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Research on improved YOLOv8n
based potato seedling detection
in UAV remote sensing images
Lining Wang, Guanping Wang*, Sen Yang, Yan Liu,
Xiaoping Yang, Bin Feng, Wei Sun and Hongling Li

Mechanical and Electrical Engineering College, Gansu Agricultural University, Lanzhou, Gansu, China
Introduction: Accurate detection of potato seedlings is crucial for obtaining

information on potato seedlings and ultimately increasing potato yield. This study

aims to enhance the detection of potato seedlings in drone-captured images

through a novel lightweight model.

Methods: We established a dataset of drone-captured images of potato

seedlings and proposed the VBGS-YOLOv8n model, an improved version of

YOLOv8n. This model employs a lighter VanillaNet as the backbone network in-

stead of the original YOLOv8n model. To address the small target features of

potato seedlings, we introduced a weighted bidirectional feature pyramid

network to replace the path aggregation network, reducing information loss

between network layers, facilitating rapid multi-scale feature fusion, and

enhancing detection performance. Additionally, we incorporated GSConv and

Slim-neck designs at the Neck section to balance accuracy while reducing

model complexity.

Results: The VBGS-YOLOv8n model, with 1,524,943 parameters and 4.2 billion

FLOPs, achieves a precision of 97.1%, a mean average precision of 98.4%, and an

inference time of 2.0ms. Comparative tests reveal that VBGS-YOLOv8n strikes a

balance between detection accuracy, speed, and model efficiency compared to

YOLOv8 and other mainstream networks. Specifically, compared to YOLOv8, the

model parameters and FLOPs are reduced by 51.7% and 52.8% respectively, while

precision and a mean average precision are improved by 1.4% and 0.8%

respectively, and the inference time is reduced by 31.0%.

Discussion: Comparative tests with mainstream models, including YOLOv7,

YOLOv5, RetinaNet, and QueryDet, demonstrate that VBGS-YOLOv8n

outperforms these models in terms of detection accuracy, speed, and

efficiency. The research highlights the effectiveness of VBGS-YOLOv8n in the

efficient detection of potato seedlings in drone remote sensing images, providing

a valuable reference for subsequent identification and deployment on

mobile devices.
KEYWORDS

potato seedling detection, UAV remote sensing, YOLOv8n, lightweight, VanillaNet,
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1 Introduction

In recent years, the global cultivation area for potatoes has

remained stable at approximately 20 million hectares, with China’s

contribution consistently exceeding 25% (Shi and Xu, 2023). This

makes potato cultivation vitally important for food security, economic

growth, and poverty alleviation, particularly in densely populated

developing countries such as China (Lun et al., 2023). A critical phase

in the potato growth cycle is the seedling stage, where accurate

detection and counting of seedlings are crucial for predicting yields

and achieving high-quality production (Shi et al., 2022). However,

traditional manual monitoring methods are costly, inefficient,

inaccurate, and often lack representativeness, which impedes the

timely and effective implementation of replanting strategies (Lu

et al., 2023). The advent of drones, characterized by their agility,

compact size, and cost-effectiveness, has increasingly attracted the

attention of researchers (Saifizi et al., 2019; Li S. et al., 2023). Utilizing

drones in conjunction with deep learning for the automatic detection

of crop seedlings presents a simple yet effective method that

significantly reduces labor costs and facilitates automation.

Drone platforms, through real-time imagery captured by onboard

cameras, have found extensive applications in various fields for target

detection (Osco et al., 2020). However, detecting targets from a drone’s

perspective often involves dealing with complex environmental

backgrounds and small, sometimes blurry, targets. Additionally, the

hardware limitations of drones can restrict the complexity of

deployable models, leading to less than optimal detection outcomes

(Wu et al., 2010; Sishodia et al., 2020). Deep learning algorithms for

target detection are generally categorized into two main types: single-

stage algorithms, such as Centernet, RetinaNet, SSD, and YOLO,

which offer good real-time performance but lower accuracy,

particularly in detecting small targets; and two-stage algorithms, like

R-CNN, Fast R-CNN, and Faster R-CNN, which provide higher

accuracy but at the cost of speed, making them unsuitable for rapid

crop information acquisition by drones. The YOLO series, known for

its superior performance, has been extensively applied in detection

tasks across various domains (Liu et al., 2018; Liang et al., 2022). A

current research challenge, and the focus of this study, is leveraging

YOLO for accurate and efficient crop seedling detection from a drone’s

perspective while maintaining a manageable model size.

The YOLO series models have been broadly applied to drone

image datasets. For instance, research by Jianqing Zhao et al. (Zhao

et al., 2021) introduced an enhanced YOLOv5 model with an added

micro-scale detection layer for wheat ear detection in drone images,

achieving a 94.1% accuracy rate, a 10.8% improvement over the

standard YOLOv5. However, this method is complex and time-

consuming, and the limited memory and processing power

available on drones make efficient crop detection challenging.

