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Introduction: Durian is one of the tropical fruits that requires soil nutrients in its

cultivation. It is important to understand the relationship between the content of

critical nutrients, such as nitrogen (N), phosphorus (P), and potassium (K) in the

soil and durian yield. How to optimize the fertilization plan is also important to the

durian planting.

Methods: Thus, this study proposes an Improved Radial Basis Neural Network

Algorithm (IM-RBNNA) in the durian precision fertilization. It uses the gray wolf

algorithm to optimize the weights and thresholds of the RBNNA algorithm, which

can improve the prediction accuracy of the RBNNA algorithm for the soil nutrient

content and its relationship with the durian yield. It also collects the soil nutrients

and historical yield data to build the IM-RBNNA model and compare with other

similar algorithms.

Results: The results show that the IM-RBNNA algorithm is better than the other

three algorithms in the average relative error, average absolute error, and

coefficient of determination between the predicted and true values of soil N, K,

and P fertilizer contents. It also predicts the relationship between soil nutrients

and yield, which is closer to the true value.

Discussion: It shows that the IM-RBNNA algorithm can accurately predict the

durian soil nutrient content and yield, which is benefited for farmers to make

agronomic plans and management strategies. It uses soil nutrient resources

efficiently, which reduces the environmental negative impacts. It also ensures

that the durian tree can obtain the appropriate amount of nutrients, maximize its

growth potential, reduce production costs, and increase yields.
KEYWORDS

durian precise fertilization, durian soil nutrient management, precise nutrient supply,
durian planting, durian yield prediction
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1 Introduction

As one of the representatives in tropical fruits, durian is popular

for its unique flavor and high nutritional value. The formulation of

fertilization strategies is the key issues of agricultural production in

durian cultivation. However, the durian fertilization decisions

mainly rely on farmers’ experience and traditional agricultural

methods, which is subjective and lacks scientific basis. It leads to

the effectiveness of fertilization and poses a threat to farmers’

economic benefits and the stability of the supply chain. However,

soil properties vary from different regions; traditional fertilization

programs fail to consider soil heterogeneity, which leads to

unscientific fertilization. It affects the durian growth and quality

and negatively impacts land health and sustainability. Therefore, it

is important to collect the durian growth data and soil conditions

and use relevant algorithms to learn the complex relationship of

durian growth for reducing the fertilizer waste and production costs

(Zhou et al., 2021; Chanachot et al., 2023).

Precise fertilization decisions can control the input of

agricultural production materials and improve the yield and

quality of crops. Therefore, some scholars have made some

achievements in some crops. Guo et al. (2021) proposed an

integrated phenology and climate in rice yields prediction using

machine learning methods. It tested 11 phenological, climate, and

geographical data and three machine learning methods to predict

site-based rice yield, thereby improving the accuracy of rice yield

prediction under climate change conditions using integrated

machine learning methods. Hossain et al. (Hossain and Siddique,

2020) proposed an online fertilizer recommendation system

(OFRS). It analyzed Bangladesh’s national soil database to

generate site-specific fertilizer recommendations for selected crops

using recommended doses of fertilizer calculated based on soil test

values. Kuzman et al. (2021) established a prediction method

through an adaptive neuro-fuzzy inference system (ANFIS) to

determine the impact of temperature, moisture, humidity, soil

type, crop type, nitrogen, potassium, and phosphorus on fertilizer

prediction, thereby reducing process costs. Guo et al. (2022)

proposed a machine learning-based approach for predicting spad

values of maize using multi-spectral images. It used the Mini MCA

6 camera of the drone platform to collect images of corn at different

growth stages and established a linear regression model with the

spectrum and texture index of different growth stages to accurately

monitor the growth and nutritional status of corn for better

subsequent fertilization management.

Kanuru et al. (2021) used Global Positioning System (GPS)

modules and Internet of Things (IoT) technology to determine the

properties of the soil and the types and amounts of pesticides and

fertilizers used in effective methods, improving the efficiency of

pesticide and fertilizer use to achieve optimal economic benefits.

Guo et al. (2023) used hyperspectral images collected by drones,

explored multispectral images using the formed dual-band (2D)

vegetation index (VI) and 2D texture index (TI), and used five deep

learning methods to accurately monitor corn growth, which can

help adjust fertilization strategies and achieve precise fertilization.

