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Introduction

Plants face ever changing environmental conditions, where abiotic stresses such as

temperature fluctuations, nutrient deficit, and hydric stress can impede their development,

yield, and reproduction (van Wallendael et al., 2019; Lamers et al., 2020). Therefore, plants

have evolved efficient adaptive mechanisms which boost their competence against

recurring stresses. For example, exposure to extreme heat or cold can trigger adaptation

through a priming process, leading to the formation of a “stress memory”, which

consequently enhances the plant tolerance to these stresses during future encounters

(Liu et al., 2022). In contrast, while low temperatures can act as a stress factor, they may also

serve as a key developmental cue, particularly in the transition from vegetative to

reproductive growth through vernalization. Unlike cold priming, vernalization exploits

the memory of the prolonged winter cold to optimally time and induce flowering under

warmer conditions (Sharma et al., 2022). These are examples of “long-term” memory,

which are sustained by epigenetic mechanisms such as DNA methylation and histone

modifications (Zhao et al., 2019; Liu and He, 2020). Remarkably, it can extend across

generations via epigenetic inheritance, the activity of small RNAs, and chromatin

remodeling (Molinier et al., 2006; Zhang and Tian, 2022). In addition, environmental

memory can be “short-term”, temporarily persisting over one or more somatic mitotic

divisions, and encompassing rapid and reversible changes in gene expression and hormonal

signaling (Li et al., 2019; do Amaral et al., 2020). Similarly to long-term memory, this may

be due to epigenetic mechanisms. However, recent studies suggest additional mechanisms

for short-term memory, including protein phase separation.

Protein-driven LLPS is under active study as a mechanism for environmental

sensing, response, and molecular memory in different organisms, including animals and

yeast. During LLPS, proteins transition from a homogenous solution to distinct condensates

(Musacchio, 2022), creating specialized environments for cellular processes (Chen et al., 2020;

Maruri-López et al., 2021). For instance, LLPS is implicated in animal neuronal function,
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information processing, and memory storage in neuronal cells (Chen

et al., 2020). Furthermore, P-bodies and stress granules, which regulate

RNA metabolism and respond to cellular stress, are formed through

LLPS, concentrating specific molecules for functions like mRNA

degradation and translation repression, and are conserved across

diverse eukaryotic organisms, including animal and yeast cells (Luo

et al., 2018; Kearly et al., 2024). Also, the serotonin-induced

aggregation of cytoplasmic polyadenylation element-binding

proteins (CPEB) plays a role in long-term potentiation during

courtship in Drosophila (Lau et al., 2020). In Saccharomyces

cerevisiae, phase separation of WHI3, an RNA-binding protein, is

involved in encoding memory of deceptive courtship (Lau et al., 2020).

LLPS is also involved in chromatin organization and transcriptional

regulation (Wang and Liu, 2019). To illustrate, condensates can bring

together or isolate transcription factors (TFs) and coactivators or

corepressors, creating and sustaining specific patterns of gene

expression, which potentially influences cellular memory processes

(Wang and Liu, 2019). While linking LLPS and memory remains an

area of research and debate, exploring the roles of condensates in

cellular organization, signaling, and gene regulation might offer

valuable insights into cellular information storage. Although the

putative role of LLPS in molecular memory has been primarily

studied in yeast and animals, emerging evidence points to its role in

plant stress and environmental memory.

