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With the rapid advances in next-generation sequencing technology, numerous

non-protein-coding transcripts have been identified, including long noncoding

RNAs (lncRNAs), which are functional RNAs comprising more than 200

nucleotides. Although lncRNA-mediated regulatory processes have been

extensively investigated in animals, there has been considerably less research

on plant lncRNAs. Nevertheless, multiple studies on major crops showed

lncRNAs are involved in crucial processes, including growth and development,

reproduction, and stress responses. This review summarizes the progress in the

research on lncRNA roles in several major crops, presents key strategies for

exploring lncRNAs in crops, and discusses current challenges and future

prospects. The insights provided in this review will enhance our

comprehension of lncRNA functions in crops, with potential implications for

improving crop genetics and breeding.
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1 Introduction

Noncoding RNAs (ncRNAs), which do not encode proteins and were originally

considered to be “transcriptional noise,” account for most of the total RNA in cells

(Nojima and Proudfoot, 2022). With the development and application of transcriptomic

technology, the importance of an increasing number of ncRNAs for genomic organization

and function has been revealed (Jha et al., 2023). In fact, ncRNAs have gradually become a

major focus of life sciences research (Waititu et al., 2022; Cui, 2023). The two types of

ncRNAs are distinguished by their mechanism of action. Specifically, housekeeping

ncRNAs include transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), small nucleolar

RNAs (snoRNAs), and ribosomal RNAs (rRNAs), whereas regulatory ncRNAs include

short interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs

(piRNAs), and long noncoding RNAs (lncRNAs) (Duan X. et al., 2020; Virciglio et al.,
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2021). Among these ncRNAs, lncRNAs affect gene expression

through a wide range of mechanisms and are essential regulators

of many important biological processes (Qin et al., 2017; Ahmed

et al., 2020).

The first stage of research on lncRNAs was from 1980 to 2000,

during which lncRNAs were first identified using traditional gene

mapping methods, with H19 being one of the first reported

lncRNAs (Yoshimura et al., 2018; Yang et al., 2021). Additionally,

XIST, the main regulator of X-chromosome inactivation, was also

discovered in this period (Hierholzer et al., 2022). In the second

stage, which involved a shift from the noncoding genome to the

noncoding transcriptome, thousands of lncRNAs were identified in

plants. In the third stage, microarrays, tiled arrays, and next-

generation sequencing technologies were used to identify

regulatory lncRNAs and clarify their involvement in many

processes, such as development and pathogenesis, in numerous

plant species (Jarroux et al., 2017; Wu et al., 2020). The increasing

functional characterization of lncRNAs has been accompanied by

an increase in the number of studies on lncRNAs over the last

decade. The mechanisms of action of lncRNAs in animals have been

extensively studied (Zhang et al., 2020; Zhang X. et al., 2023).

Moreover, there has been a steady increase in the research on

lncRNAs in both animals and plants over the years. The resulting

published articles reflect the growing interest, funding, and research

on crop lncRNAs. However, plant lncRNA studies lag behind those

on animal lncRNAs, likely because of the delayed initiation of plant

research. Nevertheless, lncRNAs in major crops, such as rice, maize,

and cotton, have been identified and characterized. Technological

advances may be exploited to further expand the research on plant

lncRNAs. A comprehensive overview of the progress in crop

lncRNA research may be relevant to future investigations on

lncRNA mechanisms and their potential applications for

crop improvement.
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2 Progress in the research on lncRNAs
in common crops

lncRNAs play a crucial role in regulating many biological

processes in crops. Crops can be classified in different ways, one

of which is the botanical classification method used in agriculture.

