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It is crucial for winegrowers to make informed decisions about the optimum time

to harvest the grapes to ensure the production of premium wines. Global

warming contributes to decreasing acidity and increasing sugar levels in

grapes, resulting in bland wines with high contents of alcohol. Predicting

quality in viticulture is thus pivotal. To assess the average ripeness, typically a

sample of one hundred berries representative for the entire vineyard is collected.

However, this process, along with the subsequent detailed must analysis, is time

consuming and expensive. This study focusses on predicting essential quality

parameters like sugar and acid content in Vitis vinifera (L.) varieties ‘Chardonnay’,

‘Riesling’, ‘Dornfelder’, and ‘Pinot Noir’. A small near-infrared spectrometer was

used measuring non-destructively in the wavelength range from 1 100 nm to 1

350 nm while the reference contents were measured using high-performance

liquid chromatography. Chemometric models were developed employing partial

least squares regression and using spectra of all four grapevine varieties, spectra

gained from berries of the same colour, or from the individual varieties. The

models exhibited high accuracy in predicting main quality-determining

parameters in independent test sets. On average, the model regression

coefficients exceeded 93% for the sugars fructose and glucose, 86% for malic

acid, and 73% for tartaric acid. Using these models, prediction accuracies

revealed the ability to forecast individual sugar contents within an range of ±

6.97 g/L to ± 10.08 g/L, and malic acid within ± 2.01 g/L to ± 3.69 g/L. This

approach indicates the potential to develop robust models by incorporating

spectra from diverse grape varieties and berries of different colours. Such insight

is crucial for the potential widespread adoption of a handheld near-infrared

sensor, possibly integrated into devices used in everyday life, like smartphones. A

server-side and cloud-based solution for pre-processing and modelling could

thus avoid pitfalls of using near-infrared sensors on unknown varieties and in

diverse wine-producing regions.
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1 Introduction

Due to the influence of climate change, the wine industry faces

significant challenges in maintaining the production of high-quality

wines (Rogiers et al., 2022). For Europe phenology, i.e. flowering,

véraison and harvest dates, are predicted to take place earlier in the

year (Duchêne et al., 2010), which is supported by a long term

experiment in Alsace, France (Delrot et al., 2020). Consequently,

grapes ripen earlier and under higher temperatures leading to

elevated sugar levels and reduced acidity in the grapes, that result

in wines with higher alcohol content and a less pronounced acidity.

Additionally, high sugar levels are achieved prior to phenolic

maturity, impacting the aroma profile of wines. Viticulturists are

compelled to adapt to those changes and their subsequent effects.

Apart from the cultivation of new grape varieties with improved

resistance, endeavors are underway to breed cultivars with a delayed

onset of ripening (Duchêne et al., 2010) and to explore and adopt

viticultural practices that prove advantageous in anticipated

conditions (Santos et al., 2020). Moreover, there is increasing

recognition of the significance of phenotyping, as it can aid both

practical decision-making and scientific applications.

Grapevine is a perennial crop that has a significant role in

promoting healthy nutrition and is of cultural and economic

importance for wine production. After the dormant period and

the subsequent emergence of new branches, leaves, and

inflorescences, the process of berry formation and ripening

commences. The ripening course follows a double sigmoid

pattern and can be divided into three phases (Coombe, 1992). In

the first growing phase acids are produced. This is followed by a lag

phase, where berry growth ceases. The end of this period and the

onset of the second growing phase coincide with berry colouring

and softening. This is known as véraison during which the berries

begin to accumulate sugars (Conde et al., 2007). The second

growing phase represents the maturation stage, characterised by

significant sugar accumulation and a decrease in acid concentration,

either through dilution or metabolic processes (Ollat et al., 2002).

High temperatures during this phase are believed to drive the

reduction in acid content and the storage of sugars (Duchêne

et al., 2010; Bock et al., 2011; Urhausen et al., 2011). This

underscores the importance for winegrowers to determine the

optimal harvest date in order to minimise economic damage.