Ahmed et al. (2021) proposed a soil fertilization nutrient

recommendation system based on evolutionary calculation. It
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improves the Genetic Algorithm (IGA) and uses time-series

sensor data to make recommendations for various crop nutrient

settings. Neighborhood-based strategies were also proposed to

handle exploration and exploitation to optimize parameters for

maximum yield. Sujatha et al. (2023) proposed a soil fertility

classification and fertilization method based on the one-

dimensional convolutional neural network. It utilized 1D-CNN to

classify soil based on fertility. Classification results were used to

specify fertilizers for rice, areca nut, and black/green grams. It also

adopted the MinMax normalization and Synthetic Minority

Oversampling Technology (SMOTE) to improve the classification

efficiency. Lucas et al. (Benedet et al., 2021) used X-ray fluorescence

(pXRF) spectrometer to analyze the fertility and element content of

1,975 different soil samples and used a random forest algorithm to

establish a spatial distribution model of soil fertility characteristics

to achieve soil fertility prediction.

Although the above studies has achieved good results in precise

fertilization for some crops, but they are used for other crops and

cannot be used for durian because the durian has higher

requirements for the growth environment and is quite different

from other crops,which is relianced on the information technology

infrastructure and the difficulty of equipment maintenance. These

methods are mainly the fertilizer effect and nutrient balance. The

former has a complex nonlinear relationship between the soil

fertilizer amount and multiple soil factors, which does not

consider the soil nutrient content. The nutrient balance method

needs to keep the dynamic balance, which is corrected. The

difficulty of the coefficient is higher. Dong et al. (2020) proposed

a method for precise corn fertilization based on wavelet BP neural

network, which used wavelet decomposition and reconstruction

methods to calculate the yield. However, the combination of wavelet

analysis and BP neural network increases the complexity of the

model, requiring more computing resources and time for training

and verification. Thus, this study proposes an Improved Radial

Basis Neural Network Algorithm (IM-RBNNA) in the durian

precision fertilization. It extracts and processes the soil sample

data and introduces the gray wolf algorithm to improve the

Improved Radial Basis Neural Network Algorithm (IM-RBNNA)

for calculating the weight ratio, fertilizer amount, and yield of

nitrogen, phosphorus, and potassium fertilizers (Song et al., 2020).

By comparison, it shows that the IM-RBNNA algorithm can predict

the relationship between durian soil nutrient content and yield,

which allows durian managers to carry out scientific fertilization

based on the prediction results. It reduces fertilizer waste and

production costs, achieving sustainability durian planting.
2 Algorithms and models design

2.1 Radial basis neural network algorithm

RBNNA is a forward neural network with good performance. It

maps nonlinear problems to linear space, transforms them into the

adaptive algorithm processing, and maintains the high accuracy and

efficiency of the algorithm. RBNNA is a three-layer feedforward

neural network consisting of an input, hidden, and output layer
frontiersin.org
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(Wang et al., 2023). The input layer is the node that receives the

original input data, and each node corresponds to the input feature.

The hidden layer is a set of nodes for radial basis functions, which is

used to measure the distance between input data and some centers.

The output layer produces the final output, which is a linear layer

that combines the outputs of the hidden layers. Figure 1 shows the

prediction process of the RBNNA algorithm. The core of RBFNN

lies in the radial basis function of the hidden layer, which is a

Gaussian or other symmetric function. Gaussian is one of the radial

basis functions, which is expressed by Equation 1:

Gs(r) = exp( − r − osj j2=2s 2
s ) (1)

In Equation 1,  Gs(r) represents the output of the s-th basis

function, os represents the center of the basis function, and s2
s

represents the width parameter.
2.2 Gray wolf algorithm

The gray wolf algorithm is a meta-heuristic algorithm proposed

by Mirjalili et al (Li et al., 2021), which is derived from gray wolves’

social hierarchy and hunting strategy. In this algorithm, the

population is divided into levels A–D. Wolves A control all

actions of the wolf pack, which are the supreme leader of the wolf

pack. Wolves B assist wolf A in making some decisions, which are

some experienced wolves (Xu et al., 2023). Wolves C are responsible

for the reconnaissance of the wolf pack, which are responsible for

guarding and caring cubs. Wolves D belong to the lowest level of

gray wolves and obey the commands of gray wolves from other

classes, which are accounting for the vast majority. The best wolves

are A, B, and C. They help wolves D to find the favorable area

(Verma et al., 2022). First, the wolves need to locate their prey and

surround it. The process is shown in Equation 2:

