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Plants have evolved interconnected regulatory pathways which enable them to

respond and adapt to their environments. In plants, stress memory enhances

stress tolerance through the molecular retention of prior stressful experiences,

fostering rapid and robust responses to subsequent challenges. Mounting

evidence suggests a close link between the formation of stress memories and

effective future stress responses. However, the mechanism by which

environmental stressors trigger stress memory formation is poorly understood.

Here, we review the current state of knowledge regarding the RNA-based

regulation on stress memory formation in plants and discuss research

challenges and future directions. Specifically, we focus on the involvement of

microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs

(lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs

regulate target genes via post-transcriptional silencing, while siRNAs trigger

stress memory formation through RNA-directed DNA methylation (RdDM).

lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-

mRNAs is crucial to plant stress memory. Unraveling the mechanisms

underpinning RNA-mediated stress memory formation not only advances our

knowledge of plant biology but also aids in the development of improved stress

tolerance in crops, enhancing crop performance and global food security.
KEYWORDS

stress memory, environmental stresses, microRNA, small interfering RNA, long
noncoding RNA, alternative splicing
Introduction

As sessile organisms, plants must respond and adapt to fluctuating, and sometimes

near-lethal, environmental conditions over their entire lifespan (Trivedi et al., 2020; Zhang

et al., 2022). To endure adverse environmental conditions, plants have evolved stress

tolerance mechanisms, including the establishment of a “stress memory” (Crisp et al., 2016;
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Hilker and Schmülling, 2019; Liu et al., 2022). Stress memory is

formed through transient exposure to mild or severe stress and

allows primed plants to respond robustly and swiftly to subsequent

stressors, facilitating their recovery (Crisp et al., 2016; Liu et al.,

2022). Understanding how plants stress memory works is crucial

for improving crop resilience and productivity, which can help

ensure food security in the face of changing environmental

conditions and growing global food demands.

Following the initial stress exposure, stress memory modulates

the expression of key genes through epigenetic modifications such

as chromatin re-modelling, DNA methylation, nucleosome

positioning, histone modification, and non-coding RNA-mediated

regulation (Liu et al., 2022). In addition, a growing body of evidence
Frontiers in Plant Science 02
suggests that stress memory involves RNA-mediated regulation via

gene silencing and/or activation (Crisp et al., 2016). Here, we review

the roles played by diverse RNAs in plant stress memory by

summarizing recent research advances and providing generalized

examples. MicroRNAs (miRNAs) and small interfering RNAs

(siRNAs) are involved in plant stress memory via post-

transcriptional gene silencing and RNA-directed DNA

methylation, respectively (Song et al., 2019; Li et al., 2020). Long

non-coding RNAs (lncRNAs) and alternative splicing (AS) also play

crucial roles in stress memory (Ohama et al., 2017; Chaudhary et al.,

2019; Yu et al., 2019; Ling et al., 2021). Finally, we investigate the

mechanisms of RNA-mediated stress memory in plants and suggest

possible future research directions (Table 1).
TABLE 1 A summary of RNA-based Regulation on Plant Stress Memory.

Gene Specie
Stress

responses Type Function References

miR156 Arabidopsis Heat miRNA
miR156-SPL module mediates the response to recurring
heat stress.

(Cho et al., 2012; Stief et al.,
2014a, Stief et al., 2014b)

miR824
Arabidopsis,
Brassicaceae Heat miRNA

miR824/AGAMOUS-LIKE16 module integrates recurring
heat stress. (Szaker et al., 2019)

miR168 Brassica Heat miRNA
Altered expression of miR168 in parental B. rapa plants exposed
to heat stress and in the untreated progeny. (Bilichak et al., 2015)

Tae-miR531_L-2 Wheat Drought miRNA
Overexpression of the tae-miR531_L-2 improves the
drought tolerance. (Yue et al., 2022)

Osa-miR168a-
3p_L-3, ata-
miR169-3p wheat

Water-
Deficit, Heat miRNA

transgenerational effects of water-deficit and heat stress in the
same genotypes. (Liu et al., 2020)

miR398, miR408 coffee Drought miRNA
miR398 and miR408 were up-regulated by the drought cycles
in coffee. (Guedes et al., 2018)

Ttu-miR160 Wheat Water-deficit miRNA
Small RNAs and their targets are associated with the
transgenerational effects of water-deficit stress. (Liu et al., 2021)

siR255, siR1511 Arabidopsis Heat siRNA
SGIP1-mediated SGS3 degradation leads to inhibited biosynthesis
of trans-acting siRNA. (Liu et al., 2019)

ONSEN-
specific siRNAs Arabidopsis Heat siRNA

siRNA-related pathway mediated ONSEN transcriptional
activation and ONSEN transposition serves as a transgenerational
form of heat stress memory.