However, since the same crop often serves multiple purposes, it is

generally divided based on its primary use. Here, we introduce the

research progress of lncRNA by dividing common crops into grain

crops (wheat, corn, and rice), oil crops (soybean, peanut, and

rapeseed), sugar crops (sugarcane and beet), fiber crops (cotton

and hemp), beverage crops (tea and coffee), and vegetables

(tomato) (Figure 1).
2.1 Grain crops

In rice, TWISTEDLEAF (TL), is transcribed from the opposite

strand of the R2R3 MYB transcription factor gene locus

(OsMYB60). Silencing TL via RNA interference reportedly results

in abnormal leaves (Liu et al., 2018) (Figure 2A). In terms of disease

resistance-related lncRNAs, an RNA sequencing-based analysis of

rice leaves infected with Xanthomonas oryzae pv. oryzae (Xoo)

revealed the interactions between 39 jasmonate (JA)-related

protein-coding genes and 73 lncRNAs. The overexpression of

ALEX1 enhances the resistance to Xoo and activates JA signaling

(Yu et al., 2020) (Figure 2B). Research on anther and ovary meiosis

in autotetraploid rice showed lncRNA57811 overexpression

significantly decreases fertility and the seed setting rate, which

reflects the critical roles of lncRNAs affecting polyploid rice

pollen development (Li X. et al., 2020) (Figure 2C). In addition,

MSTRG.28732.3, which is a lncRNA associated with drought
FIGURE 1

Progress in the research on lncRNAs in common crop species. This review comprehensively summarizes the functions of lncRNAs in major food
crops (wheat, corn, and rice), oil crops (soybean, peanut, and rapeseed), sugar crops (sugarcane and beet), fiber crops (cotton and hemp), beverage
crops (tea and coffee), and vegetables (tomato).
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resistance, interacts with miR171 to modulate the chlorophyll

biosynthesis pathway, thereby influencing drought resistance

through Os02g0662700, Os02g0663100, and Os06g0105350 in rice

(Yang et al., 2022) (Figure 2D).

In maize, lncRNAs contribute to several growth and

developmental processes. For example, Pi-deficiency-induced

long-noncoding RNA1 (PILNCR1), which was identified following

an analysis of strand-specific RNA libraries, can inhibit ZmmiR399-

guided cleavage of ZmPHO2, ultimately affecting the ability of

maize to tolerate low-Pi conditions (Du et al., 2018) (Figure 2E).

The CRISPR/Cas9-based editing of the lncRNA GARR2 in the

GARR2KO line leads to increases in bud height, second leaf

sheath length, and endogenous GA3 levels. Additionally,

according to RNA pull-down assays, GARR2 can influence the

abundance of its target (ZmUPL1) during the gibberellin (GA)
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response (Li W. et al., 2022) (Figure 2F). Furthermore, sugarcane

mosaic virus (SCMV)-responsive lncRNA–miRNA–mRNA

networks have been established. The lncRNA10865-miR166j-3p-

HDZ25/HDZ69 and lncRNA14234-miR394a-5p-SPL11 modules

played roles in maize resistance to SCMV infection. Among them,

after lncRNA10865 and lncRNA14234 were silenced, SCMV

symptoms were aggravated and alleviated, respectively (Gao et al.,

2023) (Figure 2G).

In a previous study on the mechanism mediating the cold

resistance of winter wheat, lncR9A was revealed to function as a

competing endogenous RNA (ceRNA) that regulates the

cooperative interaction between tae-miR398 and TaCSD1 under

cold conditions (Lu et al., 2020) (Figure 2H). An investigation on

wheat grain fat biosynthesis detected a lncRNA that serves as a

ceRNA modulating lipid accumulation through TaPDAT. More
FIGURE 2

Investigating the function of lncRNAs in gain crops such as maize, rice, and wheat. (A) lncRNA involved in the regulation of leaf development;
(B) lncRNA involved in the regulation of rice resistance to Xanthomonas oryzae pv. Oryzae; (C) lncRNA involved in the regulation of drought stress;
(D) lncRNA involved in the regulation of seed germination; (E) Involved in the regulation of tolerance to low Pi; (F) lncRNA involved in the regulation
of phytohormone gibberellin; (G) lncRNA involved in the regulation of SCMV resistance; (H) lncRNA involved in the regulation of cold resistance;
(I) lncRNA involved in the regulation of lipid accumulation; (J) lncRNA involved in the regulation of seed germination.
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specifically, on the basis of a GFP reporter assay, lnc663 can

sequester miR1128 through complementary interactions to up-

regulate TaPDAT expression in tobacco (Madhawan et al., 2023)