Dist = N �Wj(k) −W(k)
�
�

�
� (2)

In Equation 2, D represents the distance between the gray wolf

and the prey, N represents the coefficient vector, Wj(k) represents

the position vector of the prey, W(k) represents the position vector
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of the gray wolf, and k represents the number of iterations. The

position of k +1 wolves is shown in Equation 3:

W(k + 1) = Wj(k) −M � Dist (3)

In Equation 3, M represents the coefficient vector; other

parameters have the same meaning as Equation 2. N represents

the calculation process of the coefficient vector sum, which is shown

in Equations 4, 5:

M = 2w � p1 − w (4)

N = 2p2 (5)

In Equations 4, 5, w represents the convergence factor, which

decreases linearly from 2 to 0 as k increases; p1   and p2 represent the

random number with a value range of (0,1). When the prey is

surrounded, the wolves start hunting. The hunting process is

carried out under the leadership of wolves A, B, and C. They

guide wolves D to track the prey location. The calculation process is

as shown in Equations 6–8:

A(Dist) = N1 �Wa −Wj j (6)

B(Dist) = N2 �Wb −Wj j (7)

C(Dist) = N3 �Wc −Wj j (8)

In Equations 6–8, A(Dist), B(Dist), and C(Dist) represent the

distance between the three wolves and other individuals; Wa, Wb,

and Wc represent the current positions of the three wolves; N1, N2,

and N3 represent the random vectors; andW represents the current

position of the gray wolf. The vectors of wolves D in the wolf pack

moving toward wolves A, B, and C are represented byW1,W2, and

W3. The calculation process is as shown in Equations 9–11:

W1 = Wa −M1 � A(Dist) (9)

W2 = Wb −M2 � B(Dist) (10)

W3 = Wc −M3 � C(Dist) (11)
B

A

FIGURE 1

The prediction process of the RBNNA algorithm.
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In Equation 9, Equation 10, Equation 11, according to the

calculation results ofW1,W2, andW3, the final position of wolves D

can be determined. The calculation process is shown in Equation

12:

D(Dist) = (W1 +W2 +W3)=3 (12)

Finally, the hunt is completed by attacking the prey when it

cannot move. The processing of gray wolf algorithm is shown

in Figure 2.
2.3 Improved radial basis neural
network algorithm

In order to enhance the predicting accuracy of the RBNNA

algorithm, this study proposes an IM-RBNNA algorithm. It uses the

gray wolf algorithm to optimize the weights and thresholds of the

RBNNA algorithm so that the weights and threshold are optimal.

When the output result is different from the expected value, the

principle of backpropagation is used to optimize. The threshold and

weight of the gray wolf algorithm are used as the weight and

threshold of the RBNNA algorithm (Liu and Wang, 2020). The

relative error value between the predicted and true value of soil

nutrient content is used as the fitness value. The continuous

iterative update of the gray wolf algorithm is used to adjust the

weights and thresholds of the RBNNA algorithm. The advantages

with better global effects can improve the model’s prediction

accuracy (Feng et al., 2023). Figure 3 shows the processing of the

gray wolf algorithm for optimizing the RBNNA algorithm.
3 Experimental design

3.1 Experimental environment

This study is conducted in Area 2 of a durian orchard in

Penang, Malaysia. It is located in Sungai Pinang Balik Pulau,

Penang, which coveres an area of 3,200 acres. The rows of

planting density is 5.0 m × 4.0 m. Every acre has 30 plants. The

durian trees in this area are all in the peak production period of 15–

20 years. During this period, the durian trees have fully developed,

so the canopy is dense, which can produce more durian fruits. This

area has a tropical rainforest climate, with an average annual

temperature of 28°C, an average annual precipitation of 2,525.3
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mm, and an annual sunshine count of 2,076.9 h. The study area has

significant spatial differences in the growth and yield of durian,

which is suitable for the precise fertilization, so this site is chosen to

study the precise fertilization. Four experiments are set up in the

research area to verify the differences of soil fertility under different

algorithms (Portela et al., 2011). From west to east are areas A, B, C,

and D, which are used for experiments on different fertilization

decision-making methods. Each area is 5 acres. In this plantation

soil, the alkaline hydrolyzed nitrogen is 21.5 ± 3.0 mg/kg (low), the

available phosphorus is 47.1 ± 0.6 mg/kg (high), the available

potassium is 117.7 ± 20.9 mg/kg (low), and the pH is 7.6 ± 0.1

(alkaline). All plots are used for unified measures. Figure 4 shows

the design of soil sampling locations for this experiment.
3.2 Data extraction and processing

In order to get the nutrient information of durian soil, five

samples are collected within 20 m of the sampling center in each

sampling point. The corresponding network of the plot is

determined by using manual measurement. The plum blossom

sampling method is used in each grid (Zhou and Staver, 2019).

