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Petal segmentation in
CT images based on
divide-and-conquer strategy
Yuki Naka1, Yuzuko Utsumi1*, Masakazu Iwamura1,
Hirokazu Tsukaya2 and Koichi Kise1

1Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan, 2Graduate School of
Science, The University of Tokyo, Tokyo, Japan
Manual segmentation of the petals of flower computed tomography (CT) images

is time-consuming and labor-intensive because the flower has many petals. In

this study, we aim to obtain a three-dimensional (3D) structure of Camellia

japonica flowers and propose a petal segmentation method using computer

vision techniques. Petal segmentation on the slice images fails by simply applying

the segmentation methods because the shape of the petals in CT images differs

from that of the objects targeted by the latest instance segmentation methods.

To overcome these challenges, we crop two-dimensional (2D) long rectangles

from each slice image and apply the segmentation method to segment the petals

on the images. Thanks to cropping, it is easier to segment the shape of the petals

in the cropped images using the segmentation methods. We can also use the

latest segmentation method for the task because the number of images used for

training is augmented by cropping. Subsequently, the results are integrated into

3D to obtain 3D segmentation volume data. The experimental results show that

the proposed method can segment petals on slice images with higher accuracy

than the method without cropping. The 3D segmentation results were also

obtained and visualized successfully.
KEYWORDS

CT data, petal segmentation, image segmentation, divide-conquer strategy,
data augmentation
1 Introduction

Flowers have various appearances depending on their structure, size, shape, color, and

number of organs that make up the flower (Shan et al., 2019; Yao et al., 2019; Bowman and

Moyroud, 2024). Among the floral organs, petals are essential for understanding the flower

morphology because their size, shape, and color vary widely among flower species (Huang

et al., 2015) and are essential for plant reproduction (Irish, 2008) via interaction between

flowers and pollinators (Whitney and Glover, 2007). Therefore, several attempts have been

made to clarify the mechanism of flower morphogenesis by analyzing the shape of petals.
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Most flower morphology analyses are performed by destructive

examination, such as taking apart each petal one by one (Szlachetko

et al., 2009; Han et al., 2019; Yao et al., 2019; Hayes et al., 2021).

They have been used to clarify that petal size, shape, and genes

influence flower morphogenesis. However, it is impossible to survey

how petals order and develop in three-dimensional (3D) space

because the flowers have been decomposed. Importantly, it is

known that surface interactions between petals and other floral

organs in highly packed floral bud stage can influence the final

flower shape (Shimoki et al., 2021). To understand the process of

petal growth and interactions among floral organs in flower bud

stage, we need precise information on 3D arrangements of petals

without destruction.

In recent years, computed tomography (CT) has been used to

obtain nondestructive morphological information about flowers

(Hsu et al., 2017; Shimoki et al., 2021). Figure 1 shows the

Camellia japonica 3D volume data used in this study. Figure 1B

rendered using the Volume Viewer, which is one of the plug-ins of

Fiji is Just ImageJ (Fiji) (Schindelin et al., 2012). The data acquired

by CT shows the 3D shape of the flower, but the petals are not

segmented. To obtain the 3D morphological information of the

petals, it is necessary to segment each petal in the CT data, as shown

in Figures 2A, 3. Generally, CT data segmentation is first performed

on the slice images. The image segmentation results are then used to

obtain the 3D segmentation results. The number of slice images is

large, in the hundreds or thousands. Furthermore, segmentation is

performed manually because automatic segmentation is not

established. If a flower contains many petals or has a complex

shape, segmenting even a single image takes a long time. Therefore,

the segmentation of 3D flower data is labor-intensive, and the

manual process is an obstacle to morphological analysis.

In this study, we propose an automatic segmentation method to

enhance the morphological analysis of 3D flower data, focusing on

C. japonica which is known to have great variation in petal

numbers, shapes, and arrangements (Wang et al., 2021). To

achieve this, how to deal with the structure of the petals, which

are long and curved, is a challenge. Because the shape of the petals

differs from the objects that most object detection methods deal

with, they fail to detect them.