Upon reaching technological ripeness, characterised by sweet

berries with sufficient acidity, the harvest should commence. The

determination of this time can be gauged through the average

ripeness of the entire vineyard. To evaluate this by measuring the

concentrations of the quality-determining substances, winegrowers

collect a sample comprising one hundred berries. Important quality

traits are measured, among others things, contents of sugars, acids

and total phenols. Because of methods like Fourier-transform

infrared spectroscopy (FTIR) or high-performance liquid

chromatography (HPLC) are confined to the laboratory, they may

not always be utilised to ascertain the best date of harvesting. The

interest in predicting the ripeness, quality or durability of fruit and

vegetable using Near-infrared Spectroscopy (NIRS) has been a

subject of research for some time now (Huang et al., 2008;
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Goisser et al., 2019; Kalopesa et al., 2023) and feasibility for the

use in viticulture was proven multiple times (Cozzolino et al., 2006).

The spectra were captured using a range of costly (González-

Caballero et al., 2012) spectrometers for measurements in

reflectance mode (Xiao et al., 2018), with some of them now

being unavailable.

It can be noticed that a more distinct trend towards

miniaturisation is evident (Grüger et al., 2018; Rodriguez-Saona

et al., 2020; Grüger et al., 2023), as this forms the basis for increased

portability, user-friendliness and a broader applicability. Moreover,

miniaturised sensors, whether integrated into or externally

connected to mobile phones, are likely to be considerably more

cost-effective (Das et al., 2016). Therefore, the trend is currently

leaning towards a smartphone-based sensor system, which has

already been presented in the end of 2023 (trinamiX GmbH,

Ludwigshafen, Germany). However, despite technological

progress and the successful evaluation of chemometric models,

widespread use of this technique in viticulture requires already

existing robust models, an easy to operate calibration of the

instruments or, the most user-friendly method, a database for

cloud-based processing and the respective modelling. Another

upcoming challenge in using near-infrared sensors is the

transferability of calibrations to other sensors. Especially when

they are integrated into smartphones, which undergo rapid

technological development, calibration models should be

transferable to other sensors and robust against temperature

changes, as investigated by Mishra et al. (2020). Robust models

require big data sets with high quality spectra and precise reference

values for the calibration process (Walsh et al., 2020). These must be

collected over the entire ripening processes to encompass the widest

possibly range of values. This is essential for establishing

dependable models and accurately determining the components,

particularly in ripe grapes. Additionally, variances in spectra could

be observed for different varieties and several studies stated that

there is also a geographic influence (Arana et al., 2005; Liu et al.,

2006b; Cozzolino et al., 2011; Martelo-Vidal et al., 2013; Zheng

et al., 2020). This presents challenges due to the multitude of

prominent wine-producing countries across Europe. (Food and

Agriculture Organization of the United Nations, 2023) Moreover,

in Germany alone, about 300 different grapevine varieties are

permitted to be cultivated and refined for the production of wine

(Bundesanstalt für Landwirtschaft und Ernährung, 2023). While

sensors are becoming more affordable and smaller, making their

way into our everyday lives, calibrating the parameters would

consequently skyrocket the cost of such a solution. This is due to

the multitude of factors to consider and the vast datasets involved.

Therefore, ways should be explored to approximately predict the

relevant constituents of grape berries from previously uncalibrated

varieties and regions. Additionally, enabling continuous calibration

through the use by winemakers and hobby oenologists via cloud

solutions should be considered.

In this study a large data set was created, enabling an automatic

calculation of different models for the prediction of four quality-

determining substances. Models were specifically developed using

berries of all four varieties, from both white and red berries, and
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from the berries of individual varieties, and were then tested.

