methods for the analysis, mining, and visualization of

crop omics datasets are also delightedly accepted. The following

themes are included in this Research Topic: (a) Population genetics,

haplotype analysis and evolution of important genes in crops; (b)

Development of new omics technologies (software or algorithm) for

crop improvement; (c) Multi-omics approaches to understand the

molecular basis of the genes for important agronomic traits in

crops; (d) Integration with multi-omics revealing the origin and

evolution of crops; (e) Meta-analysis and comparative analysis of

crop omics datasets.
2 Discovery of important genes by
multi-omics approaches

Chen et al. systematically evaluated various state-of-the-art

object detectors on rice panicle counting and identified YOLOv8-

X as the optimal detector. Applying YOLOv8-X to UAV time-series

images of 294 rice recombinant inbred lines (RILs) allowed accurate

quantification of six heading date-related traits and identified

quantitative trait loci (QTL), including verified loci and novel

loci, associated with heading date. This research optimized UAV

phenotyping and computer vision pipeline that may facilitate

scalable molecular identification of heading-date-related genes

and guide enhancements in rice yield and adaptation.

Li et al. evaluated the heat tolerance at the seedling stage using

620 diverse rice accessions, and based on the GWAS and

transcriptomics integrated results, a hypothetical model

modulated by qHT7 in response to heat stress was proposed. The

results provided valuable candidate genes for improving rice heat

tolerance through molecular breeding.

Yu et al. identified 5, 6, 6, and 6 QTLs for grain length, grain

weight, grain area, and thousand grain weight, respectively, using

55K SNP assay genotyping and large scale phenotyping data of the

population and GWAS. A comprehensive analysis of transcriptome

data and homologs showed that TraesCS2D02G414800 could be the

real QTL gene for qGL-2D. Overall, this study presented several

reliable grain size QTLs and candidate genes for grain length for

future bread wheat breeding for yield.

Sun et al. screened a total of 15 candidate genes from a genome-

wide association study (GWAS) on 8 traits of 150 cotton

germplasms under drought conditions and found four genes were

highly expressed after drought stress. Three of these genes had the

same differential expression pattern. This study provides a

theoretical basis for the genetic analysis of cotton yield traits

under drought stress, and provides gene resources for improved

breeding of cotton yield traits under drought stress.
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Wu et al. identified 25 potential earliness related genes from

Chinese bayberry (Myrica rubra) by analyzing the transcriptome

data from early ripening, medium ripening and late ripening

varieties, with clustering analysis and comparisons of genes

reported related to flowering in Arabidopsis thaliana. Finally,

through transgenic studies, this study identified an important

gene MrSPL4 in Chinese bayberry, which enhanced growth and

flowering, providing important theoretical basis for early-mature

breeding of Chinese bayberry.

Gao et al. conducted metabolomic and transcriptomic analyses

of 5~8 years old Cinnamomum cassia, in order to explore the

mechanism of the dynamic accumulation of active ingredients. A

total of 72 phenylpropanoids, 146 flavonoids, and 130 terpenoids

were found to exhibit marked changes. In addition, transcription

factors (TFs) and genes involved in phenylpropanoids and

flavonoids synthesis and regulation were identified through co-

expression network analyses. The results of this study provide new

insights into the synthesis and accumulation of phenylpropanoid,

flavonoids and terpenoids in C. cassia at four growth stages.

Gao et al. performed full-length transcriptome analysis of in

vitro bulblet initiation in lily. They compared the expression profiles

of crucial genes of carbohydrate metabolism between different

stages and different treatments. Significant co-expression was

shown between genes involved in carbohydrate metabolism and

auxin signaling, together with transcription factors such as bHLHs,

MYBs, ERFs and C3Hs. This study indicates the coordinate

regulation of bulblet initiation by carbohydrate metabolism and

auxin signaling, serving as a basis for further studies on the

molecular mechanism of bulblet initiation in lily and other

bulbous flowers.