(Figure 2I). In addition, lncRNAs may also regulate abscisic acid/

GA signaling to affect seed germination. The overexpression of

miR9678 delays wheat seed germination by decreasing the bioactive

GA content. Interestingly, miR9678 targeted the lncRNA WSGAR

(Guo et al., 2018) (Figure 2J).

In summary, lncRNAs modulate the growth, development, and

biotic and abiotic stress responses of major grain crops, including

rice, maize, and wheat. While these biological processes may affect

grain crop yields, the molecular mechanisms underlying lncRNA

functions in grain crops must be more precisely deciphered to

improve grain crop production.
2.2 Oil crops

Soybean is one of the main oil crops. In the study of soybean salt

response stress, the interaction between Gmax_MSTRG.35921.1 and

miR166i was verified by LAMP assay followed by RT-PCR, which

indicated the potential regulatory role of lncRNA under salinity stress

(Li C. et al., 2022) (Figure 3A). In addition, overexpressing

lncRNA77580 in soybean could increase the drought tolerance and

seed yield by increasing the number of seeds per plant (Chen X. et al.,

2023) (Figure 3B). The lncRNA43234-miRNA10420-XM_014775781.1

network related to lipid synthesis was screened out by full-length

transcriptome sequencing for Wild type (WT) soybean “JN18”

(Jishendou 2006) and low linolenic acid mutant “MT72”.

Overexpression of lncRNA43234 resulted in increased protein content

and decreased oleic acid content in Arabidopsis thaliana seeds (Ma

et al., 2021; Zhang A. et al., 2023) (Figure 3C).
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Brassica napus L., which is one of three types of oilseed rape, has

the highest grain yield among all oilseed rape varieties. The seed oil

content decreases by 3.1%–3.9% following the overexpression of

MSTRG.22563, but increases by approximately 2% ifMSTRG.86004

is overexpressed (Li Y. et al., 2023) (Figure 3D). However, clubroot

disease causes significant Brassica yield losses. A total of 464

differentially expressed lncRNAs were identified in the roots of

resistant plants challenged with Plasmodiophora brassicae, with

most of the genes targeted by these lncRNAs associated with

plant–pathogen interactions and hormone signaling pathways

(Summanwar et al., 2021). Furthermore, the positive effects of

lncRNAs on B. napus drought tolerance have been elucidated.

Certain lncRNAs affecting plant hormone signaling and defense

mechanisms are co-expressed with protein-coding genes (Tan

et al., 2020).

In 2019, a weighted correlation network analysis established a

co-expression network comprising 4,713 lncRNAs, which enabled

the identification of lncRNAs associated with the growth and

development of various peanut tissues (Zhao et al., 2019).

Concurrently, seeds from two peanut recombinant inbred lines

(RIL8) with differing seed sizes were subjected to strand-specific

whole transcriptome sequencing at 15 and 35 days after flowering

(DAF). An examination of differentially expressed genes and qPCR

data revealed the importance of 11 lncRNAs and their cis-acting

target genes for peanut seed development (Ma et al., 2020).

Furthermore, 10 lncRNAs functioned as ceRNAs involved in

oxidation–reduction processes and other metabolic pathways

during a root-knot nematode infection of peanut (Xu et al., 2022).

The findings of previous studies indicate lncRNAs modulate the

oil content and quality of oil crops (e.g., soybean and rapeseed).