Several pioneering studies demonstrate the significance of

proteins undergoing LLPS in plant environmental response. In

Arabidopsis thaliana, pivotal examples include the phase-separating

proteins FRIGIDA (FRI), VERNALIZATION 1 (VRN1), and

FLOWERING CONTROL LOCUS A (FCA), which collectively

regulate FLOWERING LOCUS C (FLC) during vernalization,

highlighting the role of LLPS in establishing a memory of past

winter conditions to control flowering time (Levy et al., 2002; Fang

et al., 2019; Zhou et al., 2019). Additionally, the thermosensory

protein, EARLY FLOWERING 3 (ELF3), undergoes reversible

phase separation with hysteresis behavior, potentially establishing a

short-term memory of temperature (Jung et al., 2020; Murcia et al.,

2022). In response to hyperosmotic stress, the transcriptional

regulator SEUSS (SEU) undergoes condensation, where the formed

condensates exhibit partial persistence, indicating the formation of a

potential stress memory (Wang et al., 2022a). Moreover, FLOE1, a

condensate-forming water sensor during seed germination, can form

physiologically-relevant hydrogels, which may retain hydric stress

memory (Dorone et al., 2021). This opinion aims to discuss the

fundamental characteristics of LLPS in environmental sensing and

explores the potential role of condensate formation as a molecular

stress or environmental memory in plants.
Main text

Protein-mediated LLPS: a mechanism for
changing cellular dynamics

Protein-mediated LLPS is highly dependent on protein

concentration, ionic strength, pH, temperature, and the presence

of different “clients” or “cargos”, such as other protein partners and/
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or nucleic acids (Elbaum-Garfinkle et al., 2015; Nott et al., 2015;

Saha et al., 2016; Dignon et al., 2020). Proteins that drive LLPS are

often characterized by intrinsically disordered regions (IDRs),

which lack well-defined secondary and tertiary structure (Burke

et al., 2015; Elbaum-Garfinkle et al., 2015; Kroschwald et al., 2018;

Dignon et al., 2019). IDRs have a high degree of conformational

flexibility and often exhibit multivalency, which is closely associated

with the collective interactions between polypeptide chains (Pak

et al., 2016). Accordingly, IDRs can drive phase separation via

cation-pi, pi-pi, electrostatic attraction, and hydrophobic

interactions (Tsang et al., 2020). It is worth noting that IDR-

harboring proteins do not necessarily form condensates (Alberti

et al., 2019). A subset of IDRs, called prion-like proteins or prion-

like domains (PrD), are more frequently associated with phase

separation, and are often enriched in asparagine and glutamine

residues and bear sequence similar to yeast prion proteins. In

addition to disordered proteins, LLPS can be initiated by folded

domains such as coiled-coils (Ramsǎk et al., 2023)and via the

formation of protein-RNA complexes mediated by RNA-

recognition motifs (RRM) (Dignon et al., 2020; Ramsǎk et al., 2023).

Protein-mediated LLPS is commonly studied by diverse

fluorescence-based techniques including Fluorescence Recovery

After Photobleaching (FRAP) and Fluorescence Correlation

Spectroscopy (FCS). FRAP is a method for determining the

dynamics of fluorescently labelled proteins in a condensate. The

fluorophore can be partially or fully photobleached and its

fluorescence recovery curve examined. This analysis provides

valuable insights into condensate dynamics, including the

mobility and exchange of molecules within the condensates or

between the condensate and the environment. Alternatively, FCS

can analyze molecular dynamics in both in vitro and in vivo

condensate phases, determining molecular concentration,

oligomeric state, diffusion coefficient (hydrodynamic radius), and

molecular interactions (Wang et al., 2022b). These techniques,

while applicable in various research areas, are particularly

instrumental in elucidating the behavior of biomolecular

condensates, thus advancing our understanding of LLPS. Of note,

based on FRAP and FCS experiments, many proteins, which

initially form highly mobile liquid condensates, may become

more visco-elastic and rigid as they “age” over time, forming gel-

like states and fibrils (Molliex et al., 2015; Murakami et al., 2015;

Patel et al., 2015; Wegmann et al., 2018; Ray et al., 2020). In animals,

these fibrils have been linked to neurological diseases, including

Alzheimer’s disease (Lin et al., 2015; Xiang et al., 2015; Pak et al.,

2016). However, the physiological role of hydrogel/fibril formation

in plants remains to be uncovered. However, the formation of gel

and fibril states raises the intriguing question of whether or not this

persistent state may act to establish a form of memory.
Stable silencing of FLOWERING LOCUS C
during vernalization

Environmental cues such as the prolonged exposure to low

temperatures significantly influence the timing of flowering. The

expression levels of the flowering repressor FLC time the onset of
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flowering in biennials and winter annual plants. The prolonged

exposure to winter cold is required to repress FLC expression,

allowing the plant to flower in the following spring. Vernalization,

acting as an epigenetic memory of winter cold, determines the

expression levels of FLC, synchronizing flowering to favorable

spring conditions. High levels of FLC expression are maintained by

the transcription factor FRI, resulting in suppression of flowering.