Five points of the soil sampling samples are mixed into labeling

bags, which have 5,000 sampling points and 150 plots. The

sampling time is from February to August 2022. The sample

depth is 0–20 cm. These samples are mixed and labeled as soil

samples at that point. RTK (real-time kinematic) is used to collect

and record the longitude and latitude of the sample point. After the

soil samples are naturally air-dried and sieved, the pH is measured

to use an electrode method with a water-to-soil volume ratio of 1:1;

the organic matter is measured to use the dichromic acid. The

potassium method is used to measure the total nitrogen; the copper

sulfate digestion method is used to measure the total nitrogen; and

the available phosphorus is measured to use the suitable method for

neutral and calcareous soils. The soil is measured to use the sodium

bicarbonate; the available potassium is measured to use the flame

photometry. The fertilizer amount is calculated based on the soil

nutrient data, which is obtained from laboratory tests (Liu and

Feng, 2017) by using the fertilizer balance model of the target yield

method. The physical and chemical properties of the soil are

measured through the above laboratory methods to obtain the

various nutrient data for each plot (Kim, 2018). Table 1 shows

the nutrient data of some sampling points in the durian orchard.
Start
Initialize the position of the wolf 

pack and the value of A,B,C wolf

Calculate the fitness 

value of each gray wolf

Update the individual position of the gray wolf 

and determine the values of Wa, Wb and Wc
Update the value of A,B,C wolf

End
Whether the Number of generations have 

Reached the maximum iteration?
Yes

No

FIGURE 2

The processing of gray wolf algorithm.
Start
Set the parameters M,N,K,j,w,p of 

the gray wolf algorithm

Initialize gray wolf 

population W(k)

Set the structure of RBNNA  

Algorithm 

Calculate the fitness value of each 

gray wolf position W(k) (k=1,···,d)
Select the three best gray 

wolves A, B and C

Update the position of the D gray wolf through 

the three optimal gray wolf A, B and C

Select the three best gray 

wolves A, B and C

The optimal gray wolf alpha is used as the weight and threshold 

of the RBNNA  Algorithm to establish a prediction model

Predict the remaining nitrogen content of soil 

using the optimized RBNNA  Algorithm model
End

Has the number of iterations reached the 

maximum iteration K?

Calculate the fitness value of each 

gray wolf position W(k) (k=1,···,d)

No

Yes

FIGURE 3

The processing of the gray wolf algorithm for optimizing the
RBNNA algorithm.
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The nutrient contents of alkaline hydrolyzable nitrogen,

available phosphorus, and available potassium in the soil vary

greatly. For example, the potassium is approximately 200 mg/kg,

but the phosphorus is approximately 10 mg/kg. When the cluster

analysis is performed, the impact of available phosphorus is almost

negligible, which is difficult not to meet the requirements of the soil

similarity calculation. In order to solve these problems, this study

standardized the data by using the same standard. The normal

standardization subtracts each attribute of each data object from the

average value of the attribute and then divides it by the variance of

the attribute (Mykhailenko et al., 2020). The data standardized by

this method reach the standard normal distribution. The data have

a mean of 0 and a variance of 1, which is shown in Equation 13.

Hi = (Hi − R)=ah (13)

In Equation 13, Hi represents the i-th standardized data

attribute value, Hi represents the i-th data attribute value to be

standardized, R represents the mean value of the attribute, and ah
Frontiers in Plant Science 05
represents the variance of the attribute. The standardized value of

the soil nutrient content is calculated. Table 2 shows the

standardized results of the soil nutrient data in Table 1.
3.3 Model establishment and evaluation

The Inter@core i7–9700K processor was used in this study, the

graphics card is NVIDIA Geforce GTX3080 32GB, the memory is

64GB, the operating system is Ubuntu19.04 64-bit, the deep

learning framework is Pyotrch1.9.2, the programming language is

Python3.7.1, the integrated development environment is

PycharmCE2023, and the drawing tool is Matplotlib 3.1.0. In

order to ensure that the data distribution is representative, this

study trains 5,000 samples according to the validation set =7:3,

which is divided in 3,500 training and 1,500 validation sets. The

deep learning network algorithm needs to preset hyperparameters

before training, so this study set the hyper parameters to batch after
FIGURE 4

The design of soil sampling locations for this experiment.
TABLE 1 The nutrient data of some sampling points in the durian orchard.