Clarifying the gene regulatory network governing lipid metabolism

is crucial for enhancing oil crop yield and quality. A thorough
FIGURE 3

Investigating the function of lncRNAs in oil crops such as soybean and rapeseed. (A) lncRNA involved in salt stress regulation; (B) lncRNA involved in
salt and drought stress regulation; (C) lncRNA involved in lipid synthesis regulation; (D) lncRNA involved in seed oil accumulation.
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examination of the key lncRNAs associated with oil metabolism will

provide relevant insights into the molecular mechanisms

underlying lipid metabolism in oil crops.
2.3 Sugar crops

The main sugar crops include sugarcane (Saccharum

officinarum L.) and sugar beet (Beta vulgaris). In a study

exploring sugarcane tiller development, 310 conserved lncRNAs

were screened on the basis of a PacBio Iso-Seq analysis of leaf and

tiller bud samples (Yan et al., 2021). Previous studies had shown

thatmiR408 is important for the interaction between sugarcane and

microorganisms. A long intergenic noncoding RNA (lincRNA) with

significant complementarity to miR408 was predicted to act as

miRNA bait, with inhibitory effects on the regulation of canonical

miR408 targets (Thiebaut et al., 2017). Other studies showed that

miRNAs influence sugarcane growth and development, stress

resistance, and other processes (Li A. M. et al., 2023; Gao et al.,

2022). The research conducted to date on sugarcane lncRNAs has

primarily relied on predictions, which will need to be

experimentally verified. In particular, the regulatory effects of

lncRNAs on sweetness-related genes should be characterized.

Changes in gene expression during sugar beet responses to salt

stress have been elucidated via whole transcriptome RNA-seq and

degradome sequencing analyses, which identified 61 differentially

expressed lncRNAs in roots and 55 target genes (Li J. et al., 2020). In

another study, sugar beet responses to drought stress were

examined, resulting in the detection of 386 differentially expressed

lncRNAs; the expression of the most significantly up-regulated

lncRNA increased more than 6,000-fold, whereas the expression

of the most significantly down-regulated lncRNA decreased more

than 18,000-fold (Zou et al., 2023). In sugar beet, the gene

(Bv8_189980_mizi.t1) targeted by the lncRNA MSTRG.26204.1

encodes a B3 domain-containing transcriptional repressor

(VAL1-like), suggesting this gene may be associated with

vernalization. Hence, lncRNAs may be involved in the sugar beet

vernalization process (Liang et al., 2022).

Although there is evidence indicating lncRNAs affect the

drought resistance as well as the growth and development of

sugar crops, their contribution to sugar biosynthesis and the

underlying molecular mechanism remain unclear. Exploring the

effects of lncRNAs on plant sugar biosynthesis pathways may

provide insights relevant to regulating key sugar crop traits.
2.4 Beverage crops

Cocoa, coffee, and tea are the main beverage crops worldwide. To

date, there has been limited research on cocoa lncRNAs, but coffee

and tea lncRNAs have been identified and functionally characterized.

In Coffea canephora, 2,384 high-confidence lncRNAs were identified

on the basis of a comprehensive genome-wide analysis (Lemos et al.,

2020). A total of 10,564 lncRNAs were identified in another coffee

species (Coffea arabica L.). Their involvement in important

biological processes was predicted by a Gene Ontology (GO)
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analysis (Abdel-Salam et al., 2021). In tea (Camellia sinensis),

lncRNAs are involved in disease resistance-related mechanisms.

Additionally, in C. sinensis ‘Baiye No. 1’, differentially expressed

lncRNAs participate in responses to periodic albinism through the

GAMYB–miR159–lncRNA regulatory network (Xu et al., 2023). A

recent study indicated MSTRG.20036, MSTRG.3843, MSTRG.26132,

andMSTRG.56701 influence the development of tea leaf spot disease

through cis-regulatory mechanisms (Huang et al., 2023). Another

lncRNA (MSTRG.139242.1) may modulate the response to salt stress

through Ca2+ ATPase 13 in the Ca2+ transport pathway (Wan et al.,

2020). In response to daylight-induced withering, lncRNAs alter

flavonoid and terpenoid metabolic pathways as well as JA/methyl

jasmonate biosynthesis and signal transduction in oolong tea (C.

sinensis) (Zhu et al., 2019). Thus, lncRNAs help regulate disease

resistance mechanisms and salt stress responses in beverage crops.