Under low temperatures, the cold stabilization of FRI and its

increased interaction with multiple factors drive the formation of

FRI nuclear condensates, which requires its C-terminal IDR (Zhu

et al., 2021). These nuclear condensates reduce FRI binding to the

FLC locus via a sequestration mechanism, which consequently

decreases FLC expression. Notably, FRI condensation is slowly

reversible, dissipating within 5 hours upon returning to warmer

conditions, suggesting that LLPS may act as a short-term memory

of cold conditions (Zhu et al., 2021). Furthermore, noncoding RNAs

may play a role in FRI LLPS, although there is some contradiction in

the literature regarding their role in FRI condensation. Some evidence

suggests that FRI condensation is promoted by cold-induced

antisense RNA COOLAIR derived from the FLC locus (Zhu et al.,

2021), while other studies indicate that condensation of FRI is

independent of COOLAIR (Zhang et al., 2023).

The RNA-binding protein FLOWERING CONTROL LOCUS A

(FCA), containing two PrDs, and the coiled-coil protein, FLL2,

promote nuclear body formation with COOLAIR and antagonize

the activity of FRI, resulting in reduced FLC transcription (Fang

et al., 2019) (Figure 1A). In addition, VERNALIZATION 1 (VRN1),

a two B3 domain DNA-binding protein that binds non-specifically to

DNA, undergoes LLPS and is required for the stable repression of

FLC (Levy et al., 2002). VRN1 condensates form on the FLC locus,

inducing structural changes in the FLC chromatin and ensuring FLC

silencing (Zhou et al., 2019) (Figure 1A). In summary, several LLPS

events elicit the stable repression of FLC, contributing to the molecular

memory of winter cold. Notably, FRI condensation, which is cold-

dependent and slowly dissipating upon a shift to warmer conditions,

suggests that LLPS may act as a direct mechanism for cold memory.
ELF3: a multivalent environmental sensor
forming a short-term
environmental memory

The transcriptional regulator ELF3 represents another example of

LLPS in plant environmental response and possibly temperature

memory establishment. ELF3 integrates information from the

circadian clock, temperature, and light perception pathways to act

as a key component in photoperiodic flowering (Ezer et al., 2017;

Jung et al., 2020; Silva et al., 2020). It has no structured domains of

known function and acts as a scaffold binding many TFs (Hicks et al.,

2001; Nusinow et al., 2011; Herrero et al., 2012; Ezer et al., 2017; Silva

et al., 2020). Upon exposure to higher ambient temperature, ELF3

undergoes reversible LLPS driven by its C-terminal PrD and fine-

tuned by the length of polyglutamine regions in this domain (7 to 29

glutamines across 181 natural A. thaliana accessions) (Jung et al.,

2020; Hutin et al., 2023). In vitro and in vivo FRAP experiments on

ELF3 condensates demonstrate an aging process in which a low
Frontiers in Plant Science 03
mobility hydrogel forms. In addition, in vitro temperature ramp

experiments for ELF3 PrD reveal a delay in phase separation

reversibility upon the return to lower temperatures, indicating a

degree of hysteresis in the protein behavior (Hutin et al., 2023). This

suggests that the system may maintain a memory of its past states.