To overcome this problem, we crop rectangle regions from CT

images and apply a CNN-based segmentation method to the
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cropped images. Cropping is performed using a long rectangle in

which the center of the flower is set the center of the rectangle. We

rotate the rectangle using the center of the rectangle as the rotation

center and crop the images every 1° of rotation. The petals in the

cropped images are less curved and appear in appearance to the

object treated using the object detection methods. Therefore,

conventional object detection methods can detect petals with high

accuracy. After segmentation of the cropped images, the

segmentation results are integrated into the 2D images, which are

then integrated into the 3D data based on the intersection of

union (IoU).

The experimental results show that the proposed method

successfully segmented the C. japonica cross-sectional images and

3D data. The AP50, which are segmentation criteria, for the cropped

and integrated 2D images were 0.898 and 0.900, respectively.
2 Related work

This section presents some examples of flower segmentation

and modeling related to petal segmentation. In this study, we

performed petal segmentation using CT images; therefore, we also

introduce related studies on segmentation using CT images.
2.1 Flower segmentation

Several attempts have been made to segment flowers and petals

from 2D images captured by a camera. Flower detection methods

include Markov random field-based methods using graph cuts

(Nilsback et al., 2010; Zagrouba et al., 2014), thresholding in the

Lab color space (Najjar et al., 2012), and methods that combine HSI

spatial color thresholding and local area clustering (Zeng et al.,

2021). Flower segmentation methods can also be applied to

agriculture, such as methods for detecting strawberry flowers (Lin

et al., 2018), apple flowers (Tian et al., 2020; Sun et al., 2021; Mu

et al., 2023), and tomato flowers (Afonso et al., 2019). These

methods can be used to investigate special locations by detecting

flowers from 2D RGB images. Therefore, these methods differ from

the proposed method, which investigates the flower structure in 3D

in micrometers.
B C DA

FIGURE 1

Examples of Camellia japonica CT volume images. (A) C. japonica flower. The image courtesy of Prof. Yutaka Ohtake, The University of Tokyo. (B)
3D rendering image. (C) Cross section. (D) Longitudinal section.
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2.2 Flower modeling

Because of the flower’s complex structure and self-occlusion,

few studies have performed 3D modeling of flower shapes (Ijiri

et al., 2005, 2014; Zhang et al., 2014; Hsu et al., 2017; Leménager

et al., 2023). For example, Zhang et al. proposed a method (Zhang

et al., 2014), in which petals are segmented from RGB images and

3D point cloud data. The segmented petals were then fitted with a

pre-created morphable petal shape model to estimate the flower

model. Ijiri et al. proposed a system for 3D modeling of flowers

using a floral diagram, which is a schematic drawing that simply

expresses the structure of the flower (Ijiri et al., 2005). Lemenager

et al. used photogrammetry to obtain 3D model of flowers

(Leménager et al., 2023). These methods are similar to the

proposed method because they collect morphological information

about flowers. However, they differ from our task because they

obtain visible information that can be observed using an RGB-D

camera. Our task is to obtain morphological information that

cannot be observed by a camera.

Hsu et al. used micro CT data of of Sinningia speciosa flowers to

model petals (Hsu et al., 2017). Since the flower of S. speciosa is a
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single flower, it is not necessary to apply a segmentation method

does not needed to be apply before petal modeling. Ijiri et al.

proposed a semiautomatic flower modeling system (Ijiri et al.,

2014). To the best of our knowledge, this system is the only

method for semi-automatically segmented flowers from CT

images. In this system, the flowers are assumed to consist of

shafts and sheets. The system defines the energy functions of the

dynamic curves for the shafts and the dynamic surfaces for the

sheets. Based on the energy function, the stem and petals are

automatically fitted using manually specified points. This system

requires considerable manual work and takes a long time to model.