They also regulate the production of biologically active substances

that influence the flavor profile and other characteristics of

beverage crops.
2.5 Fiber crops

Cotton seeds produce fiber. Some studies have shown that

lncRNAs are involved in the disease resistance of cotton. For

example, lncRNA2 and its target gene PG12 negatively regulate

cotton resistance to verticillium wilt, while lncRNA7 and its target

gene PMEI13 have the opposite effect (Zhang L. et al., 2022)

(Figure 4A). Interestingly, lncRNAs are also involved in cotton

responses to abiotic stress. More specifically, DAN1, which is a

lincRNA associated with drought responses, can regulate AAAG

motif-containing genes in the auxin response pathway (Tao et al.,

2021) (Figure 4B). Another lincRNA, XH123, was revealed to control

the cold stress response of cotton seedlings (Cao et al., 2021)

(Figure 4C). The salt-responsive lncRNAs TRABA and lncRNA354

serve as upstream regulators that control the expression of the salt

stress response-related genes GhBGLU24 and GhARF, respectively

(Zhang X. et al., 2021; Cui et al., 2024) (Figure 4D). In cotton,MSTRG

2723.1 mediates the expression of key genes related to fatty acid

metabolism, theMYB25-mediated pathway, and pectin metabolism to

regulate fiber synthesis (Zou et al., 2022). In addition to cotton, hemp

is another major fiber crop. In ramie (Boehmeria nivea L. Gaud), a

MYB gene (BntWG10016451) is targeted by lncRNA00022274. The

overexpression of this gene reportedly increases fiber production in A.

thaliana (Fu et al., 2023). Considered together, the findings of earlier

studies suggest lncRNAs play crucial roles in fiber crop responses to

biotic and abiotic stresses, while also influencing fiber formation.

These investigations have increased our understanding of how

lncRNAs regulate plant fiber development.
2.6 Vegetables

Tomato (Solanum lycopersicum L.) is one of the most important

vegetable crops. The silencing of lncRNA1459 reportedly decreases

ethylene accumulation and carotenoid biosynthesis in tomato, with

detrimental effects on fruit ripening (Li et al., 2018) (Figure 5A).
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During carotenoid biosynthesis, octahydro-lycopene synthase

(PSY) catalyzes the formation of two GGPP molecules.

Additionally, trans-splicing between SlPsy1 and the lncRNA

ACoS-AS1 leads to the formation of yellow tomato fruit (Xiao

et al., 2020) (Figure 5B). Overexpressing Solyc10g006360 decreases

the formation of type I trichomes. An earlier study showed

lncRNA000170, which is transcribed from the complementary

strand of Solyc10g006360, may affect multicellular trichome
Frontiers in Plant Science 06
formation by inducing target gene expression (Liao et al., 2020)

(Figure 5C). In the study of tomato against Phytophthora infestans,

overexpression of Sl-lncRNA47980 up-regulated the expression of

SlGA2ox4, while overexpression of lncRNA39026 down-regulated

the expression of miR168a and increases the expression of SlAGO1.

In tomato, the overexpression of lncRNA23468 and lncRNA08489

significantly decreases the expression of miR482b and miR482e-3p,

respectively, but the expression of target genes encoding NBS-LRR
FIGURE 5

Investigating the function of lncRNAs in vegetable such as tomato. (A) lncRNA involved in the regulation of fruit ripening; (B) lncRNA involved in the
regulation of carotenoids biosynthesis; (C) lncRNA involved in the regulation of trichome formation; (D) lncRNA involved in the regulation of tomato
resistance to Phytophthora infestans.
FIGURE 4