Wang et al. (Wang F et al., 2023) addressed the characteristics of

small targets in drone images by embedding a small target detection

structure (STC) in the Neck of YOLOv8, capturing comprehensive

global and contextual information and incorporating a global

attention module (GAM), which significantly improved

performance but also increased the parameter count. Li et al. (Li

Y. et al., 2023) introduced the concept of Bi-PAN-FPN in YOLOv8

to enhance feature fusion across different scales and utilized the
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GhostblockV2 structure, achieving an accuracy improvement but

falling short compared to other models. Addressing the challenges

of insufficient drone computing power and the issue of small targets

in drone imagery, Shijie Li (Li, 2023) proposed modifications to the

YOLOv5 model, reducing the model’s parameter count from 7.5M

to 4.2M, albeit with a 1.7% decrease in detection accuracy. To

address the balance between detection accuracy and model size,

scholars have conducted relevant research, proposing the use of

lightweight convolutional approaches aimed at reducing

computational load during the convolution process. For example,

Liu et al. (Liu et al., 2022) proposed an improved YOLOv4 model

based on MobileNetv2 as the backbone network for orange fruit

recognition in orchards, which reduced the model size by 197.5 M

and achieved an average recognition accuracy of 97.24%, though the

detection time was only reduced by 11.39ms. Rihong Zhang et al

(Zhang et al., 2023). introduced a YOLOV4 pineapple seedling

heart detection model incorporating a lightweight attention

mechanism module CBAM, which reduced the total parameter

count by 70% and achieved a recognition accuracy of 95.5%, but the

improvement in detection speed was not significant.

While previous methods have shown effectiveness in detecting

and counting crops in the field, the unique challenges posed by

potato seedlings in UAV imagery—such as their dense distribution,

significant overlap, small size, and the complexity of their

background, result in a higher likelihood of both false positives

and missed detections. These issues compromise the precision of

potato seedling detection. Furthermore, the constraints imposed by

UAV hardware platforms complicate the task of balancing

detection accuracy, speed, and the efficient use of hardware

resources. Notably, there is a scarcity of detection methods that

are both efficient and specifically tailored to potato seedlings. To

address these challenges, this paper introduces a novel lightweight

algorithm, VBGS-YOLOv8n. By employing VanillaNet, a network

characterized by its simplicity and reduced number of layers, as the

backbone network in place of the original YOLOv8n model, we

significantly decrease the model’s computational complexity. We

enhance the model’s feature fusion capabilities by substituting the

PANet path aggregation network with a bidirectional feature

pyramid network (BiFPN). Additionally, integrating GSconv

convolution within the YOLOv8n’s neck and replacing all C2F

networks with the VoV-GCSP module further boosts the model’s

performance. This innovative approach facilitates the efficient

detection of potato seedlings in UAV remote sensing images,

representing a significant advancement in the field.
2 Materials and methods

2.1 Potato seedling image acquisition

Potato seedling drone images were collected at Xinghuaping

Village, Tonganyi Town, Longxi County, Dingxi City, Gansu

Province. The images were captured using a quadcopter drone

(DJI Phantom 4 Advanced) and DJI GS Pro. The drone’s RGB

camera captured images vertically from above with a shutter speed

of 2 seconds. To prevent image blurring, a hover-and-capture
frontiersin.org
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method was employed at each waypoint. The front and side

overlaps were set at 80% and 70% respectively. The images had a

resolution of 4056×3040 pixels and were saved in JPG format. The

image collection took place in mid-May and mid-June 2022,

between 10:00-12:00. To enhance the model’s ability to generalize

for potato seedling detection in various environments, images were

collected at drone heights of 5 meters and 10 meters. A total of 409

original images were collected, as shown in Figure 1, covering

different heights, growth stages and plots.
2.2 Dataset construction

The process of potato seedling RGB image detection using the

enhanced VBGS-YOLOv8n model is illustrated in Figure 2. In this

study, Pix4Dmapper software was utilized for rapid stitching and

inspection of drone images in the experimental area. During the

stitching process, location information was obtained using the GPS

system of the drone platform at the time of image capture.

Pix4Dmapper then matched approximately 30,000 tie points per
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original image based on the flight’s POS (Position and Orientation

System) data. Subsequently, automatic aerial triangulation

technology was employed to calculate the true position data and

stitching numbers of the images, leading to the creation of a point

cloud model. Following this, the positions and stitching parameters

of the original images were automatically optimized and calibrated

to generate a Digital Orthophoto Map (DOM) depicting the entire

experimental plot (Figure 2B). The process resulted in orthophoto

images at heights of 5 meters and 10 meters (Figure 2C) for two

distinct periods. These orthophoto images were then cropped to

obtain the dataset images required for model training and

prediction (Figure 2D). A total of 3089 cropped images were

obtained, each with a pixel size of 800×800. To ensure model

detection accuracy, 2195 images were selected after screening out

unsuitable ones to form the dataset for this study. Manual

annotation of the dataset using the LabelImg annotation tool was

performed (Figure 2E). Subsequently, the improved model (Figure

2F) was trained, and the best model after training was used to detect

images in the experimental plots (Figure 2G), yielding the detection

results (Figure 2H). During annotation, objects were labeled with
A

B

C

FIGURE 1

Overview of experimental area and captured images. (A) The geographical location of Longxi County, Ding xi City; (B) Location of the study area;
(C) Images of potato seedlings at different heights and growth stages of UAVs.
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bounding boxes that best fit them and assigned the label “seedling,”

resulting in the generation of XML files in VOC format. Refer to

Figure 3 for annotated illustrations. Subsequently, the XML files

were converted to TXT files required by YOLO using a script. The

dataset images and their corresponding TXT files were randomly

divided in an 8:1:1 ratio into training set (1754 images), validation

set (220 images), and test set (220 images) to adhere to the standard

coco format, completing the dataset construction.
2.3 Original YOLOv8n

As a one-stage object detection algorithm, YOLOv8 introduces a

more lightweight network structure compared to its predecessors,

maintaining high accuracy while achieving faster inference speeds.