Plot

Alkaline
hydrolysis
nitrogen N
(mg/kg)

Available
phosphorus
P (mg/kg)

Available potassium
K (mg/kg)

P application
amount
(kg/ha)

Amount of
N
application
(kg/ha)

Amount
of K
application
(kg/ha)

Actual
output (kg)

2-A1 22.74 5.23 64.1 162.61 76.39 167.05 162.65

2-A2 22.53 6.4 60.8 170.53 82.66 180.97 153.81

2-A3 20.78 5.95 66.17 188.64 79.85 171.99 160.81

2-A4 23.52 5.62 74.65 170.2 86.42 177.48 178.93

2-A5 21.89 8.59 77.06 170.52 72.53 184.26 173.38

2-B1 22.68 5.92 58.27 177.08 73.94 179.42 165.55

2-B2 20.01 7.18 63.35 158.52 80.09 174.23 185.35

2-B3 22.36 6.08 85.2 165.77 88 183.21 157.33

2-B4 24.74 5.92 71.92 161.47 75.21 169.92 163.21

2-B5 24.92 7.64 79.59 182.95 84.26 181.62 182.03
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comparison. The number of samples is 6, the epoch is 100, the

learning rate optimizer uses the SGD algorithm (Stochastic

Gradient Descent) (Thuwajit et al., 2021) to update the weights,

the initial learning rate is 0.01, the learning rate decay is 0.001, the

activation function uses the Sigmoid function, and the model

classifier uses SVM (support vector machine) (Dou et al., 2023).

This study uses the mean relative error (MAPE), the mean

absolute error (MAE), and the coefficient of determination ( R2) to

evaluate the performance of the IM-RBNNA and other similar

algorithms (Li et al., 2020). The MAPE is used to calculate the

relative difference between the actual and predicted values. MAPE is

used to calculate the percentage error of each observed value relative

to the actual value and then averages it. The smaller the value of

MAPE, the better the model’s performance. The MAE is used to

calculate the average of the absolute differences between actual and

predicted values. The R2 measures how well a model fits the data

and represents the model’s ability to explain the variation in the

dependent variable. In these calculation formula, Uj represents the

actual value of the soil nitrogen content; Uj represents the predicted

average value of the soil nitrogen content; and U represents the

predictive value of the soil nitrogen content. t represents the

number of samples. The calculation formula is Equations 14–16,

which are as follows:

f (mape) =
1
t o

t
j=1

Uj − Uj

Uj

�
�
�
�
�

�
�
�
�
�
� 100 (14)

f (mae) =
1
t o

t
j=1 Uj − Uj

�
�

�
� (15)

f (R2) = 1 −o
t
j=1(Uj − Uj)

2

ot
j=1(Uj − �U)2

(16)

The target yield is the key to durian ferti l ization

recommendations. This study uses the multiple linear stepwise
Frontiers in Plant Science 06
regression methods to determine the durian yield (Sardoei et al.,

2023). It determines an initial set containing multiple independent

variables and builds a multiple regression formula that does not

include this factor. It will run until no more independent variables X

can be introduced. The soil nutrient content of the alkaline

hydrolyzable nitrogen, available phosphorus, and available

potassium are important factors to affect the durian yield, which

is relatively in line with the requirements of the above method. The

calculation process of the model is shown in Equation 17:

Y = e0 + e1 � X1 + e2 � X2 +… + ez � Xz (17)

In Equation 17, X represents the independent variable, Y

represents the dependent variable, z represents the number of

independent variables, and e represents the regression coefficient

of each variable. The training of the multiple linear stepwise

regression algorithm in this study is conducted in IBMSPSS

Statistics 25.
3.4 Experimental results

In order to compare the performance of the IM-RBNNA

algorithm, this study introduces three methods for comparison:

the RBNNA, Backpropagation Neural Network (BPNN) (LI et al.,

2019), and Nutrient Balance Calculation Algorithm (NUBCA)

(Nannan et al., 2021). The NUBCA algorithm keeps balance

between the plants receiving adequate nutrients and their nutrient

needs with the available nutrients in the soil. The BPNN algorithm

builds the relationship between the plant growth and soil

conditions, which uses the backpropagation algorithm for model

training and reduces prediction errors by adjusting the weights and

biases. This experiment also measures the performance of the four

algorithms from three indicators: mean absolute percentage error

(MAPE), mean absolute error (MAE), and coefficient of

determination( R2).
TABLE 2 The standardized results of the soil nutrient data in Table 1.