The ability of forecasting the contents of the sugars fructose and

glucose, as well as the acids malic acid and tartaric acid are then

compared. An independent data set of ripe berries from four

economically important Vitis vinifera (L.) varieties was created

and the resulting prediction accuracies for ripeness stages

expected by winegrowers were compared.
2 Material and methods

2.1 Plant material

Red (‘Dornfelder’, ‘Pinot Noir’) and white (‘Chardonnay’,

‘Riesling’) Vitis vinifera (L.) varieties were chosen due to their

significance in German wine market. ‘Pinot Noir’ and ‘Riesling’, the

two most significant grape varieties, jointly occupy over 69% of

Germany’s vineyard area. Combined, the four varieties contribute

to over 94% of the wine grape areas in Germany (Deutsches

Weininstitut GmbH, 2022). Additionally they also serve as typical

examples of red and white vines that play a crucial role in the

production of high-quality wines.

Samples were taken from four different commercial vineyards

located in the vineyard site “Wollmesheimer Mütterle”, next to the

town Landau in the south of Rhineland Palatinate, Germany (49°

10’41.8”N 8°05’36.7”E). Red (‘Dornfelder’, ‘Pinot Noir’) and white

(‘Chardonnay’, ‘Riesling’) Vitis vinifera (L.) varieties grew on these

plots. All vineyards were north-south oriented and well-tended.

Sampling took place onwards from véraison, from 1st of August

2022 till 26th of September 2022 on five sampling dates per variety

(see Table 1). On each day 120 (first four sampling dates) or 180

individual berries (last sampling date) were collected randomly, but

evenly distributed over the entire plot. From these individual berries,

one hundred berries were used for a mixed sample, as a reference for

the average ripeness of the plots. The remaining berries were used for

the collection of spectra and single berry reference values as described

in the following paragraphs (see Figure 1).
2.2 Collection of spectral data

Spectra of 20 (T 1–4) and 80 (T 5) individual berries, respectively,

were recorded at the same day as sampling took place in the laboratory
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with the NIRONE Sensor S 1.4 (SpectralEngines, Steinbach, Germany).

The sensor covered the wavelength range from 1 100 nm to 1 350 nm

(512 wavelength bands) and was used in reflectance mode using the

designated included front optic. The sensor has a resolution of 12 nm - 16

nm, uses a single element InGaAs detector and a Fabry-Pérot

interferometer for optical filtering. Signal-to-noise ratio of the sensor is

15 000. Berries were illuminated by the two integrated tungsten vacuum

lamps. Measurements were conducted using the Fraunhofer

SmartSpectrometer System (Krause et al., 2021). Spectra collection took

place in a roomwith a consistent temperature andwithout artificial ceiling

lighting. Prior to placing the clean and unfogged berry on the cleansed

surface of the sensor, white and black calibration was performed using a

99% Spectralon diffuse reflection standard (Sphereoptics, Labsphere, Inc.,

North Sutton, NH, USA) with a diameter of 2.54 cm. For each individual

berry three spectra from different sites of the berry were recorded and

averaged to represent the berry as good as possible. Each wavelength was

recorded 100 times within the sensor (measuring time 1.536 s) and

averaged. This improved the signal-to-noise ratio by a factor of 10.
2.3 Sample processing and acquisition of
reference values

After the recording of spectral data, reference values were

determined using high-performance liquid-chromatography

(HPLC). To gain the must, individual berries were put in a 50ml

Falcon tube with four stainless steel beads (diameter 5.00mm).

Berries were destroyed by shaking in a paint shaker (SK450, Fast

and Fluid Management, Sassenheim, Netherlands). After removing

the beads, the Falcon tubes were centrifuged at 25 418 · g (Sigma 6–

16ks, Sigma Laborzentrifugen GmbH, Osterode am Harz,

Germany) for 6min and the clear supernatant was decanted in a

2ml tube. The remaining one hundred berries were crushed with a

blender (BL6280, Grundig, Germany). Must was centrifuged at

20340 · g (Sigma 6K15, Sigma Laborzentrifugen GmbH, Osterode

am Harz, Germany) for 10min and poured through a 100μm sieve

into Falcon tubes. A subsample was transferred into a 2ml tube. The

must of the individual berries and the subsamples of must from the

one hundred berries samples were again centrifuged at 12100 · g

(Minispin Eppendorf, Hamburg, Germany) for 6min and 1:3

diluted with double distilled, filtered (pore size 0.2nm) water.