Moreover, YOLOv8 incorporates advanced training methods and

techniques, leading to shorter training times and quicker

convergence rates. In this study, to balance high detection accuracy

with minimal storage usage and enhanced recognition speed for future

deployment on mobile devices, the research opts for the YOLOv8n

detection model known for its low complexity and lightweight design.

The YOLOv8n network architecture comprises three main

components: the input layer (Input), the backbone network
Frontiers in Plant Science 04
(Backbone), the neck network (Neck), and the detection head

(Head). The input layer preprocesses image inputs for the model,

while the backbone network, based on CSPDarkNet-53 and

utilizing the C2f module, extracts features from input images to

generate multi-scale feature maps. The backbone structure is shown

in Figures 4A, B is a CBS structure diagram. The C2f module in

YOLOv8 provides feature fu-sion functionality, which can enhance

the performance of object detection, as illustrated in Figure 4C. The

convolution utilizes CBS, comprising three components: a 2D

convolution, 2D BatchNorm, and SiLU activation function. The

SiLU activation is computed by multiplying its input with the

sigmoid function, i.e., xs (x). In the case of SPPF, a CBS

convolutional layer is followed by three consecutive Maxpooling

operations. The feature map without Maxpooling and the feature

map obtained after each subsequent Maxpooling operation are

concatenated to achieve feature fusion. The structure is shown in

Figure 4D. The Neck layer adopts the PANet structure, merging

feature maps from various scales to capture more global and

semantically rich features, thereby enhancing object detection

accuracy and recall. The Detect module employs a Decoupled

Head, separating regression and prediction branches to predict

features across three dimensions, providing class and positional

information for the network’s predictions.
FIGURE 3

An example of a labeled image used for model training.
A

B

D E

F

G H

C

FIGURE 2

Workflow for image preprocessing and model prediction. (A) images taken by UAVs; (B) Stitching the images taken by the UAV using Pix4d software;
(C) Orthophoto generated; (D) The large image is cropped into a small image (608 × 608 pixels) for model input; (E) annotated image; (F) model
training; (G) The result image of the model prediction output; (H) A magnified view of the output image.
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In the YOLOv8 model, the loss function plays a crucial role in

training the network to accurately predict object bounding boxes

and class probabilities. The loss function used in YOLOv8 is a

combination of localization loss, confidence loss, and classification

loss. The localization loss in YOLOv8 is typically calculated using

metrics like Mean Squared Error (MSE) or Smooth L1 Loss. It

penalizes the model for inaccuracies in predicting the bounding box

coordinates (center coordinates and width/height) compared to the

ground truth bounding box. By minimizing the localization loss, the

model learns to accurately predict the spatial location and size of

objects in the image, improving the precision of object localization.

Next, YOLOv8 utilizes binary cross-entropy loss to compute the

target confidence loss, assessing the model’s confidence accuracy by

comparing predicted target probabilities with ground truth labels.

Optimizing the confidence loss enables the model to distinguish

objects from the background, enhancing its object detection

capabilities. Additionally, the classification loss evaluates the

model’s category classification accuracy using binary cross-

entropy loss. The calculation formula for classification loss is

shown in Equation (1). About Regression Loss, YOLOv8

introduces a Distance-based Focal Loss (DFL) to complement

Anchor-Free methods, focusing on optimizing probabilities for
Frontiers in Plant Science 05
the nearest left and right positions to the label y, facilitating

quicker convergence on target positions and neighboring regions’

distributions. DFL is calculated as shown in Equation 2.

Losscls = −o
M

c=1
yo,clog(po, c) (1)

where yo,c is an indicator. 1 if sample o belongs to category c,

and 0 vice versa. po is the probability that the model predicts that

sample o belongs to category c.

DFLðSi, Si+1) = −((yi+1 − y) log (Si) + (y − yi) log (Si+1)) (2)

The detailed conversion process of transforming labels into

DFL format is as follows: y = distance from the center to a specific

edge/current downsampling ratio.

The Bounding Box Loss calculates the sum of squared

differences between the predicted and actual coordinates, as

depicted in Equation 3.

Lossbbox  =o
N

i=1
 (xi  −x

∧
i)
2 (3)

where xi represents the coordinates of the true bounding box,

and x̂ i represents the coordinates of the predicted bounding box.
A B

C

D

FIGURE 4

The backbone structure of the yolov8 model and the diagram of each module. (A) the overall structure of the backbone; (B) the structure of the
CBS module; (C) the C2f module; (D) and the SPPF module.
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The loss function is used as the optimization goal to guide the

model to reduce the gap between the prediction box and the real

box during the training process.
2.4 Improvement of the YOLOv8n model

2.4.1 VBGS-YOLOv8n model structure
The YOLOv8n object detection model has been widely applied in

the agricultural field due to its excellent recognition accuracy and

speed (Sapkota et al., 2023; Wang G et al., 2023). However, the

detection of potato seedlings poses some challenges as it involves

small target detection tasks. For instance, when deploying the

detection task to mobile devices, it is necessary to consider the

lightweight nature of the network structure and the reduction of

device power consumption. Additionally, due to the small size and

overlapping nature of potato seedlings captured by UAVs, there is a

risk of missed detections and low accuracy in small target detection.

Therefore, this paper proposes a VBGS-YOLOv8n deep learning

algorithm based on the YOLOv8n, aiming to achieve higher detection

accuracy and a more lightweight model design to better recognize

potato seedlings. First, lightweight improvements were made to the

backbone, followed by the introduction of the weighted bidirectional

feature pyramid network (BiFPN) at the Neck layer, along with the

GSConv network, replacing the c2f module with VoV-GSCSP.