Indeed, in planta ELF3 forms nuclear condensates in response to

increasing temperatures (Figure 1D). Their reversibility via cooling

requires a more pronounced temperature shift or longer time

compared to the warm temperature-induced LLPS. Consequently,

as ELF3 remains in the inactive phase separated state, the regulation

of its target genes is delayed, thereby potentially establishing a short-

term memory of temperature (Murcia et al., 2022).
SEUSS and FLOE1: response to osmotic
stress and water availability

In response to hyperosmotic stress, the transcriptional regulator

SEU forms condensates due to conformational changes within its N-

terminal IDR. SEU condensation, which likely occurs via LLPS, is

triggered by intracellular molecular crowding. It is vital for the stress

response and the subsequent expression of osmotic stress-responsive

genes (Wang et al., 2022a) (Figure 1B). Although SEU forms

reversable condensates, FRAP analysis revealed their incomplete

recovery, suggesting that they exhibit partial persistence with lower

mobility or reduced turnover. This incomplete recovery hints at the

possibility that SEU forms a gel-like state, indicating a potential

mechanism for retaining a stress memory.

Additionally, FLOE1 is an PrD-containing protein that

suppresses seed germination under unfavorable conditions

(Dorone et al., 2021). It undergoes LLPS upon hydration,

allowing the embryo to sense water (Figure 1C). Interestingly, its

biological function is modulated by the biophysical state of its

condensates, which is governed by the glutamine, proline, and

serine rich (QPS) domain and the aspartic acid and serine rich

(DS) domain. While the QPS domain is responsible for driving

FLOE1 condensation and its function in water-sensing, the DS

domain regulates the fluidity of its condensates. Natural variation in

the DS domain across ecotypes promotes local adaptation by fine-

tuning the fluidity of FLOE1 condensates (Dorone et al., 2021).

Notably, FLOE1 condensates appear spontaneously and exhibit full

reversibility through repeated hydration-dehydration cycles.

However, deleting the DS domain leads to the formation of an

irreversible hydrogel and promotes germination under stress,

indicating that changes in the dynamics of FLOE1 condensates

affect the stress response (Dorone et al., 2021).
Concluding remarks

Exploring protein-mediated LLPS in plant cells highlights its

intriguing roles in cellular dynamics, stress perception, and

potentially, environmental or stress memory. In other organisms,

memory effects of protein phase separation are better established. For

example, in yeast, prion proteins provide a nongenetic method of

inheritance and may provide an adaptive advantage in different
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environments and under different stress conditions (Chakrabortee

et al., 2016). The self-replicating structures of prion proteins separate

genotype from phenotype, enabling genetically identical cells within a

population to adopt new traits (Byers and Jarosz, 2014). In

mammalian systems, the neuronal protein, CaMKII, involved in

synaptic plasticity, undergoes phase separation triggered by Ca2+

and this state persists even after the Ca2+ is removed, maintaining a

memory of the calcium signal (Hosokawa et al., 2021). The sensitivity

of condensate formation to various physical factors suggests that

abiotic stresses may be detected by LLPS in plants (Burkart et al.,

2022). Although confirming the role of these condensates in

establishing environmental memory in plants is in its nascency,

there is intriguing preliminary evidence pointing to the involvement

of phase separation in this process. Potential mechanisms of LLPS

mediated short-term memory might include changes in protein

dynamics, hysteresis of condensate reversibility and irreversible gel

formation. The ability of condensates to adopt different states (liquid,

gel and/or fibril) raise intriguing questions about the persistence and

functional implications of these condensates in plant environmental

memory. Further investigations into the structural, biomechanical,

and biochemical basis of protein phase separation in plant physiology

will expand our understanding of this dynamic cellular process and

whether this is a mechanism plants use to establish a physiological

“memory” of past environmental events.
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FIGURE 1

LLPS regulates important molecular processes in response to different stresses. (A) The molecular regulation of FLC repression during vernalization
through LLPS. (B) SEUS LLPS in response to increasing extracellular osmolarity. (C) FLOE1 LLPS upon hydration governed by prion-like glutamine,
proline, and serine rich (QPS).domain and the aspartic acid and serine rich (DS) domain, modulating its biological function. (D) ELF3 undergoes LLPS
in response to temperature.
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