Investigating the function of lncRNAs in fiber crops such as cotton. (A) lncRNA involved in the regulation of Verticillium wilt; (B) lncRNA involved in
the regulation of drought stress; (C) lncRNA involved in the regulation of cold-stress; (D) lncRNA involved in the regulation of salt-stress.
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proteins increases significantly. These lncRNAs positively regulate

the resistance of tomato plants to P. infestans. Conversely, Sl-

lncRNA39896 negatively regulates tomato resistance to

P. infestans; this lncRNA functions as an endogenous target

mimic of Sl-miR166b that controls HDZ expression (Jiang et al.,

2019; Hou et al., 2020; Su et al., 2023; Liu et al., 2022; Hong et al.,

2022) (Figure 5D).
3 Main research strategies for
crop lncRNA

In this section, we highlight the primary methods used to

investigate lncRNAs in common crops (Figure 6). Novel lncRNAs

are generally identified in studies involving high-throughput

sequencing (e.g., after various treatments, at selected time points,

or in specific tissues) followed by transcript splicing and assembly.

The expression levels of candidate lncRNAs and mRNAs are then

analyzed to screen for differential expression. Plant studies focused

on lncRNA functions mainly involve the application of second-

generation sequencing technologies, despite the increasing

popularity of third-generation sequencing. Although third-

generation sequencing technology may be better than earlier

sequencing technologies for sequencing genomes and

transcriptomes, its widespread application may be restricted by its

high costs. Because of its advantages (e.g., short reads, high

throughput, and high accuracy), second-generation sequencing

technology is still commonly used for plant research. However,

third-generation full-length transcriptome sequencing has
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generated high-quality complete transcriptomes (Zhu et al., 2013;

Rhoads and Au, 2015; van Dijk et al., 2023).

Sequenced transcripts may be screened for lncRNAs using

diverse methods (e.g., CPC, CNCI, CPAT, and pfam protein

domain analysis) (Zhang J. et al., 2022; Liu X. Q. et al., 2019;

Duan Y. et al., 2020). The PmlIPM model was recently used to

predict plant miRNA–lncRNA associations (Tang and Ji, 2023). By

integrating a paired sgRNA design with an off-target analysis,

CRISPRlnc can be used to design CRISPR/Cas9 sgRNAs for

ncRNAs (Yang et al., 2024). The identified lncRNAs, including

lincRNAs, intronic lncRNAs, antisense RNAs, NATs, bidirectional

lncRNAs, and eRNAs, may be classified according to their genomic

locations relative to protein-coding genes. This classification is

useful for future studies on lncRNA functions (Chekanova, 2015;

Wierzbicki et al., 2021). The expression and functional significance

of lncRNAs and protein-coding genes must be clarified.

Differentially expressed genes and consistently highly expressed

genes may play crucial roles in key metabolic pathways and

biological processes. Several databases (e.g., KEGG, GO, GreeNC,

PlncRNADB, LncTar, NONCODE, and other lncRNA-related

databases) have been used to predict lncRNA functions and select

lncRNAs for further analyses (Di Marsico et al., 2022; Li et al., 2015;

Quek et al., 2015; He et al., 2008).

Full-length lncRNAs may be amplified via rapid amplification

of cDNA ends (RACE) for in-depth analyses when only transcript

fragments are available (Zhou et al., 2023). The mechanisms

mediating the regulatory effects of lncRNAs in plants vary

because of the diversity in the cellular locations of lncRNAs. The

localization of lncRNAs in cells can be determined by conducting a
FIGURE 6

Flow chart of the research strategy for identifying lncRNAs in crops.
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qPCR analysis of lncRNA expression in the isolated nucleus and

cytoplasm or a fluorescence in situ hybridization assay (Qin and

Xiong, 2019; Yang et al., 2020). Nuclear lncRNAs interact with

DNA, RNA, proteins, and other molecules to regulate chromosome

structure and function, while also controlling gene transcription

(cis- or trans-regulation). In contrast, cytoplasm-localized lncRNAs

have post-transcriptional regulatory effects (Zhang M. et al., 2021;