(Ito et al., 2011; Matsunaga
et al., 2012, Matsunaga
et al., 2015)

TCONS_00028567 Rice Drought IncRNA IncRNA participate in rice short-term drought memory. (Li et al., 2019)

XLOC_033252 Switchgrass Dehydration IncRNA
The levels of IncRNAs increased in both the first and second
drought cycles. (Zhang et al., 2018)

COOLAIR Arabidopsis Cold IncRNA

COOLAIR in the coordinated switching of chromatin states that
occurs during cold, linking transcriptional shutdown with
epigenetic silencing.

(Csorba et al., 2014: Nielsen
et al., 2024)

COLDAIR Arabidopsis Cold IncRNA
COLDAIR is required for establishing stable repressive chromatin
at FLC through its interaction with PRC2.

(Heo and Sung, 2011; Kim
and Sung, 2017; Kim and
Sung, 2017)

COLDWRAP Arabidopsis Cold IncRNA

COLDWRAP is derived from the repressed promoter of FLC and
is necessary for the establishment of the stable repressed state of
FLC by vernalization.

(Kim and Sung, 2017; Kim
and Sung, 2017)

RSZ22, RZIA Pinus Heat
Alternative
Splicing

Stress-responsive AS events participate in the establishment of
long-term thermos- memory (Roces et al., 2022)

HSFBI,
HSFB2a, HSFA2 Arabidopsis Heat

Alternative
splicing AS may contribute to heat stress-induced memory

(Ling et al., 2018; Sanyal
et al., 2018)
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The role of miRNAs in plant
stress memory: post-
transcriptional silencing

In plants, miRNAs regulate gene expression and/or silencing by

binding to complementary sequences within target messenger

RNAs (mRNAs), resulting in translational repression and/or

transcript degradation (Sunkar et al., 2012; Ha and Kim, 2014).

miRNAs are critical for regulating plant growth and reproduction,

as well as biotic and abiotic stress responses (Wang et al., 2009;

Zhao et al., 2019; Liebsch and Palatnik, 2020; Li et al., 2023; Xu et al.,

2023). Recent research suggests that miRNAs may also be key

regulators of plant stress memory. Specifically, miRNAs can

respond quickly to environmental and developmental cues via the

post-transcriptional silencing of stress-responsive target

genes (Figure 1A).

Most recently, improved high-throughput sequencing

techniques have revealed the close relationship between miRNAs

and stress memory. With drought pretreatment, 195 miRNAs,

including 186 drought memory-specific and nine significantly
Frontiers in Plant Science 03
differentially expressed shared miRNAs, were identified as

candidate drought memory-related miRNAs in wheat (Triticum

aestivum) (Yue et al., 2022). In Arabidopsis thaliana, overexpression

of the wheat drought memory-related miRNA tae-miR531_L-2

significantly improves drought tolerance in transgenic plants (Yue

et al., 2022). A recent study of the miRNAome of wheat seedlings

subjected to water deficit and heat stress revealed the long-term

impact of stress on plant physiology and gene regulation and

suggested that miRNAs and their target genes play important

roles in transgenerational stress adaptation (Liu et al., 2020). In

coffee (Coffea arabica) subjected to repeated cycles of drought, the

transcriptional levels of miRNA-guide stress-related genes are

different, which exhibit distinct transcriptional memory behavior

(Guedes et al., 2018). Specifically, their complex regulation of target

V-myb myeloblastosis viral oncogene (MYB) homologs highlights

the crucial role of MYB at the crossroads of plant miRNA-mediated

stress memory (Guedes et al., 2018).