Therefore, it is difficult to apply this method to our task, and we

should consider a fully automatic method without manual work.
2.3 CT image segmentation

Research on CT image segmentation has flourished in the

medical field. Current studies on medical CT image segmentation

primarily consist of methods that train CNNs from annotated CT

image datasets. Segmentation has been used on various human
BA

FIGURE 3

Result of integration in 3D space using test data. Each petal was assigned a different color. (A) Overhead view. (B) Longitudinal section.
B CA

FIGURE 2

Examples of segmentation result in slice images of test data. Each petal was assigned a different color. (A) Integrated result. (B) Result without
proposed cropping. (C) Ground truth.
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organs and tissues, including the coronary arteries (Yang et al.,

2020), thoracic organs (Zhou et al., 2019), ductal organs and tissues,

such as blood vessels and pancreatic ducts (Wang et al., 2020),

vertebrae (Masuzawa et al., 2020), and teeth (Cui et al., 2019).

Additionally, some segmentation methods (Lee et al., 2020; Yu

et al., 2020; Laradji et al., 2021; Zhou et al., 2021) that focus on the

affected areas. Recently, in addition to CNN, segmentation methods

(Hatamizadeh et al., 2022) have been proposed that use vision

transformer (ViT) (Dosovitskiy et al., 2021) for organs and

brain tumors.

In computer vision research, medical image processing is

recognized as one of the important research areas. Therefore,

various studies have been conducted on medical CT images, as

introduced above. Under such circumstances, there are many CT

databases of medical images. Therefore, it is easy to apply the latest

deep learning-based methods to medical CT images. However,

plant image processing, especially flower image processing is not

as common as medical image processing. For example,

Morphosource.org1 contains CT images of biological specimens,

including some of plants, however, their selection of flower images

is limited.
3 Materials and methods

3.1 C. japonica flower CT data

We analyzed flower CT images of C. japonica supplied from

Botanical Gardens, the University of Tokyo, Japan. 2 The analyzed

C. japonica cv.”Orandako” was captured using an industrial-use

dimensional X-ray CT device, METROTOM 1500 Gen.1 3, made by

Carl Zeiss; as shown in Figure 4, it was captured over 41 minutes.

The X-ray tube voltage and X-ray tube current at the time of capture

were 120kV and 437 mA, respectively. Other settings are shown in

Table 1. Since the maximum time to scan the flower without

changing the morphology of the flower due to drying was about

40 minutes, the settings were made so that all scans of the flower

would be completed in about 40 minutes. Slice thickness is the

thickness of the tomographic image in the body axis direction; in

this case, this is 46.252µm.

One CT scan data was taken from one flower and used in the

experiment. We created cross-sectional images shown in Figure 1C

from the CT data and performed segmentation. The resolution of

one CT image used in the analysis was 915 × 858 pixels, and there

were 888 images. During the acquisition of the flower CT volume

data, the flower moved slightly because it dried and changed its

shape. This slight movement caused noise on the CT images. To

remove the noise, we applied the nonlocal mean filter (Buades et al.,

2005) with parameter h set to 6 before the evaluation. To train and

evaluate the model, we manually assigned the ground truth for each
1 https://www.morphosource.org.

2 The dataset is available from https://doi.org/10.6084/m9.figshare.25264774.

3 https://www.zeiss.co.jp/metrology/seihin/shisutemu/ct/metrotom.html.
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petal at the pixel level, as shown in Figure 2C. We selected 39 slice

images and assigned the ground truth. A total of 25 images were

selected as learning data, each 10 images from the top of the flower.

As test data, we selected 13 images separated by 5 slices from the

training data and randomly selected one image from the slice

images except for the training data.
3.2 Proposed segmentation method

An overview of the proposed method is shown in Figure 5. We

used CT images. The proposed method crops long rectangle images

from a slice image and applies a CNN-based instance segmentation

method that segments each petal in a cropped image. The

segmentation results in the cropped images are then integrated

into the original image. Finally, the petal segmentation result is

obtained by integrating the integrated segmentation images in 3D

space. The following sections describe in detail the image cropping

method, segmentation of the cropped images, and integration of the

segmentation results.