Dietrich et al., 2015; Hu et al., 2023). The interaction between

lncRNAs and proteins may be confirmed using various approaches,

i n c l ud ing pu l l - down a s s a y s , RNA-b ind ing p ro t e i n

immunoprecipitation (RIP), cross-linking immunoprecipitation

(CLIP), and chromatin isolation by RNA purification (ChIRP)

(Ferrè et al., 2016; Jiang et al., 2023). The ceRNA mechanism is

currently a major topic of interest among researchers. Various

methods, including 5′ RLM RACE, ChIRP, and binding site

prediction, are useful for investigating the interaction between

lncRNAs and miRNAs or circRNAs (Zhang L. et al., 2023; Rao et al.,

2022). After the initial verification, lncRNA functionality must be

confirmed. This involves constructing overexpression vectors that are

subsequently inserted into plants for an analysis of the effects of

lncRNA overexpression. Additionally, RNAi, CRISPR/Cas9, VIGS,

and other technologies were utilized to suppress target genes or induce

mutations, ultimately confirming the function of the target lncRNA

(Aydinoglu and Kuloglu, 2023; Bravo-Vázquez et al., 2023).
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4 Discussion and prospects

In addition to conventional breeding techniques, technological

advances (e.g., transgenic technology) have resulted in several

alternative methods for improving crop traits (Kumar et al.,

2020). Third-generation sequencing technologies have facilitated

the detection and characterization of functional genes beyond

protein-coding genes, with the identified lncRNAs potentially

useful for enhancing crop traits (Xu et al., 2020; Chen T. et al.,

2023). We herein reviewed the effects of lncRNAs on the growth

and development of key crops. Crops have been classified according

to their uses as well as their botanical characteristics. Field crops are

frequently divided into three categories: edible crops, industrial raw

materials, and feed crops. However, because of the multifunctionality

of many crops, in this review, we classified them according to their

primary use. We specifically focused on lncRNAs with confirmed

regulatory functions in crops, rather than those that are merely

predicted to be associated with crop growth and development. We

also summarized themajorfindings of studies on lncRNA functions in

various plant species. The importance of lncRNAs for regulating crop

growth was emphasized (Table 1).

Research on lncRNAs in crops lags behind the corresponding

research in animals. Hence, there are numerous gaps in our

knowledge that will need to be addressed. Nevertheless, numerous
TABLE 1 Functions of lncRNAs in other plants.

Gene Name Origin Mechanism Gene function Research significance References

SEAIRa Arabidopsis
Represses

SE expression
Turn led to

serrated leaves
Uncover an epigenetic mechanism mediated by

the lncRNA SEAIRa that modulates SE expression
(Chen W. et
al., 2023)

T5120 Arabidopsis
Interacts with NLP7

and NRT1.1
Regulate

nitrate signalling

Reveal a new regulatory mechanism in which
lncRNA T5120 functions in nitrate regulation,

providing new insights into the nitrate
signalling network

(Liu F. et
al., 2019)

FLAIL Arabidopsis
As a trans-acting
RNA molecule

Affect alternative
splicing and

represses flowering

Suggest lncRNAs as accessory components of the
spliceosome that regulate AS and gene expression

to impact organismal development
(Jin et al., 2023)

PMAT-PtoMYB46 Populus
Represses PtoMATE

and PtoARF2
Promote Pb2+ uptake
and plant growth

Demonstrate the involvement of lncRNAs in
response to Pb2+ in poplar

(Chen
et al., 2022)

lncRNATCONS00065739
Ammopiptanthus

nanus

As an endogenous
competitive target

of miR530

Contribute to the cold
stress adaptation

Provide new data for understanding the biological
roles of lncRNAs in response to cold stress

in plants

(Zhu
et al., 2023)

HILinc1 Pyrus spp.

Facilitates
PbHSFA1b through

stabilizing
PbHILT1 transcripts

Enhance
pear thermotolerance

Investigate the role of lncRNA in enhancing heat
tolerance in pears and offer suggestions for

enhancing both yield and quality

(Zhang Y. et
al., 2022)

DglncTCP1
Chrysanthemum

morifolium
Ramat.