Plot

Standardized
alkaline

hydrolysis
nitrogen

Standardized
available

phosphorus

Standardized
available
potassium

Standardized
application
amount

Standardized
dosage

Standardized
application
amount

Standardized
measured

yield

2-A1 −0.29 −0.77 −0.61 −0.39 −0.33 −0.41 −0.38

2-A2 −0.30 −0.06 −0.83 −0.31 −0.15 −0.24 −0.48

2-A3 −0.52 −0.33 −0.45 −0.10 −0.21 −0.35 −0.24

2-A4 −0.05 −0.55 0.14 −0.32 0.10 −0.14 0.38

2-A5 −0.36 1.37 0.32 −0.31 −0.57 0.06 0.24

2-B1 −0.31 −0.37 −1.17 −0.22 −0.49 −0.08 −0.16

2-B2 −0.72 0.20 −0.69 −0.53 0.08 −0.24 0.58

2-B3 −0.17 −0.23 1.24 −0.38 0.35 0.04 −0.62

2-B4 0.26 −0.37 0.00 −0.47 −0.30 −0.52 −0.36

2-B5 0.29 0.44 0.62 −0.12 0.23 0.25 0.52
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3.4.1 The prediction of alkaline hydrolyzable
nitrogen in the soil content

Figure 5 shows the comparative distribution of predicted

alkaline hydrolyzable nitrogen of each algorithm. It shows that

the maximum, minimum, and average values predicted by the IM-

RBNNA algorithm are 97.02 mg/kg, 65.31 mg/kg, and 80.74 mg/kg.

The maximum, minimum, and average values in the real soil

content are 99.70 mg/kg, 62.93 mg/kg, and 80.50 mg/kg,

respectively. Table 3 shows the performance of different

algorithms in predicting soil alkaline hydrolyzable content. By

comparing the RBNNA, NUBCA, and BPNN algorithms, the

MAPE value of the IM-RBNNA algorithm is 1.61%, which is

reduced by 69.41%, 80.26%, and 66.60%; the MAE value of the

IM-RBNNA algorithm is 1.403, which is reduced by 57.34%,

76.38%, and 57.99%; and the R2   value of the IM-RBNNA

algorithm is 0.977, which is increased by 8.23%, 28.10%, and

11.17%. It shows that the IM-RBNNA algorithm is more stable

than the other three algorithms, which has a smaller fluctuation

amplitude, and is closer to the 0-bit horizontal axis. Its prediction

effect is better than the other three algorithms, so it can more

accurately predict the alkaline hydrolyzable content of durian soil,

which is convenient for durian farmers to precise fertilize.
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3.4.2 The prediction of available phosphorus in
the soil content

Figure 6 shows the comparative distribution of predicted

available phosphorus of each algorithm. It shows that the

maximum, minimum, and average values predicted by the IM-

RBNNA algorithm are 41.93 mg/kg, 15.12 mg/kg, and 29.76 mg/kg.

The maximum, minimum, and average values in the real soil

content is 39.67 mg/kg, 18.30 mg/kg, and 29.20 mg/kg,

respectively. Table 4 shows the performance of different

algorithms in predicting soil available phosphorus content. By

comparing the RBNNA, NUBCA, and BPNN algorithms, the

MAPE value of the IM-RBNNA algorithm is 10.46%, which is

reduced by 35.04%, 47.73%, and 21.66%; the MAE value of the IM-

RBNNA algorithm is 3.641, which is reduced by 20.65%, 44.86%,

and 24.00%; and the R2   value of the IM-RBNNA algorithm is

0.835, which is increased by 16.77%, 46.66%, and 18.89%. It shows

that the IM-RBNNA algorithm is more stable than the other three

algorithms, which has a smaller fluctuation amplitude and is closer

to the 0-bit horizontal axis. Its prediction effect is better than the

other three algorithms, so it can more accurately predict the

available phosphorus content of durian soil, which is convenient

for durian farmers to precise fertilize.
TABLE 3 The performance of different algorithms in predicting soil alkaline hydrolyzable content.