After mixing and another centrifugation step, 150μl were filled

into vials. Multi-component standard four stage dilution series was
TABLE 1 Information on the vineyards of the used Vitis vinifera (L.) varieties.

Vitis vinifera
(L.)

Variety

Year
of planting

Farming
practice

Root-
stock

Date of sampling

T1 T2 T3 T4 T5

‘Chardonnay’ 2001 Org SO4 08–03 08–11 08–23 09–05 09–12

‘Riesling’ 1991 Org Binova 08–04 08–18 08–25 09–14 09–26

‘Dornfelder’ 2002 Con 125AA 08–01 08–10 08–19 09–07 09–21

‘Pinot Noir’ 1990 Org SO4 08–02 08–15 08–24 09–06 09–17
Shown are the corresponding years of planting, the applied farming practices with either organic (Org) or conventional (Con) management, the rootstocks on which the varieties are grafted and
the dates of taking samples (T1–T5) in the year 2022.
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created containing 1.5g/L to 90g/L fructose and glucose, and 0.15g/

L to 9g/l malic acid and tartaric acid as well. The vials containing the

1:3 diluted samples and the respective multi-component standards

were placed in the multisampler (G7167B) for subsequent HPLC

(Agilent 12900 Infinity II, Agilent Technologies Inc., Santa Clara,

CA, USA) analysis. The system was equipped with a binary pump

(G7120A) and a column oven (G7116B) kept at 75°C for separation.

The Rezex ROA-Organic AcidH+ ion exclusion column (300mm ×

7.8mm, 8μm) was protected by a security guard Carbo-H+ column

(Phenomenex Inc., Torrance, CA, USA). 5μl of the samples were

injected and analysed in a 16.5min run under an aqueous mobile

phase of 0.4mM sulphuric acid and at a flow rate of 0.06mL/min.

Malic acid and tartaric acid were detected using a diode array

detector (G7117B) at 210.4nm and the sugars fructose and glucose

with a refractive index detector (G1362A) kept at 50°C. As an

internal control after every up to ten samples one stage of the

dilution series was injected. The correct identification of the peaks

was checked visually and adjusted if necessary. Subsequent data

analysis was performed using Agilent OpenLab Chemstation

software (Agilent Technologies Inc., Santa Clara, CA, USA).
2.4 Modelling

During modelling, the data were split into a set for training and

optimisation and a set for testing. The training set was defined as all

spectra at time T 1 to T 4 and 20 spectra at time T 5. This resulted in
Frontiers in Plant Science 04
100 spectra for each variety, comprising 20 spectra from each time

point (see Figure 1). The remaining 60 spectra at time T 5 were

defined as the independent test set. To prevent a random split,

which can lead to an unfavourable division in the sense of a poor

representation of the data, the Kennard Stone Algorithm (Kennard

and Stone, 1969) was applied. This approach helped to include

spectra with the highest reference values in the training set, to

prevent skewed prediction results due to extrapolation.

To calculate robust models, pre-processing of the spectra is

essential. In accordance with Schorn-Garcıá et al. (2023) the

following two pre-processing techniques work best. The spectra

were smoothed using the Savitzky-Golay algorithm (SG) (Savitzky

and Golay, 1964), to mitigate noise. This algorithm replicates the

spectrum with a polynomial of a specified order within a defined

window size. The polynomial value becomes the new spectrum

value at that point, iterating over each point of the spectrum.