Cis-regulatory role

Play a key role in
improving the cold

tolerance
of chrysanthemum

Suggest that natural antisense lncRNA plays a key
role in improving the cold tolerance of

chrysanthemum

(Li X. et
al., 2022)

MSTRG.85814 Malus domestica Cis-regulatory role

Activate proton
extrusion involved in

the Fe-
deficiency response

Reveal a mechanism by which lncRNA promotes
environmental Fe-deficiency stress adaption

(Sun
et al., 2020)

FRILAIR Strawberry
Act as a

noncanonical target
mimic of miR397

Modulate strawberry
fruit ripening process

Characterize a functional model for lncRNA-
miRNA-gene regulation in the regulation of

strawberry fruit ripening

(Tang
et al., 2021)
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functional lncRNAs had been identified and functionally annotated

in various model plants (Jampala et al., 2021). Further research is

needed to elucidate the functions of lncRNAs in crop species as well

as the underlying mechanisms. Unlike the extensively annotated

protein-coding genes, lncRNAs are frequently inadequately

annotated. Crop lncRNAs may be annotated and classified using the

methods that were employed for annotating animal lncRNAs

(Ballarino et al., 2023; Park and Kim, 2023). However, in addition to

RNA-seq technology, animal lncRNAs can be identified using gene

chip technology. Although gene chips are widely used for animal and

pharmaceutical research, they are too expensive for most agricultural

scientific research institutions. Therefore, the application of gene chip

technology for annotatingplant lncRNAsmaydepend on adecrease in

the associated costs (Morohashi et al., 2009; Verma et al., 2022; Song

et al., 2023). The precise genome locations and functional significance

of numerous lncRNAs remain unknown. The biological functions of

lncRNAs are intricately linked to their secondary structure.

Unfortunately, existing programs and tools for lncRNAs often

prioritize the complete secondary structure, while overlooking local

structures crucial for biological functions (Herman et al., 2022;

Sanbonmatsu, 2022). To further annotate lncRNAs, their secondary

structures will need to be explored at a higher resolution. New sources

of lncRNAs were continually being identified and classified

(Chorostecki et al., 2023; Li C. et al., 2023; Mattick et al., 2023).

Further advances in related technologies may lead to a more

comprehensive elucidation of lncRNA functions and the associated

mechanisms. The development of more efficient programs and tools

has enabled researchers to acquire increasingly accurate insights into

lncRNAs in crops (Sheng et al., 2023). Moreover, CRISPR

technology, which was initially used for plant genome editing in

2013, has been exploited to improve crop traits. Progress in the

related research has resulted in enhanced breeding practices, but it

has also simplified the classification of lncRNA functions, thereby

enabling researchers to functionally validate lncRNAs in crops (Atia

et al., 2024; Chovatiya et al., 2024). In this context, lncRNAs are also

expected to play a more essential role in the genetic breeding of crops,

the development of biological resource, the engineering of plant cells,

and other areas. Improved living standards, farming system changes,

research on plant diseases and pest infestations, and the development

of specialized crops have necessitated the generation of new crop

varieties. Furthermore, varietal replacement rates have increased.

Hence, transgenic breeding can no longer be reserved for exploring

protein-coding genes. Functional lncRNAs will need to be identified

and analyzed regarding their utility for promoting crop production.

This may increase crop yields, enhance crop stress resistance, and

optimize the contents of beneficial substances, thereby increasing the

efficiency of agricultural production (Palos et al., 2023; Yang et al.,

2023). Furthermore, lncRNAs may be considered as key factors

influencing cellular architecture. By culturing and proliferating cells
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or modifying specific plant cell characteristics, breeders can generate

economically valuable crop products (Gonzales et al., 2024).

Although research on crop lncRNAs is in its nascent stages, studies

conducted to date have highlighted the importance of lncRNAs as

well as the need for additional research to more precisely determine

their roles in crops.
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