3.2.1 Image cropping
Figure 6 shows examples of a part of a CT image and the target

image of common instance segmentation methods. As shown in

Figure 6A, the shape of the petals is long and curved. Because of the

shape, several adjacent petals appear in the bounding box of the

petal. As shown in Figure 6B, the shape of most target objects for

segmentation is approximately rectangular, and other objects do

not appear in the bounding box of the object (Lin et al., 2014). Most

object segmentation assumes that the shape of the target objects is

similar to that in Figure 6B; a bounding box contains a single target

object. Most object segmentation methods first detect the bounding

boxes that are likely to contain the target object and then estimate

the mask of the object. If there are many target objects in a

bounding box, the methods will not work well because the

assumption does not hold. For example, Figure 2B is a result

when an object segmentation method is applied to our CT

images, with low segmentation accuracy. Thus, object

segmentation methods fail to segment petals on the CT images.

To overcome the problem, we crop long rectangles from CT

images and then apply the segmentation method. Figure 7 explains

how to visually crop long rectangle images. The long rectangle is set

as follows: the center of the rectangle is placed in the center of the

flower, and the rectangle covers both ends of the flower. We then

crop long rectangles while rotating the rectangle around its center.

In this study, the size of the long rectangle and the rotation interval

for cropping are set to 900 × 32 pixels and 1°, respectively. As shown

on the right side of the images in Figure 7, the petals of the cropped

images are not as curved as the original slice images, and the

bounding box of the petal contains only a single petal. Therefore,

when the object segmentation method is applied to the cropped

images, the segmentation accuracy is expected to be almost the

same as that of the common target objects.

We performed the cropping using a code we wrote ourselves.

The code was written in Python 3.10.8, and using OpenCV 4.9.0.80,

which is an image processing library.
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3.2.2 Segmentation of the cropped images
After cropping the images, we apply a segmentation method to

the cropped images to segment individual petals. In this study, we

use the Hybrid Task Cascade (HTC) (Chen et al., 2019a) as the

segmentation method. HTC is the combined model of Mask R-

CNN (He et al., 2017), which is the most popular instance

segmentation method in recent years and is used as the baseline

for instance segmentation evaluation, and Cascade R-CNN (Cai

et al., 2018), which achieves high segmentation accuracy by

introducing a cascade architecture into the model. HTC won the

first prize in the COCO 2018 Challenge Object Detection Task4.

Because HTC showed high accuracy in segmentation, we decide to

use it.

We used HTC implemented in MMDetection (Chen et al.,

2019b), an object detection toolbox developed by OpenMMLab.

MMDetection is written based on PyTorch, which is a machine

learning library for Python. The version of MMDetection used in

the experiment is v2.28.25.

3.2.3 Integration of the segmentation results
After obtaining the segmentation results in the cropped images,

we perform integration to obtain the 3D segmented volume data.

We first integrate the results into the slice images and then integrate

the slice images into the 3D volume.

We integrate the segmentation results using the overlapping

regions in the cropped images. When the cropped images are set to

the cropped locations, there is an overlap between the adjacent

cropped regions. Figure 8 shows the overlapping petal regions

between the cropped images with a rotation interval of 1°. We

consider the segmentation results in the overlapping regions to be

the same petals, and then integrate the segmentation results.

The segmentation results contain errors because they are not

always accurate. Errors cause the integration to fail. To avoid

integration failure, we remove errors before integration. Suppose

that the segmentation results shown in Figure 9 are given. A1 and A2
4 https://cocodataset.org/workshop/coco-mapillary-eccv-2018.html.

5 HTC model implemented in MMDetection is available from https://

github.com/open-mmlab/mmdetection.git.

Frontiers in Plant Science 05
are adjacent cropped images, and S1,1, S1,2 and S2,1, S2,2, S2,3 are the

segmentation results on A1 and A2, respectively. If there is a

disagreement between the segmentation results in the overlapping

regions, we consider the segmentation result that is divided into

more regions as correct. Then, another segmentation result is

considered incorrect, and is removed from the segmentation

results. As shown in Figure 9, because the overlapping area of S1,2
is segmented into S2,2 and S2,3 on A2, S1,2 is considered to be an

incorrect segmentation result, and S1,2 is removed from the

segmentation results.

After removing the errors, we integrated the segmentation

results. We use IoU as the integration criterion. IoU indicates the

degree of overlap between the two regions. Let A and B be the two

regions on an image, and | · | be the number of pixels in the region.