Moreover, derivative methods provided by the algorithm were

utilised to eliminate baseline effects up to the respective order.

Additionally, all spectra underwent normalisation using the

standard normal variate (SNV) method (Barnes et al., 1989). This

involves subtracting the mean spectrum value and dividing it by its

standard deviation.

Using the training set, seven models were created for each

content. One that contains the data of all four varieties, one that

contains the data of the white (‘Chardonnay’, ‘Riesling’) and one

that contains the data of the red (‘Dornfelder’, ‘Pinot Noir’) varieties

and finally for each variety individually. Consequently, the number
FIGURE 1

Scheme for the sampling of individual grapevine berries, spectra and acquisition of corresponding reference values.
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of spectra included for modelling varies from 398 to 99 due to the

different scopes of the individual models (see Table 2). For the

modelling, a partial least square regression (PLSR) (Wold et al.,

2001) was used, which is a standard method in chemometric data

analysis. The PLSR has one degree of freedom: the number of

components. Selecting too few components results in a model that

is too general and yields poor predictions. Conversely, choosing too

many components leads to overfitting and a lack of adaptability to

new data. To address this additional rules were introduced into the

automatic optimisation process, as described below.

Alltogether, there are a total of four parameters for pre-processing

and regression. These are the size of the window, the polyorder and

the degree of derivation in Savitzky-Golay algorithm and the number

of components in PLSR. Each of these parameters has an impact on

the prediction accuracy. To find the best combination, a brute-force

approach was used, which creates models with all possible

combinations and outputs the parameters of the best performing

model. To validate the training results, a cross validation with five

partitions was used. The best combination was defined as the one

with the lowest root mean square error (RMSE) of the validation set

(CV-RMSE). For computing reasons, the parameters are limited to

the range as follows: window size: 5–41, polyorder: 1–4, degree of

derivation: 0–2, number of components: 1–12. To prevent overfitting,

an additional rule was introduced. The CV-RMSEmust be lower than

97% of the combination with the currently best parameters. Using the

best combination of the pre-processing parameters and the number

of components, the final model was created with all data from the

training set after the calculated pre-processing. Finally, the test set

was also pre-processed regarding to the optimisation results and

passed to the model. The parameters of the respectivemodel are listed

in Table 3.

Additionally, an attribution map was created (Figure 2) to find

out which wavelength is decisive for predicting. Parts of the

spectrum were masked out with a window width of 5, i.e. set to 0,

and thus fed into the model. This window iterates over every

spectral point. The resulting RMSE of each point is an indicator
Frontiers in Plant Science 05
of the significance of this wavelength range. A higher RMSE means

that this spectral range is more important for the prediction.
3 Results

3.1 Spectral data set

In total, 640 spectra and the corresponding reference values (see

Figure 3) were gathered. However, two spectra of the white Vitis

vinifera(L.) varieties (one of ‘Riesling’ and ‘Chardonnay’, respectively)

were recognised as outliers and therefore had to be excluded.

Exemplarily, spectra recorded from berries of the different Vitis

vinifera (L.) varieties during ripening are presented in Figures 4, 5.

Obvious concerning the raw recorded spectra without pre-treatments

are the differences in signal intensities between the varieties, with

‘Dornfelder’ showing lowest intensities. These differences were

eliminated by SNV and spectra were smoothed by Savitzky-Golay

filter (see Table 3) as can be seen in Figure 5. Differences between

spectra of the different sampling time points remained low.
3.2 Reference values

The value ranges observed among the various varieties for the

training data sets indicated a broad spectrum from unripe to ripe

grapevine berries. Sugar contents ranged from 1.76g/L to 136.45g/L

and 4.65g/L to 136.44g/L for fructose and glucose, respectively.