The structural design of the proposed VBGS-YOLOv8n model, as

depicted in Figure 5, involves replacing the CSPDarkNet network of the

original YOLOv8 with the lightweight VanillaNet algorithm. The

backbone network comprises the initial 4 layers of VBGS-YOLOv8n,

starting with a 640*640 RGB image input. With a stride of 4 and double

downsampling, spatial feature extraction and data normalization

convolution processing are applied, resulting in a halved image
Frontiers in Plant Science 06
resolution. This processed image is then fed into the VanillaNet

backbone network. Within the backbone network, stages 1, 2, and 3

utilize max-pooling layers with a stride of 2 to reduce spatial dimensions

while retaining crucial feature information, doubling the channel count

at each layer. Stage 3, representing the third layer of the network,

undergoes an 8x downsampling to yield an image with 512 channels.

Stage 4 maintains the channel count without increase, following an

average pooling layer. The final layer consists of a fully connected layer

for classification output with a stride of 1. Each layer in the VanillaNet

backbone network employs 1x1 convolution kernels to preserve feature

map details efficiently. The input features are downsampled to

appropriate sizes, resulting in image resolutions of 160*160, 160*160,

and 80*80 at Layer 1, Layer 2, and Layer 4, respectively.

The 1st, 3rd, and 4th layers serve as inputs to the neck structure. In

contrast to the PANet bidirectional pathway network used in the

original YOLOv8n network’s neck structure, the VBGS-YOLOv8n

model integrates a BiFPN with adjustable weights in each concat

module of the neck network for feature extraction. The BiFPN

facilitates more efficient multi-scale feature fusion. Furthermore, the

c2f modules at each layer are replaced with the cross-level subnetwork

VoV-GSCSP module. Additionally, GSConv convolution is applied at

the 11th and 14th layers of VBGS-YOLOv8n, aiming to reduce

computational costs and maintain inter-channel connections

effectively. Through a process of layer-wise upsampling and feature

concatenation, diverse scale feature information is fused. By the 16th

layer of the model, the number of output channels in the image is

increased to 1024.Subsequently, the three output branches from the

neck are directed to the detection head for loss computation or result

inference. YOLOv8 introduces a decoupled head, replacing the coupled

head of previous YOLO models. This decoupled head separates the

regression and prediction branches, utilizing the integral form

proposed in the distribution focal loss strategy for the regression
FIGURE 5

The network architecture diagram of the improved VBGS-YOLOv8n.
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branch. The decoupled head exhibits faster convergence and improved

performance. In VBGS-YOLOv8n, the head network generates images

of sizes 80×80, 40×40, and 20×20 for potato seedling detection.
2.4.2 Lightweight backbone network
VanillaNet, a lightweight neural network architecture that

emphasizes simplicity, was introduced by Huawei’s Noah’s Ark Lab

(Chen et al., 2023). By avoiding complexities like excessive depth,

shortcuts, and self-attention mechanisms, VanillaNet achieves a

balance of simplicity and performance. Overcoming the inherent

complexity of traditional deep networks, VanillaNet emerges as an

optimal choice for environments with limited resources. Its

streamlined architecture not only enhances comprehension but also

provides an effective solution for efficiently deploying potato seedling

detection in drone-based remote sensing applications.

VanillaNet is characterized by the absence of convolution layers

and branches in its network structure, as depicted in Figure 6. The

network comprises a backbone, main body, fully connected layers, and

5 activation functions. The design principle follows a gradual reduction

in resolution and an increase in channel numbers, without

incorporating shortcuts, attention mechanisms, or other computations.

For the backbone, a 4×4×3×C convolution layer is utilized with a

stride of 4, following common configurations from [18,31,32], to

transform 3-channel images into features with C channels. In stages

1, 2, and 3, max-pooling layers with a stride of 2 are used to decrease

size and feature maps while doubling the channel count. Stage 4

maintains the channel count unchanged by employing average

pooling. The final fully connected layer is dedicated to producing

classification outcomes. Each convolution layer employs a 1×1 kernel

to retain feature map details while minimizing computational costs.

Batch Normalization (BN) is applied after each layer to streamline the

training process and enhance the simplicity of the architecture. This

approach achieves an optimal trade-off between speed and accuracy,

showcasing the excellence of VanillaNet.

While VanillaNet’s simple structure is easy to implement, its

limited nonlinearity hinders network performance enhancement.

To tackle this challenge, the authors introduce a deep training

strategy and incorporate a series-inspired activation function to

boost the network’s nonlinear expressive capacity.

The deep training strategy involves splitting the network into two

convolution layers, increasing the network depth only during training,

and merging them during inference. This approach reduces network

computation and complexity. The split convolution layers will utilize
Frontiers in Plant Science 07
the following Equation 4 activation function:

A
0
(x) = (1 − l)A(x) + lx (4)

When training converges, the two convolutional layers without

non-linear activation are merged into one layer, achieving the effect

of deep training and shallow inference.