The IoU between A and B is obtained by the Equation 1, as follows:

IoU =
A ∩ Bj j
A ∪ Bj j (1)

We calculate the IoU of overlapping segmentation results and

integrate the pair of segmentation results that yield an IoU of 0.8

or more.

To obtain 3D segmentation results, the 2D integrated images

are integrated into 3D. The integration in 3D is to stack the 2D

integrated images. However, since the segmentation in each 2D

image is performed independently, 3D segmented data is not

obtained by simply stacking the 2D images. Therefore, we

determine which regions are from the same petal based on the
FIGURE 4

C. japonica CT data acquisition. Image courtesy of Prof. Yutaka Ohtake, The University of Tokyo.
TABLE 1 Setting values when capturing CT images.

X-ray tube voltage 120kV

X-ray tube current 437mA

Filter None

Exposure time for each projection 1000ms

Projected image 1000 × 1000 pixels

Pixel size 0.4mm

Projections per rotation 1000

Magnification rate 8.65 times
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IoU for the adjacent frames as the 2D image integration. We

calculate the IoUs between a segment of a 2D integrated image

and all segments of the adjacent image. The pair that gives the

highest IoU and whose value is equal to or greater than 0.8 is

considered the same petal and is integrated. This process is applied

sequentially starting from the top frame to obtain the 3D

integration of the segmentation result.

For 2D and 3D integration, we used code we developed

ourselves. The code uses Python 3.10.8 and OpenCV 4.9.0.80.

After performing the integration, regions identified as the same

petals were colored consistently in the final result. We visualized the

segmentation results of the 3D volume by displaying the final result

images using Fiji’s Volume Viewer.
4 Experiment

To evaluate the proposed method, we applied it to the CT data

introduced in Subsection 3.1.
4.1 Experimental setting

The data used to train the model were 25 CT images with

manually annotated petal regions. The 900×32 pixel images were

cropped using the proposed method described in Subsection 3.2.1.

Since the images were cropped every rotation of 1°, the number of

cropped images from a training image was 360, and the total

number of cropped images was 9000. The evaluation data consist

of 14 manually annotated images which are from the same CT data

but different from the training data. We also cropped images from

the evaluation data using the proposed method and prepared a total

of 5040 images. We used nearest-neighbor interpolation when

cropping the images. We filled the empty pixels with random

values with a normal distribution. The mean was the average of

the background pixel values, and the variance was 5. We also

applied the proposed method to the CT images, except for the

evaluation data, and integrated the segmentation results in 3D.
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Next, we describe the setup of the HTC model. We used

ImageNet (Deng et al., 2009) pretrained ResNeXt-101 (Xie et al.,

2017) 64×4d and the feature pyramid network (Lin et al., 2017) as

the backbones of the HTC model. The number of epochs and batch

size were set to 20 and 32, respectively. We used the AdamW

optimizer (Loshchilov et al., 2019) as the optimization algorithm to

train the model. The training rate was reduced from 10−4 to 10−7

using the cosine annealing scheduler (Loshchilov et al., 2017).

Figure 10 showed the training loss of the proposed method.

We used COCO API6 to calculate the accuracy of the results.

We used precision and recall to evaluate the petal segmentation

results. We calculated the IoUs between each segmentation result

and its ground truth and considered the segmentation results whose

IoU was greater than a threshold as correct. The average precision

(AP) and average recall (AR) were calculated when the IoU

threshold was 0.5 and 0.75, denoted AP50, AR50, AP75, and AR75,

respectively. We also calculated the mean average precision and

recall (mAP and mAR), which are the mean AP and AR when the

IoU threshold was changed from 0.5 to 0.95 with a 0.05 interval.