Algorithm name
Error index RBNNA NUBCA BPNN IM-RBNNA

MAPE 5.26% 8.17% 4.82% 1.61%

MAE 3.097 5.94 3.696 1.403

R2 0.903 0.762 0.877 0.977
FIGURE 5

The comparative distribution of predicted alkaline hydrolyzable nitrogen of each algorithm.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1387977
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2024.1387977
3.4.3 The prediction of available potassium in the
soil content

Figure 7 shows the comparative distribution of predicted

available potassium of each algorithm.. It shows that the

maximum, minimum, and average values predicted by the IM-

RBNNA algorithm are 307.73 mg/kg, 157.10 mg/kg, and 228.11 mg/

kg. The maximum, minimum, and average values in the real soil

content are 307.31 mg/kg, 158.38 mg/kg, and 229.62 mg/kg,

respectively. Table 5 shows the performance of different

algorithms in predicting soil available potassium content. By

comparing the RBNNA, NUBCA, and BPNN algorithms, the

MAPE value of the IM-RBNNA algorithm is 10.46%,which is

reduced by 34.95%, 84.36%, and 29.74%; the MAE value of the

IM-RBNNA algorithm is 3.641, which is reduced by 13.20%,

21.44%, and 4.20%; and the R2   value of the IM-RBNNA

algorithm is 0.835, which is increased by 8.62%,18.32%, and

4.58%. It shows that the IM-RBNNA algorithm is more stable

than the other three algorithms, which has a smaller fluctuation

amplitude and is closer to the 0-bit horizontal axis. Its prediction

effect is better than the other three algorithms, so it can more

accurately predict the available potassium content of durian soil,

which is convenient for durian farmers to precise fertilize.
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3.4.4 Prediction of the relationship between soil
nutrients and yield

In this study, the multiple linear stepwise regression method

determines the fertilizer amount and target yield predicted by four

algorithms: RBNNA, NUBCA, BPNN, and IM-RBNNA. The

predict time is the annual output of each mature durian tree from

2013 to 2022. The MAPE, MAE, and R2 between the four

algorithms and the real yield is calculated based on the historical

data. In Figure 7, the maximum, minimum, and average values

predicted by the IM-RBNNA algorithm is 297.75kg/tree, 177.58 kg/

tree, and 224.58 kg/tree, respectively. The maximum, minimum,

and average values in the real yield is 302.32 kg/tree, 175.87 kg/tree,

and 219.21 kg/tree, respectively. Table 6 shows the performance of

different algorithms in predicting the durian yield. By comparing

the RBNNA, NUBCA, and BPNN algorithms, the MAPE value of

the IM-RBNNA algorithm is 8.28%, which is reduced by 45.09%,

49.13%, and 49.67%; the MAE value of the IM-RBNNA algorithm is

18.56, which is reduced by 41.18%, 43.94%, and 42.22%; and the R2  

value of the IM-RBNNA algorithm is 0.934, which is increased by

14.99%, 21.56%, and 21.08%. It shows that the yield predicted by the

IM-RBNNA algorithm based on soil nutrient fertilization is closer

to the true value, which helps durian farmers understand the
FIGURE 6

The comparative distribution of predicted available phosphorus of each algorithm.
TABLE 4 The performance of different algorithms in predicting soil available phosphorus content.

Algorithm name
Error index RBNNA NUBCA BPNN IM-RBNNA

MAPE 16.09% 19.99% 13.36% 10.46%

MAE 5.061 6.306 4.781 3.641

R2 0.715 0.572 0.702 0.835
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relative contributions of alkali-hydrolyzable nitrogen, available

phosphorus, and available potassium to the durian yield. It also

makes reasonable decisions based on the prediction results to

achieve the goal of maximizing yields.
4 Discussion

Although the IM-RBNNA algorithm proposed in this study

provides an advanced method for precise durian fertilization, it has

some limitations. It is highly dependent on the quality and detail of

input data, such as soil nutrient levels and historical yields. Poor

data quality or insufficient data volume can significantly reduce the

predictive accuracy of the model. However, the comprehensive

collection of soil samples and yield data in different growing

seasons requires a large cost, so the algorithm needs to be applied

for a period of time to gradually improve the accuracy. In addition,

the study did not take into account the impact of environmental

factors such as soil temperature and humidity, pests, and diseases

on durian yield. Take soil moisture as an example; it is an important

component of the terrestrial water cycle, which affects the surface
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material exchange, energy balance, and durian yield (Fang

et al., 2020).