(1) Activation Function Inspired by Series: Concurrently

stacking activation functions can significantly enhance the non-

linearity of the activation function. Representing the single

activation function of the input in the neural network as A(x)

Equation 5:

As(x) =o
n

i=1
aiA(x + bi) (5)

In the equation, n represents the number of stacked activation

functions, while ai, bi are the scale and bias of each activation to

avoid simple accumulation. To further enrich the sequence, given

an input feature x ∈ RH�W�C where H, W and C are its width,

height, and number of channels, the activation function is

formulated as Equation 6:

As(xh,w, c) = o
i,j∈ −n,nf g

ai,j,cA(xi+h,j+w,c + bc) (6)

From the equation, it can be found that when n = 0, the

proposed method can be regarded as a general extension of

existing activation functions.

The computational complexity expression of the proposed

activation function O(CONV)compared to its corresponding

convolutional layer is shown in Equation 7).

O(CONV)
O(SA)

=
H �W � Cin � Cout � K2

H �W � Cin � n2
=
Cout � k2

n2
(7)

In the equation,Cin represents the input channels, Cout represents

the output channels, and k represents the kernel size. Taking the

fourth stage of VanillaNet-B as an example, where Cout = 2048, k = 1,

n = 7, the ratio is only 84, indicating that the computational cost of

this activation function is much lower than that of a convolutional

layer. Therefore, the use of these two non-linear solutions can

significantly improve the detection accuracy of VanillaNet.

2.4.3 BiFPN feature fusion
Feature fusion is a critical aspect in object detection, aiding in the

extraction of information from various scales to enhance detection
FIGURE 6

The architecture of the VanillaNet-6 consisting of only 6 convolutional layers.
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accuracy. The traditional Feature Pyramid Network (FPN) structure

serves as a method for feature fusion, integrating a top-down pathway

to merge multi-scale features from levels 3 to 7 (P3 to P7), as depicted

in Figure 7. Expanding on FPN, the YOLOv8 feature extraction

network incorporates PANet (Figure 7B), which introduces an

additional bottom-up pathway aggregation network to FPN

(Figure 7A). However, these fusion methods can lead to information

loss or feature redundancy (Wang Y et al., 2023). This study introduces

an efficient BiFPN (Figure 7C) structure that leverages effective

bidirectional cross-scale connections and weighted feature fusion. By

adjusting feature map scales through upsampling and downsampling

operations, different scale features are fused to preserve finer details,

thereby improving small object detection accuracy.

BiFPN (Tan et al., 2020) is a network structure that efficiently

incorporates repeated bidirectional cross-scale connections and

weighted feature fusion. In comparison to PANet, BiFPN

eliminates nodes with single input edges that do not merge

different features, making it lighter and faster in inference speed

with fewer parameters. Additionally, an extra edge is introduced

between the original input and output nodes at the same layer to

enhance the fusion of additional image features. By leveraging

bidirectional repeated connections for information fusion, feature

details are preserved, enhancing accuracy in small object detection.

BiFPN utilizes a weighted feature fusion mechanism that

differentiates and merges various input features through learning,

adapting to different resolutions, and addressing feature loss issues

caused by simple overlaying of feature maps. It serves as a

straightforward and efficient feature fusion approach. BiFPN adopts

the Fast Normalized Fusion method, akin to Softmax, mapping each

input value to the range [0, 1], thereby improving training speed and

efficiency, enhancing data consistency and comparability for better

analysis and decision-making, as depicted in Equation (8).

O =oi
wi*Ii

e +ojwj
(8)
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In the equation, Ii represents the input features, wi and wj

denote the weights obtained during network training, e = 0.0001.

2.4.4 GSConv network and Slim-Neck
design paradigm

In order to achieve real-time object detection on mobile devices,

reducingmodel complexity, enhancing detection speed, andmaintaining

high accuracy are essential for the task of potato seedling image detection

captured by drones. GSConv+Slim-Neck is a lightweight network

proposed for a vehicle-mounted edge autonomous driving computing

platform (Li et al., 2022). This network design aims to facilitate efficient

object detection to meet real-time application requirements. GSConv

strikes a balance between model accuracy and speed, enabling model

lightweighting while preserving accuracy. Introducing GSConv provides

a design paradigm called Slim-Neck, which utilizes a one-time

aggregation method to create the cross-level subnetwork (GSCSP)

module VoV-GSCSP. This module reduces computational and

network structural complexity, thereby enhancing detection accuracy.

Hence, this paper adopts this network to reduce model complexity,

enhance detection speed, and maintain high accuracy for mobile

deployment, offering an effective solution.

On edge devices, achieving real-time lightweight detection with

large models poses challenges. Traditional Depthwise Separable

Convolution (DSC) models struggle to achieve high accuracy due

to the separation of channel information during computation. This

separation diminishes the feature extraction and fusion capabilities of

DSC, hindering lightweight high-precision detection. Therefore,

GSConv is proposed, merging standard convolution with

Depthwise Separable Convolution. The principle involves

downsampling with a regular convolution, followed by DWConv

depthwise convolution to fuse the results of SCconv and DSCconv,

and finally introducing shuffle operations to combine corresponding

channels. The structure is illustrated in Figure 8.

GSConv has a noticeable impact on lightweight models. Given that

the Neck receives feature maps with maximal channel capacity and

minimal spatial dimensions, this paper employs GSConv within the
A B C

FIGURE 7

Feature network design (A) FPN network; (B) the principle of PANet; (C) is BiFPN schematic.
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Neck. With reduced redundant information in the feature map at this

stage, compression is unnecessary, allowing the attention module to

operate more effectively, leading to a reduction in model layers and

inference time.

Introducing GSConv provides a Slim-Neck design paradigm.