Acid contents varied from 0.31g/L to 30.39g/L and 5.58g/L to

19.21g/L for malic acid and tartaric acid, respectively. Regarding

individual varieties, the narrowest value range was noted for tartaric

acid, displaying its highest concentrations in ‘Riesling’ (6.17g/L-

19.21g/L) and lowest in ‘Pinot Noir’ (5.58g/L-15.09g/L) berries (see

Table 4; Figure 3). For the other target substances fructose, glucose

and malic acid, highest value ranges prevailed for the variety ‘Pinot

Noir’, and lowest for ‘Dornfelder’.
TABLE 2 Distribution of the data used for modelling.

Model Spectra
Training Set Test Set

CHA RIE DOR PIN CHA RIE DOR PIN

All:

All
Colour:

(n=398) 99 99 100 100 60 60 60 60

White (n=198) 99 99 – – 60 60 – –

Red
Individual:

(n=200) – – 100 100 – – 60 60

CHA (n=99) 99 – – – 60 – – –

RIE (n=99) – 99 – – – 60 – –

DOR (n=100) – – 100 – – – 60 –

PIN (n=100) – – – 100 – – – 60
Training set contains all spectra at time T1 to T4 and 20 spectra at time T5. Test set contains 60 spectra from T5 (see Table 1) for each Vitis vinifera (L.) variety comprising ‘Chardonnay’ (CHA),
‘Riesling’ (RIE), ‘Dornfelder’ (DOR) and ‘Pinot Noir’ (PIN). The Kennard Stone algorithm was used for the representative distribution of the test data at time T5. This distribution was used for
each content of interest.
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To avoid extrapolation, the Kennard Stone algorithm was

selected to ensure an independent test set remaining within the

boundaries of the training sets value range. These test sets

exclusively comprised berries gathered from grapevines that have

generally attained ripeness. This was typified by elevated sugar

levels, ranging from 49.02g/L to 126.95g/L and from 49.80g/L to

125.19g/L for fructose and glucose, respectively, and relatively low

acidity, ranging from 0.43g/L to 5.55g/L and from 4.31g/L to

11.73g/L for malic acid and tartaric acid, respectively (see

Table 5). The observed value ranges and standard deviations (s)
in the test sets were highest for the variety ‘Chardonnay’ concerning

sugars (49.02g/L-126.95g/L, s = 19.19g/L for fructose; 49.80g/L-

112.81g/L, s = 18.26g/L for glucose) and for ‘Riesling’ regarding the

two acids (0.43g/L-3.91g/L, s = 0.91g/L for malic acid; 5.59g/L-

9.61g/L, s = 0.96g/L for tartaric acid). Smallest value range in the

test set was again found for the variety ‘Dornfelder’ for all four

target substances.

In order to be able to estimate the average maturity of the whole

vineyards, conventionally used hundred-berries-samples were taken

evenly from the plots (see Figure 1). Must was extracted and the

levels of the target analytes were measured using HPLC. Utilising

the 60 berries from the independent test sets, it was possible to

approximate these values by averaging the mean and median of the

dataset. The mean and median values may either underestimate or

overestimate the contents, and this method automatically facilitates

selecting the closest or second closest value, as illustrated in Table 6,

particularly for sugar contents.

Evaluating average ripeness using the prediction of the test data

set (see Supplementary Material, Tables S2, S3) a comparable

picture emerges, as the prediction for the individual berries tend

to either underestimate or overestimate the contents. Calculating

the average maturity using the same approach, revealed good

results. Average fructose and glucose contents could be predicted

with a deviation from the estimation using the true reference values

ranging from 0.40g/L to 6.35g/L per sugar. The deviation for the
A B

C D

FIGURE 2

Attribution map of the different models for the target substances (A) fructose, (B) glucose, (C) malic acid and (D) tartaric acid. Parts of the spectrum
were masked out with a window width of 5. The resulting root mean square error (RMSE) of each point is an indicator of the significance of this
wavelength range. The higher the RMSE, the more important the wavelength (red areas).
TABLE 3 Parameters of the respective models and target substance.