In order to improve the yield prediction of the IM-RBNNA

algorithm, subsequent studies will collect the soil moisture data and

measure it with the TZS-IIW200 soil moisture meter. After setting

the sampling points in the laboratory, the field sampling is carried

out, and the soil moisture is measured. The latitude and longitude of

the sampling points are recorded. The soil moisture data at two

different depths of 0–5 cm and 15–20 cm are obtained. The typical

slopes of durian topographic undulating sections will be selected.

The soil temperature and humidity sensors will be deployed (see

Figure 8), which obtains soil data at two soil depths of 0–20 cm and

20–30 cm. Two underground plots will be installed. There are 14

sensors, from south to north numbered in sequence. The soil

temperature and humidity sensor is TESLA-600. The soil

moisture testing accuracy is ± 1%, the soil temperature testing

accuracy is ± 0.3°C, and the soil conductivity testing accuracy is ±

2%. The sensor has built the wireless network transmission, which

transmits data every hour, works around the day, and records the

environmental information in real time. Figure 9 shows the nutrient

and soil temperature and moisture sensors.
FIGURE 7

The comparative distribution of predicted available potassium of each algorithm.
TABLE 5 The performance of different algorithms in predicting soil available potassium content.

Algorithm name
Error index RBNNA NUBCA BPNN IM-RBNNA

MAPE 11.39 15.56 10.95 8.44

MAE 21.01 22.54 19.34 18.56

R2 0.838 0.749 0.875 0.917
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In addition, climatic conditions play a vital role in durian

production, which includes temperature, humidity, rainfall, and

sunlight exposure. For example, temperature is the key factors to

the durian growth and fruit development. Warm temperatures is

the best environment in for growth durians. The warmer climate

aids the flower formation and fruiting process, which increases

durian yields (Amran et al., 2023). The proper humidity helps
Frontiers in Plant Science 10
durian plants thrive and enhances pollination, which is crucial for

fruit formation. Additionally, durian trees require consistent and

evenly distributed rainfall, especially during critical growth stages.

The insufficient rainfall causes water stress, which affects the

development of flowers and fruits. The excessive rainfall causes

waterlogged soil, which affects the root health and nutrient uptake.

Finally, sunlight is the key factor affecting photosynthesis. The
FIGURE 8

Comparative distribution of predicted values and real values of each algorithm.
BA

FIGURE 9

The nutrient and soil temperature and humidity sensor.
TABLE 6 The performance of different algorithms in predicting soil potassium content.

Algorithm name
Error index RBNNA NUBCA BPNN IM-RBNNA

MAPE 15.08 16.29 16.44 8.28

MAE 31.56 33.16 32.14 18.56

R2 0.812 0.769 0.767 0.934
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adequate sunlight is crucial for the healthy growth of durian trees.

The insufficient light may weaken the photosynthetic activity,

which affects the overall vigor and yield. Through comprehensive

training of the above factors and combined with the IM-RBNNA

algorithm, the complex relationship between climate conditions

and durian yield can be explored, and fertilization strategies can be

adjusted according to meteorological changes and soil conditions in

different periods. It will help the address climate change, which

improves agricultural production capabilities and scientific

accuracy of fertilization decisions.
5 Conclusions

This study proposes an IM-RBNNA algorithm for the durian

precision fertilization. It introduces the gray wolf algorithm to

optimize the weights and thresholds of the RBNNA algorithm to

enhance the ability to search for optimal solutions and prediction

accuracy. It is compared with the RBNNA, NUBCA, and BPNN

algorithm. The experimental results show that the IM-RBNNA

algorithm is better than the other three algorithms in predicting

alkaline hydrolyzable nitrogen, available phosphorus, and available

potassium of the soil content. The prediction results between soil

nutrients and yield are closer to the true values. The IM-RBNNA

algorithm ensures that durian trees obtain the appropriate amount

of nutrients and avoid the problem of excess or insufficient

nutrients. It helps durian farmers to make the scientific planting

plans and management strategies, which can improve the soil

fertility utilization. It also reduces production costs and avoids

resource waste, which maximizes the growth potential of durian

and improves the economic benefits of durian planting.
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