Initially, this design replaces SC with the lightweight convolution

method GSConv in the Neck. GSConv aims to closely match the
Frontiers in Plant Science 09
convolutional computing capability of SC while reducing

computational costs. Subsequently, GSbottleNeck is introduced

based on GSConv. Similarly, a one-time aggregation method is

utilized to design the cross-level subnetwork (GSCSP) module

VoV-GSCSP, which simplifies computational and network

structural complexity, enhancing detection accuracy. The structure

is depicted in Figure 9. This paper replaces the C2f module in the
FIGURE 8

The structure of the GSConv module.
A B

FIGURE 9

Schematic diagram of Slim-neck paradigm design structure. (A) The structures of the GS bottleneck module; (B) The VoV-GSCSP modules.
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YOLOv8 structure with the VoV-GSCSP module to enhance

detection performance. After integrating the BIFPN+GSConv

+Slim-Neck module, the detection results are illustrated in Figure 10.

The detection results demonstrate that the model incorporating

BIFPN and GSConv+Slim-Neck achieves high confidence scores when

detecting images of seedlings in different environments and growth

stages. Nearly all seedling targets are successfully identified, highlighting

the feasibility and effectiveness of this improvement method.
2.5 Model training and evaluation metrics

2.5.1 Experimental environment
The configuration of the experimental environment and the settings

of relevant parameters during the trial process are presented in Table 1.

2.5.2 Evaluation metrics
This study employs Precision (P) in Equation 9, Recall (R) in

Equation 10, Mean Average Precision (mAP) as model accuracy

evaluation metrics as in Equation 11, and uses parameters,

computation, (i.e., the number of floating-point operations), and

Detection Time to measure model complexity and speed. The

calculation formulas are as follows.
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P =  
TP

TP + FP
� 100% (9)

R  =  
TP

TP + FN
� 100% (10)

mAP  =  
o
N

i=1 

Z 1

0
P(R)dR

N
� 100% (11)

TP represents the number of correctly detected potato sprouts in the

image; TN represents the number of instances where the model predicts a

negative class and the actual label is also negative. FP stands for the count of

false detections as potato sprouts; FN indicates the number ofmissed targets;

AP is the Average Precision, represented by the area enclosed by the P-R

(e = 0:0001) curve and the coordinate axis; N denotes the number of

categories. In this study, only potato sprouts are detected, hence N = 1.
3 Results and analysis

3.1 VBGS-YOLOv8n ablation experiment

The VBGS-YOLOv8n model proposed in this study adopts a

three-step improvement strategy. Firstly, the BiFPN bidirectional
FIGURE 10

Effect of the detection results after the model is introduced into the BiFPN+GSConv+Slim-neck module.
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feature pyramid network replaces the PANet pathway aggregation

network to enhance feature fusion capabilities and improve small

object detection accuracy. Secondly, the GSConv+Slim-Neck is

integrated into the Neck section to further enhance model

performance. Lastly, to achieve model lightweighting, the main

network in the Backbone layer is replaced with the VanillaNet

network. To validate the effectiveness of the VBGS-YOLOv8n

model in potato seedling detection, this study conducted 7 sets of

ablation experiments, with results shown in Table 2. Additionally,

the training process curve of the model is illustrated in Figure 11.

From the data in Table 2, it is evident that introducing the

BiFPN module alone in the original model improves the model’s

detection accuracy, recall rate, and mAP value by 1.1, 0.5, and 0.8

percentage points, respectively, albeit with a slight increase in model

parameters. When adopting the Gsconv+SlimNeck design

paradigm alone, compared to the original YOLOv8n, the model

with this module shows an increase of 1.4 and 0.6 percentage points

in accuracy and mAP value, respectively. Additionally, the model’s

parameter count decreases by 11.3%, computational load

significantly reduces, and inference speed improves by 13.8%,

indicating a notable enhancement in detection accuracy and

model performance. Furthermore, replacing the Backbone

network of the original YOLOv8n model with the lightweight

VanillaNet network substantially reduces model parameters and

computational load, with a 0.2 percentage point increase in

accuracy. However, this change leads to a decrease of 0.3 and 0.1

percentage points in recall rate and mAP, respectively. This is

attributed to VanillaNet’s lightweight design, which greatly

reduces the number of convolutional layer channels and network
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depth, resulting in decreased performance when handling complex

scenes or small targets, thereby impacting recall rate and mean

average precision in object detection.

By integrating three improvement strategies, the final outcome

of this study is the VBGS-YOLOv8n model. Compared to the

original YOLOv8n model, the VBGS-YOLOv8n model shows

improvements of 1.4 and 0.8 percentage points in accuracy and

mAP, respectively. Additionally, it significantly reduces model

parameters and computational load while enhancing inference

speed. Specifically, the parameter count is only 48.3% of the

original model, the computational load is 47.2% of the original

model, and the inference speed increases by 45.0%. However, due to

the adoption of the lightweight VanillaNet network, the model’s

recall rate decreases by 0.6 percentage points. Nevertheless,

considering the study’s focus on potato seedling monitoring, the

slight decrease in recall rate, alongside the improved mAP and

reduced model complexity, can be deemed negligible in terms of

overall effectiveness.
3.2 Comparison of detection before and
after improvement

The original YOLOv8n network and the improved VBGS-

YOLOv8n model were compared on a test set of 220 images. One

image of potato seedlings was randomly selected from three

different scenarios with varying heights and environmental

conditions for demonstration of the detection performance, as

shown in Figure 12.

The detection results demonstrate the superiority of the VBGS-

YOLOv8n model in recognizing various sizes and shapes of potato

seedlings, surpassing the original YOLOv8n model significantly.