In addition to evaluating the proposed method, we evaluated

the segmentation accuracy using RandAugment, which is one of the

popular augmentation methods, instead of the proposed cropping

method. We trained the model using 25 training images, which are

the same as the training data for the proposed method, without

cropping. The training data was augmented by RandAugment

(Cubuk et a l . , 2020) . The number of augmentat ion

transformations and magnitude for all the transformations are set

to 4 and 10, respectively. The data augmentation we used were

rotation, horizontal and vertical translation, and flip. The number

of epochs and batch size were set to 50 and 16, respectively, and the

other parameters were the same as that used in the experiment of

the proposed method. The model was also evaluated using 14

images, which are the same evaluation data as the proposed

method. To compare the accuracy with the proposed method, we

calculated AP50, AR50, AP75, AR75, mAP, and mAR of the

segmentation results.
FIGURE 5

Overview of the proposed method.
6 https://github.com/cocodataset/cocoapi.
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We used a GPU server for model training and a CPU server for

segmentation and integration. The GPU server was equipped with

an NVIDIA TITAN RTX and 24 GB of memory. The CPU server

was equipped with an Intel Xeon Gold 5118 processor and 128 GB

of RAM.

To evaluate the proposed method using morphological

properties, we calculated the estimation error of the petal area on

a CT image using three test images. We manually matched the

segmented regions with the ground truth, then calculated the area

by counting the pixels in each region. The error between the ground

truth and the detected regions was calculated for each petal, and the

pixel count was converted into area. Given that each pixel side is

46.252µm, the area of each pixel is 46.252×46.252 = 2.1392×103

µm2. The mean and variance of the petal areas obtained from the

images were 5.58mm2 and 3.52mm2, respectively. Due to the large
BA

FIGURE 6

Difference between our task and general instance segmentation. (A) part of a slice image with petals and bounding boxes. A petal segment and its
bounding box are assigned the same color. (B) Target image of the segmentation method. The bounding boxes are shown as green rectangles, and
each instance is assigned a different color (Chen et al., 2019a).
FIGURE 7

Proposed image cropping method. The orange rectangles on the left CT image show several cropped areas, and the right images show the cropped
images from these areas.
FIGURE 8

Difference between the two cropped images with a rotation interval of 1°. The red and green areas show the overlapping and nonoverlapping areas
of the petals of the two cropped images, respectively.
FIGURE 9

Example of two petal segmentation results in two adjacent cropped
images. The orange and green dotted rectangles show the cropped
regions A1 and A2. S1,1, S1,2 and S2,1, S2,2, S2,3 are the segmentation
results for A1 and A2, respectively.
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variation in petal areas indicated by the mean and variance, we used

the mean absolute percentage error (MAPE) to evaluate the area

estimation error. Assuming n is the total number of petals, Ei is the

area of the ith estimated petal, and Gi is the area of the ground truth

for the ith petal, the MAPE is calculated by Equation 2, as follows:

MAPE =
100
n o

n

i=1

Ei − Gi

Gi

�
�
�
�

�
�
�
�
: (2)
4.2 Results

First, we evaluated the segmentation results of the cropped

images. Table 2 shows the scores of the accuracy evaluation metrics

for the cropped images. AP50 and AR50 were 0.898 and 0.906,

respectively. Figure 11 shows examples of the segmentation results

for the cropped images.

Next, we evaluated the integrated images and compared the

results with the segmentation results without cropping. Table 3

shows the scores of the accuracy evaluation metrics for the

integrated images and the segmentation results without cropping.

AP50 and AR50 of the proposed method were 0.900 and 0.928,

respectively. Figure 2 shows examples of the integrated and

segmentation results without cropping. In the evaluation of

morphological properties, the MAPE was 7.25%.

Finally, we show the integration result in 3D space. Figure 3

shows the segmentation volume data and its longitudinal section
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after 3D integration. Volume data were rendered using the Volume

Viewer of Fiji. We also show a video of the segmented 3D volume

data in the Supplementary material.
5 Discussion

In the segmentation of the cropped images, the results of AP50
and AR50 show a good level of accuracy. By performing the

cropping, the bounding box of a petal contains the petal only, as

in general segmentation data such as MS COCO (Lin et al., 2014).

This would have improved the estimation accuracy of the petal

region. Figure 11 shows that segmentation is generally successful,

although some petals are missing or inaccurately segmented in

complex areas such as the center.