Recent work has also revealed that multiple miRNAs participate

in heat stress memory (Stief et al., 2014b). Mutant plants with

impaired small RNA (sRNA) biogenesis, specifically ago1

(Argonaute1) and dcl1 (Dicer-like1) mutants, are unable to
FIGURE 1

The role of RNA-based regulation in plant stress memory. Under nonstress conditions, miRNAs, siRNAs, lncRNAs, and alternative splicing are
essential for plant growth and development. (A) Under heat stress, miR156 expression is induced and SPL genes are post-transcriptionally
downregulated, affecting the expression of heat stress memory-related genes. Parallel to miR824 induction, its target AGL16 is decreased. AGL16
downregulation in response to heat leads to a fine-tuning of FT. (B) Heat stress upregulates HSFA2, which activates SGIP1 to trigger the
transgenerational degradation of SGS3, leading to the suppression of tasiRNA biosynthesis. The reduced tasiRNA levels converge to activate HTT5. In
addition, siRNA-mediated regulation and the initiation of transgenerational transposition of ONSEN are involved in heat stress memory. (C) Winter
cold triggers high levels of H3K27me3 at FLC mediated by the PRC2 complex. lncRNAs, including COOLAIR, COLDAIR, and COLDWRAP, are
important for FLC repression. COOLAIR decreases H3K36me3 at FLC; COLDAIR recruits PRC2 and promotes FLC repression; and COLDWRAP may
help PRC2 spread to the FLC promoter and stabilize H3K27me3. (D) Exposure to sub-lethal heat stress results in the priming of plants, which
establishes splicing-linked heat-stress memory. This heat priming executes correct splicing and ensures the functional RNA/proteins resulting in an
effective adaptive response that ensures the survival of plants.
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acquire thermotolerance, indicating that heat stress memory

requires miRNA intermediation (Stief et al., 2014a). Isoforms of

miR156 are highly-induced following exposure to heat stress, and

repression of their target genes SQUAMOSA promoter binding

protein-like 2 (SPL2) and SPL11, which is required for the

transcriptional induction of heat stress memory genes, including

ASCORBATE PEROXIDASE 2 (APX2) , HEAT STRESS

ASSOCIATED 32 (HSA32), HEAT SHOCK TRANSCRIPTION

FACTOR A2 (HSFA2), HEAT SHOCK PROTEIN 17.6A

(HSP17.6A) and HEAT SHOCK PROTEIN 22 (HSP22) (Stief

et al., 2014a). Moreover, miR156h overexpression-induced

acquired thermotolerance results from the increased expression of

heat stress memory-related genes (Stief et al., 2014a). Notably, heat

stress-induced miR156 induction has been observed in alfalfa

(Medicago sativa), field mustard (Brassica rapa), ginkgo (Ginkgo

biloba), banana (Musa acuminata), safflower (Carthamus

tinctorius), and wheat (T. aestivum), suggesting that this miRNA

may have conserved functions in both development and heat stress

memory (Wang et al., 2014; Ragupathy et al., 2016; Matthews et al.,

2019; Zhu et al., 2019; Chang et al., 2020; Kouhi et al., 2020). As

miR156 is an important regulator of developmental transitions, this

signaling module may be used to integrate stress memory and plant

development (Cho et al., 2012; Cheng et al., 2021).

Similarly, heat-responsive induction of miR824 appears to be

dependent on HEAT SHOCK TRANSCRIPTION FACTOR A1

(HSFA1) in A. thaliana (Szaker et al., 2019). HSFA1a directly

regulating miR824 promoter to activate the transcription under

heat stress, and AGAMOUS LIKE 16 (AGL16) is a target gene of

miR824. miR824-dependent AGL16 downregulation is primarily

manifested post stress exposure, suggesting that miR824 may post-

transcriptionally modulate FLOWERING LOCUS T (FT)-driven

development in response to environmental signals (Hu et al.,

2014; Szaker et al., 2019). Notably, heat-mediated regulation of

the miR824/AGL16 module is conserved in multiple Brassicaceae

species (Kutter et al., 2007). This module integrates multiple abiotic

stimuli under complex climatic conditions, and therefore may hold

considerable potential for enhancing plant stress resistance (Kutter

et al., 2007). In B. rapa, the differential expression of bra-miR168

following heat stress is correlated with braAGO1 transcription,

suggestive of their potential roles as key regulators of

transgenerational stress memory (Bilichak et al., 2015).

Overall, the involvement of post-transcriptional regulatory

miRNA modules in plant stress memory highlights the flexibility

of plants to effectively respond and adapt to fluctuating and stressful

environmental conditions. Additionally, as an indicator of their

long-term adaptability, stress memory allows plants to respond

rapidly and robustly to future stressors, effectively acting as

an inoculation.
The role of siRNAs in stress memory:
RNA-directed DNA methylation

siRNAs are a class of non-coding RNA molecules produced

through the processing of long double-stranded RNA (dsRNA)
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precursors (Lee et al., 2023). Similarly to miRNAs, siRNAs actively

participate in RNA interference (RNAi) by binding to

complementary mRNA sequences, resulting in mRNA cleavage

and subsequent degradation (Liu et al., 2023). Notably, siRNAs

can also induce silencing and RNA-directed DNA methylation

(RdDM) to enforce epigenetic states, which may be involved in

plant stress memory (Liu et al., 2019).