The VBGS-YOLOv8n model can almost entirely identify targets,

successfully avoiding instances of missed detections and even

detecting overlapping potato seedlings independently. In contrast,

the original YOLOv8n model exhibits noticeable issues with missed

detections, particularly for smaller potato seedlings in multi-target

scenarios, and performs poorly in identifying overlapping

potato seedlings.
TABLE 1 Experimental environment and related parameter settings.

Training Environment Details

Programming Python3.9

Deep learning framework Pytorch 2.0

GPU NVIDIA GeForce RTX3060

Operating system Windows11

img size 640 x 640
TABLE 2 Comparison of ablation experiment performance.

Model BiFPN
Gsconv+
slimNeck

VanillaNet
Precision

(%)
Recall
(%)

mAP
(%)

Parameters
(M)

Complexity
(GFLOPs)

Inference
time (ms)

baseline 95.7 96.8 97.6 3157200 8.9 2.9

A √ 96.8 97.3 98.4 3157212 8.9 3.0

B √ 97.1 96.8 98.2 2801619 7.4 2.5

C √ √ 97.0 97.8 98.5 2801631 7.4 2.7

D √ 95.9 96.5 97.5 1644579 5.0 2.3

E √ √ 96.4 96.7 98.0 1644591 5.0 2.4

VBGS-
YOLOv8n

√ √ √ 97.1 96.2 98.4 1524943 4.2 2.0
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3.3 Comparative horizontal experiment

To further explore the superiority of the VBGS-YOLOv8n

network in potato seedling detection, experimental comparisons

were conducted between the VBGS-YOLOv8n model and

mainstream object detection Network algorithms such as

RetinaNet, QueryDet, YOLOv5 and YOLOv8n, as shown in Table 3.

From the table data, it is evident that compared to mainstream

models, the VBGS-YOLOv8n network surpasses current mainstream

detection models in all performance metrics, with a significant
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improvement in mAP. More importantly, while maintaining high

performance, the VBGS-YOLOv8n model has the lowest parameter

count and computational load, further highlighting its superiority and

efficiency. RetinaNet, despite using FPN and a new focal loss function to

enhance model efficiency and run on low-end devices, faces accuracy

issues in small object detection and has high computational load, making

it unsuitable for this experiment. QueryDet, a small object detection

model that accelerates feature pyramid object detector inference speed

using a novel query mechanism, employs the Sparse Cascaded Query

(CSQ) mechanism to obtain high-resolution feature maps while

minimizing computation on background regions. Comparing

QueryDet to RetinaNet in the table data, QueryDet shows

improvements in all metrics, with optimal parameter and

computational load compared to other mainstream models, with

computational load only 3.54 points higher than the VBGS-YOLOv8n

model in this study. However, its detection accuracy is 8.3 percentage

points lower than the model in this study. YOLOv5, another model in

the YOLO series widely used for its good performance and detection

results, shows comparable detection accuracy to the method in this study

but with increased complexity and lower inference speed, making it

unsuitable for mobile deployment and potato seedling detection.

YOLOv7-tiny, the latest algorithm in the YOLO series, achieves decent

accuracy with fewer parameters and computational load, but its FPS is

48% lower than the proposed new method, indicating slower model

detection speed. The experimental data comparison underscores the

superiority and efficiency of the VBGS-YOLOv8n network, which not

only meets the accuracy requirements but also features a more

lightweight network architecture suitable for potato seedling detection

scenarios. The comparative detection performance of different models is

illustrated in Figure 13.
FIGURE 11

Curve of the model improvement training process.
FIGURE 12

Comparison effect of the model before and after the improvement on the detection of potato seedlings at different heights and at different stages.
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The results indicate that the improved lightweight model

outperforms other object detection models in recognizing potato

seedlings at different growth stages and heights. It accurately locates

potato seedlings, which are dense small targets. In the images, the

detection labels and confidence scores were removed for clarity, but

in the experiment, detections exhibited high confidence. The

predicted bounding boxes fully encapsulate the potato seedlings,

even identifying overlapping instances without any missed

detections. In the case of the first set of photos with fewer targets

at a height of 5 meters, where the potato seedlings are larger and less

dense, both YOLOv5 and YOLOv7 in the YOLO series can detect all

targets effectively. However, YOLOv7 shows some instances of

redundant bounding boxes, indicating slightly inferior detection

performance compared to YOLOv5. For small targets at the

corners, QueryDet exhibits some missed detections. In the
TABLE 3 Comparison of experimental results of different
network models.

Model
mAP
(%)

Parameters
(×106 M)

Complexity
(GFLOPs)

FPS

RetinaNet 82.1 28.27 236.28 29.8

QueryDet 90.3 6.61 7.74 37.4

YOLOv5s 95.8 7.20 16.80 68.3

YOLOv7-
tiny

94.3 8.90 13.1 51.5

YOLOv8n 97.9 3.16 8.7 90.1

VBGS-
YOLOv8n

98.4 1.52 4.2 98.4
FIGURE 13

Detection results of potato seedlings in different environments by different models.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1387350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1387350
detection results for the other two environments, it is evident that

the proposed VBGS-YOLOv8n model has the fewest missed

detections and minimal redundant bounding boxes. This clearly

demonstrates the excellent performance and accuracy of the VBGS-

YOLOv8n model in recognizing potato seedlings.
4 Conclusion

This study introduces an enhanced VBGS-YOLOv8n network,

aimed at addressing the challenge of detecting potato seedlings in drone

remote sensing imagery. The model utilizes the lightweight VanillaNet

algorithm as its backbone, effectively reducing the model’s complexity.