As shown in Table 2, the values of AP75, AR75, mAP, and mAR

are much lower than those of AP50 and AR50. This is because of the

size of the petal regions: the median petal area in the cropped image

for evaluation was 223 pixels, and most of the petal area was less

than 400 pixels. Generally, the IoU is sensitive to misalignment. In

particular, when the size of the area to be calculated for the IoU is

small, the IoU drops drastically even if a 1-pixel misalignment

occurs. Therefore, the IoU threshold of 0.5 for determining the

segmentation success is considered sufficient to evaluate the

accuracy, and AP50 and AR50 are the appropriate criteria for

segmentation in this task.

As shown in Table 3, the integrated segmentation results show

better accuracy for all metrics. This is because of the removal of

incorrect segmentation results before integration. Thanks to the

removal, the integration was successful and showed better accuracy.

The IoU property is also responsible for accuracy. Additionally, the

IoU was less sensitive than that in the cropped images because the

area of the petals was larger than that in the cropped images (Zheng
TABLE 2 Petal segmentation results on the cropped images.

Metric mAP AP50 AP75 mAR AR50 AR75

Score 0.585 0.898 0.683 0.624 0.906 0.727
FIGURE 10

The training loss of the proposed method.
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et al., 2020). As in the case of cropped images, segmentation is

generally successful, although there are some errors in the central

position in Figure 2. The orange arrow in Figure 2A indicates the area

where segmentation failed. This is because the boundary between the

two petals was ambiguous and could not be divided into petals.

Compared with the integrated segmentation results and the

segmentation results without the proposed cropping method (Chen

et al., 2019a), the integrated segmentation results quantitatively and

qualitatively exceed the results without the proposed cropping

method, as shown in Table 3 and Figures 2A, B. This shows that

the proposed cropping method is effective for petal segmentation.

The segmentation of 3D volume data by 3D integration was

generally successful as shown in Figure 3A. As shown in Figure 3B,

the center of the flower indicated by the orange arrow was incorrectly

segmented. This is a limitation of the segmentation model because

the segmentation of the center failed in the cropped images. The edge

of a petal indicated by the green arrow was also incorrectly segmented

because of noise in the data. A different denoising method such as

CNN-based method (Zhang et al., 2021) can lead to successful

segmentation. In addition, the limited training data may have

decreased the accuracy. Increasing the training data would improve

the segmentation accuracy in 2D slice images and thus improve the

integrated 3D segmentation result.

A limitations of this research is that the training and test data

were derived from the same CT data. If the training and test images

had come from different CT data, the segmentation accuracy might

decreased. The algorithm for eliminating detection errors before

integrating the segmentation results of cropped images performed

well in this experiment. However, if the segmentation accuracy

declines, the algorithm’s performance would suffer, leading to a

decrease in the accuracy of the integrated results. In such cases,

increasing the amount of training data or revising the integration

algorithm might be necessary to enhance the accuracy of the

segmentation results.
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The other limitation is the CT scanning setting. Usually, CT

scans of flowers are conducted with water and in a controlled

humidity environment. Our scanning setting is unconventional,

making it uncertain the flower shape is captured as accurately as

with the usual method. However, our proposed segmentation

method has shown sufficient accuracy with our data. Therefore, if

the CT scans are performed with water and controlled humidity,

and our proposed method is applied, we expect to obtain highly

accurate 3D shapes with segmented petals.
6 Conclusion

This paper proposed a petal segmentation method for C. japonica

flower CT images. It is difficult to manually segment each petal on the

CT images because the number of CT images from the volume data

and the number of petals to be segmented on the slice images are

large. Therefore, we automatically segmented the petals on the slice

images using machine learning based image recognition techniques.

To overcome the decrease in segmentation accuracy due to the shape

of the petals, we crop the long rectangle images from the slice images

and apply the latest segmentation method. Consequently, 3D

segmentation results were obtained by integrating the segmentation

on the cropped images. The experimental results showed that the

proposed method outperformed the method without cropping

images in terms of segmentation accuracy. Moreover, we

successfully segmented 3D flower volume data by integrating the

segmentation results.
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