In A. thaliana, heat stress-induced HSFA2 expression results

in the suppression of the SUPPRESSOR OF GENE SILENCING 3

(SGS3) protein, which is involved in siRNA production (Liu et al.,

2019) (Figure 1B). This pathway leads to inhibited siRNA

biosynthesis, a decrease in methylation, and the suppression of

transposons and stress-responsive loci, thus allowing stress

memory to persist (Liu et al., 2019). Similarly, a retrotransposon

known as ONSEN (Japanese for “hot spring”) is significantly

activated in response to heat stress because it is targeted by

HSFA1 and HSFA2 (Ito et al., 2011; Matsunaga et al., 2012).

Heat-induced ONSEN transcription and transposition are

promoted in mutant plants with impaired siRNA biogenesis

(Matsunaga et al., 2012). Although both the ONSEN transcripts

and extrachromosomal DNA decayed over time, new ONSEN

insertions were observed in the progeny of stressed siRNA-

deficient plants (Matsunaga et al., 2015). An siRNA-mediated

mechanism is involved in the new insertions happen in the

progeny. Heat activated ONSEN was transposed to the next

generation and increased in copy number in the host genome

(Matsunaga et al., 2015). Together, these studies highlight the

involvement of siRNA-guide epigenetic mechanisms in the

formation of transgenerational stress memory.
Emerging roles of long non-coding
RNAs in stress memory

lncRNAs, which are typically longer than 200 nucleotides (nt),

are a large and diverse class of eukaryotic genes which contribute to

an array of regulatory processes (Palos et al., 2023). For example,

lncRNAs play an important role in coping with environmental

stress during plant growth and development (Song et al., 2021).

Specifically, lncRNAs mediate epigenetic modifications, and by

studying their participation in stress memory we may begin to

unravel the intricate interplay between non-coding RNAs and

epigenetic regulation (Figure 1C).

Strand-specific whole-transcriptome RNA sequencing of

repeatedly drought-stressed rice (Oryza sativa) revealed that the

lncRNA TCONS_00028567, a predicted precursor of the miRNA are

strongly upregulated at the second drought treatment stage, but

downregulated at the three re-water treatment stage (Li et al., 2019).

Such expression variability of TCONS_00028567 is related to the

repeatedly short-term drought treatment, suggesting that

TCONS_00028567 may regulate short-term drought memory in

rice. In switchgrass (Panicum virgatum), lncRNAs targeting the

biosynthesis of ABA and trehalose were upregulated during the first

and second drought cycles, but lncRNAs regulating ethylene

signaling were suppressed in the second drought cycle, thereby
frontiersin.org
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preventing leaf senescence and supporting plant development

under stressful conditions (Zhang et al., 2018).

In A. thaliana, low-temperature-responsive epigenetic

modifications are induced during vernalization, resulting in the

repression of the FLOWERING LOCUS C (FLC) gene until

flowering commences (Zhu et al., 2021). The FLC locus includes

three different cold-induced lncRNAs: COOLAIR, COLDAIR,

and COLDWARP (Hung et a l . , 2022) . COOLAIR i s

highly induced when plants experience a dip below freezing

temperature, likely analogous to the first frost in autumn.

Then, upregulation of COOLAIR leads to decreased FLC

expression and disruption of the synchronized replacement of

H3K36 with H3K27me3 methylation at the FLC nucleation site

(Csorba et al., 2014; Nielsen et al., 2024). Both COLDAIR and

COLDWRAP bind to FLC chromatin, and thus stably silence FLC

by recruiting PHD-PRC2 to its specific chromatin location in

response to cold temperatures (Heo and Sung, 2011; Kim and

Sung, 2017). Thus, the cold-induced Polycomb nucleation

mechanism locks in the FLC silenced transcriptional state to

maintain the epigenetic memory of cold exposure (Zhao et al.,

2021). It appears that lncRNAs act as guides for protein complexes

mediating epigenetic regulation, facilitating the formation of cold

stress memory in plants.