It incorporates a BiFPN to improve the retention of detailed features,

thereby enhancing the accuracy of small target detection. GSconv

convolution is employed in the neck to maintain overall accuracy, and

the VoV-GSCSP network replaces all C2f modules in the original

YOLOv8n algorithm’s neck, significantly reducing the model’s

parameter count. Experimental validation demonstrates that VBGS-

YOLOv8n exhibits exceptional performance in detecting small targets,

with accuracy and mAP reaching 97.1% and 98.4%, respectively.

Compared to the original YOLOv8 model, there is a 1.4% increase in

accuracy and a 0.8% increase in mAP, alongside a 31.0% reduction in

computation time. The parameter count is 48.3% of the original model,

and the computational load is only 47.2%, with significant reductions

in both missed and false detections. To verify its effectiveness,

comparative analyses with leading models in the field affirm its

superior detection accuracy, efficiency in parameter usage, and

overall performance. The VBGS-YOLOv8n model achieves an

optimal balance between detection speed, accuracy, and size,

rendering it ideal for deployment on agricultural mobile devices.

Future work will focus on optimizing the model for practical drone

applications and broader datasets, ensuring the feasibility of VBGS-

YOLOv8n and its detection capabilities for similar small target crops,

offering technical support for precision agriculture.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Plant Science 14
Author contributions

LW: Methodology, Resources, Software, Writing – review &

editing. GW: Conceptualization, Formal analysis, Funding

acquisition, Methodology, Validation, Writing – original draft,

Writing – review & editing. SY: Conceptualization, Funding

acquisition, Software, Writing – review & editing. YL: Data

curation, Resources, Writing – original draft, Writing – review &

editing. XY: Writing – review & editing. BF: Funding acquisition,

Visualization, Writing – review & editing. WS: Conceptualization,

Formal analysis, Writing – review & editing. HL: Investigation,

Validation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by the Industrial Support Plan (Education

Department of Gansu Province, 2023CYZC-42); the National

Natural Science Foundation of China (NSFC, 32201663);

the National Natural Science Foundation of Gansu (NSFG,

22JR5RA852) and the Gansu Agricultural University Talent

Program (GAU-KYQD-2020-33).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References

Chen, H., Wang, Y., Guo, J., and Tao, D. (2023). VanillaNet: the power of minimalism in

deep learning. Adv. Neural. Inf. Process. Syst. 36. doi: 10.48550/arXiv.2305.12972

Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., and Ren, Q. (2022). Slim-neck by GSConv: A
better design paradigm of detector architectures for autonomous vehicles. arXiv.
doi: 10.1007/s11554-024-01436-6

Li, S. J. (2023). Lightweight object detection algorithm for UAV images based on
depth Xi. North University of China, Shanxi. Master’s thesis.

Li, Y., Fan, Q., and Huang, H. (2023). A modified YOLOv8 detection network for
UAV aerial image recognition. Drones 7, 304. doi: 10.3390/drones7050304

Li, S., Tao, T., Zhang, Y., Li, M., and Qu, H. (2023). YOLO v7-CS: A YOLO v7-Based
Model for Lightweight Bayberry Target Detection Count. Agronomy 13, 2952.
doi: 10.3390/agronomy13122952
Liang, D., Liu, W., and Zhao, Y. (2022). Optimal models for plant disease and pest
detection using UAV image. Nat. Environ. pollut. Technol. 21, 1609–1617.
doi: 10.46488/NEPT.2022.v21i04.013

Liu, J., Li, Y., Xiao, L. M., Li, W. Q., and Li, H. (2022). Orange fruit identification and
localization method based on improved YOLOv4 model. Trans. Chin. Soc. Agric. Eng.
38, 173–182. doi: 10.11975/j.issn.1002-6819.2022.12.020

Liu, S. B., Yang, G. J., Zhou, C. Q., Jing, H. T., Feng, H., Xu, B., et al. (2018).
Extraction of maize seedling number information based on UAV imagery. Trans. Chin.
Soc. Agric. Eng. 34, 69–77. doi: 10.11975/j.issn.1002-6819.2018.22.009

Lu, D., Ye, J., Wang, Y., and Yu, Z. (2023). Plant detection and counting: enhancing
precision agriculture in UAV and general scenes. IEEE Access 11, 116196–116205.
doi: 10.1109/ACCESS.2023.3325747
frontiersin.org

https://doi.org/10.48550/arXiv.2305.12972
https://doi.org/10.1007/s11554-024-01436-6
https://doi.org/10.3390/drones7050304
https://doi.org/10.3390/agronomy13122952
https://doi.org/10.46488/NEPT.2022.v21i04.013
https://doi.org/10.11975/j.issn.1002-6819.2022.12.020
https://doi.org/10.11975/j.issn.1002-6819.2018.22.009
https://doi.org/10.1109/ACCESS.2023.3325747
https://doi.org/10.3389/fpls.2024.1387350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1387350
Lun, R., Luo, Q., Gao, M., Li, G., and Wei, T. (2023). How to break the bottleneck of
potato production sustainable growth-A survey from potato main producing areas in
China. Sustainability 15, 12416. doi: 10.3390/su151612416
Osco, L. P., De Arruda, M. D. S., Junior, J. M., Da Silva, N. B., Ramos, A. P. M.,
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