Li et al. presented a co-expression network, involving ABA and

other phytohormone signals, based on weighted gene co-expression

network analysis of spatiotemporally resolved transcriptome data

and phenotypic changes of strawberry receptacles during

development and following various treatments. They explored the

role of two hub signals, small auxin up-regulated RNA 1 and 2 in

receptacle ripening mediated by ABA, which are also predicted to

contribute to fruit quality. These results and publicly accessible

datasets provide a valuable resource to elucidate ripening and

quality formation mediated by ABA and multiple other

phytohormone signals in strawberry receptacle and serve as a

model for other non-climacteric fruits.
3 Gene family analysis

Liu et al. identified a total of 18 Whirly genes from six Triticeae

species and found TaWHY1-7A and TaWHY1-7D mainly

enhanced the tolerance to oxidative stress in yeast cells.

TaWHY2s mainly improved NaCl stress tolerance and were

sensitive to oxidative stress in yeast cells. The heterologous

expression of TaWHY1-7D greatly improved drought and salt

tolerance in transgenic Arabidopsis. These results provide the

foundation for further functional study of Whirly genes aiming at

improving osmotic stress tolerance in wheat.
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Liang et al. identified 37 StSOS1s in potato (Solanum

tuberosum), which were found to be unevenly distributed across

10 chromosomes, with the majority located on the plasma

membrane. RT-qPCR results revealed that the expression of

StSOS1s were significant modulated by various abiotic stresses, in

particular salt and abscisic acid stress. This work extends the

comprehensive overview of the StSOS1 gene family and sets the

stage for further analysis of the function of genes in SOS and

hormone signaling pathways.

Tang et al. identified 57 CCCH genes in the pepper (Capsicum

annuum L.) genome and explored the evolution and function of

the CCCH gene family in C. annuum. They found that the

expression of CCCH genes was significantly up-regulated

during the response to biotic and abiotic stresses, especially

cold and heat stresses, indicating that CCCH genes play key

roles in stress responses. These results provide new information

on CCCH genes in pepper and will facilitate future studies of the

evolution, inheritance, and function of CCCH zinc finger genes

in pepper.

Zhang et al. identified 59 bZIP genes that were unevenly

distributed in the chestnut genome, and found CmbZIP04,

CmbZIP13, CmbZIP14, CmbZIP33, CmbZIP35, CmbZIP38, and

CmbZIP56 may be important in regulating starch accumulation

in chestnut seeds. This study provided basic information on

CmbZIP genes, which can be utilized in future functional analysis

and breeding studies.
4 Development of the
omics technologies

Shen et al. presented the application of alternative splicing

algorithms with or without reference genomes in plants, as well

as the integration of advanced deep learning techniques for

improved detection accuracy, and discussed alternative splicing

studies in the pan-genomic background and the usefulness of

integrated strategies for fully profiling alternative splicing.

Zhang et al. induced male sterile mutants by simultaneously

editing three cotton EXCESS MICROSPOROCYTES1 (GhEMS1)

genes by CRISPR/Cas9. This study would not only facilitates the

exploration of the basic research of cotton male sterile lines, but also

provides germplasms for accelerating the hybrid breeding in cotton.

Liu et al. developed a new genomic prediction method

(RHEPCG) via combining randomized Haseman-Elston (HE)

regression (RHE-reg) and preconditioned conjugate gradient

(PCG), which avoids the direct inverse of the genomic

relationship matrix (GRM). The simulation results demonstrated

that RHEPCG not only achieved similar predictive accuracy with

GBLUP in most cases, but also significantly reduced computational

time, indicating that RHEPCG is a practical alternative to GBLUP

with better computational efficiency.

Aparicio et al. developed the Mr.Bean, an accessible and user-

friendly tool with a comprehensive graphical visualization interface,

to predict the genetic potential of evaluated genotypes.

The application integrates descriptive analysis, measures of
Frontiers in Plant Science 03
dispersion and centralization, linear mixed model fitting, multi-

environment trial analysis, factor analytic models, and genomic

analysis, aiming at helping plant scientists working in agricultural

field make informed decisions more quickly.
5 Perspective

It is crucial to identify yield, quality and resistance related genes

in crops, and dissect the involved molecular mechanisms. In

addition, recent discoveries derived from the development or

application of new omics technologies in crops as well as new

methods for the analysis, mining, and visualization of crop omics

datasets are also urgently needed. These results will provide a new

perspective for understanding the complex traits of crops and

accelerate the breeding programs.
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