Overall, these findings highlight the importance of lncRNAs to

the formation of stress memory in plants. We anticipate that an

increasing number of lncRNAs will be discovered across a diverse

range of plant species, and that many of these will be found to be

involved in plant stress memory formation and enhanced

stress tolerance.
The relationship between AS and
stress memory

AS results in the generation of multiple transcripts from the same

gene, thereby increasing proteomic diversity and regulating gene

expression and mRNA levels (Chaudhary et al., 2019). To maximize

metabolic efficiency under stressful conditions, plants may make

more proteins with disordered domains via AS in order to diversify

substrate specificity and maintain sufficient regulatory capacity (Ling

et al., 2021). According to recent research, splicing-linked memory

formation during the priming phase is crucial for guaranteeing the

availability of correctly-spliced transcripts or proteins which are

essential for increased stress tolerance (Figure 1D).

Recent studies in A. thaliana suggest that AS may be a novel

component of heat shock memory formation (Ling et al., 2021). For

example, priming plants with non-lethal heat stress results in the

de-repression of splicing following a second exposure to heat stress,

while non-primed plants exhibit significant splicing repression. An

array of heat shock protein (HSP) genes, such as HSP21, HSP101,

HSP70.10, HSP70.6, HSP90.5, and HSP100.3, have been found to

undergo AS in response to heat stress/priming, primarily through

intron retention (Ling et al., 2018). Specifically, the levels of intron-

retained isoforms were found to be higher during heat shock, with

the exception of HSP70.17. The constitutively-spliced isoform of

HSP70.10 was mainly expressed during heat priming, although
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multiple isoforms were observed during other phases (Ling et al.,

2018). In contrast, several isoforms of HSP90.6 were observed

during the priming phase, but not during other phases (Ling

et al., 2018).

Such observations link “splicing memory” to the ability of

plants to survive subsequent, and perhaps otherwise lethal, heat

stress events. Therefore, priming-induced splicing memory may

represent a general feature of the plant heat stress response (Sanyal

et al., 2018). AS-mediated stress memory formation may itself be

mediated by epigenetic coding. Integrated studies in pine (Pinus

spp.) implicate AS as an important mechanism mediating stress

response and memory. Specifically, changes in spliceosome-related

proteins were observed during heat stress and recovery, as in the

cases of SERINE/ARGININE-RICH SPLICING FACTOR RSZ22

(RSZ22), GLYCINE-RICH RNA-BINDING PROTEIN RZ1A

(RZ1A), and UNCHARACTERIZED PROTEIN DUF4050

(DUF4050) (Roces et al., 2022). Moreover, exon-skipping events

may be induced during drought memory formation in rice (O.

sativa), with 920 drought memory-associated genes exhibiting

differential AS patterns (Yang et al., 2022).

Plants undergo changes in their gene expression patterns in

response to stress exposure. AS contributes to both protein diversity

and functional plasticity, allowing plants to adapt to adverse

conditions (Chaudhary et al., 2019). For example, certain splice

variants may be preferentially produced in response to specific

stressors, leading to the activation of tailored defense mechanisms

(Kutter et al., 2007). This process allows plants to retain a “memory”

of previous stress events, enabling them to mount faster and more

effective responses upon subsequent exposure to similar stressors.

By deciphering the intricate connections between AS and stress

response, researchers may be able to develop crop varieties with

enhanced resilience to environmental stressors.
Conclusion and future prospects

In this review, we summarized the role of non-coding RNAs such

as miRNAs, siRNAs, and lncRNAs, as well as AS, in the regulation of

plant stress memory formation. We highlighted the interconnected

regulatory pathways which enable plants to remember past stress

events and to use those stored responses to better adapt to new

challenges. The involvement of non-coding RNAs in stress memory

is demonstrated through their ability to quickly respond to

environmental and developmental cues, enhancing stress tolerance

and contributing to epigenetic regulation.

However, many questions remain regarding RNA-mediated

stress memory formation. First, how do different stressors

differentially mediate the formation of stress memories in plants?

Second, how can acquired stress memories be efficiently transferred

to offspring to enhance the stress resistance of subsequent

generations? Third, are there alternative mechanisms (i.e., other

than epigenetic) of stress memory transmission between

generations? Answering these questions will significantly improve

our understand of RNA-mediated stress memory formation,

thereby allowing the development of improved crop varieties with

enhanced stress tolerance. This research will be crucial in
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addressing global food security challenges posed by climate change,

population growth, and other factors. By unraveling the mysteries

of RNA-mediated stress memory formation, we can not only

develop more resilient crop varieties but also lay the foundation

for sustainable agriculture practices that address the complex

challenges of climate change on a global scale.
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