Model: All Colour Individual

Analyte All White Red CHA RIE DOR PIN

Fructose

win.s. 5 5 5 5 5 19 7

poly. 1 1 1 1 1 1 1

deriv. 0 0 0 0 0 0 0

PLSR
comp.

3 3 3 3 3 5 7

Glucose

win.s. 5 39 5 5 5 31 5

poly. 1 1 1 2 1 1 1

deriv. 0 0 0 0 0 0 0

PLSR
comp.

3 11 3 10 3 6 3

Malic acid

win.s. 29 21 25 25 25 25 37

poly. 1 1 1 1 1 1 1

deriv. 0 0 0 0 0 0 0

PLSR
comp.

6 8 5 7 6 9 5

Tartaric acid

win.s. 21 5 31 5 5 29 5

poly. 1 1 1 1 1 1 1

deriv. 0 0 0 0 0 0 0

PLSR
comp.

5 3 5 3 3 4 3
Savitzky-Golay’s window size (win.s.), polyorder (poly.) and derivative (deriv.) and number of
components of PLSR (PLSR comp.).
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prediction of malic acid and tartaric acid contents ranged from

0.02g/L to 1.08g/L and from 0.07g/L to 1.17g/L, respectively.
3.3 Statistical evaluation and modelling

Using this spectral dataset, different kind of models were trained

using either the spectra of berries from all varieties (here referred to as

all), from varieties with the same berry colour (here referred to as
Frontiers in Plant Science 07
colour) or by using spectra of berries from the individual varieties

(here referred to as individual). The coefficients of determination (R2)

of the training, as well as the RMSEP of the tests using an

independent test set of each variety are shown in Tables 4, 5. As

Minasny andMcbratney (2013) already showed, RPD values increase

as R2 increases. To keep a clear presentation of the results in Table 4

the RPD values are accessible in Supplementary Material Table S1.

The R2 values of the training sets and RMSEP of the test sets, as

depicted in Tables 4, 5, indicate a reliable forecasting for the two
FIGURE 4

Averaged recorded spectra of berries from the Vitis vinifera (L.) varieties ‘Chardonnay’ (dark green), ‘Riesling’ (light green), ‘Dornfelder’ (dark purple),
and ‘Pinot Noir’ (light purple) used to train the model and collected at the timepoints T1-T5 (see Table 1). Depicted are the recorded and referenced
spectra without pre-treatments and their respective 95% confidence interval.
A B

C D

FIGURE 3

Changes in the key quality-defining ingredients within the grapevine berries of Vitis vinifera (L.) varieties ‘Chardonnay’ (dark green), ‘Riesling’ (light
green), ‘Dornfelder’ (dark purple), and ‘Pinot Noir’ (light purple), over the sampling period from T1 to T5 (refer to Table 1). Contents of the sugars
fructose (A) and glucose (B), and of the acids malic acid (C) and tartaric acids (D) were determined as a reference using HPLC.
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sugars and malic acid across all Vitis vinifera (L.) varieties using the

different models. Specifically, coefficients of determination ranged

from 0.89 to 1.0 for the sugars and 0.82 to 0.94 for malic acid,

respectively. The R2 values for tartaric acid predictions ranged from

0.69 to 0.82, with the best results being achieved with models for the

individual varieties, also reflected in RMSEP. Averaged coefficients

are in included in Table 4.

The training set gaining lowest absolute RMSEs (see Table 5)

was the test set of the Vitis vinifera (L.) variety ‘Dornfelder’,

exemplarily depicted in Figures 6–8. Test sets, depicted in blue,

remain in the value range of the training sets. In relation to the test

sets value range, the variety ‘Chardonnay’ showed best results for

the prediction of both sugars, and ‘Riesling’ and ‘Pinot Noir’ for the

acids malic acid and tartaric acid, respectively.

The attribution map in Figure 2 reveals differences between the

spectral ranges crucial for predicting the target substances,

especially comparing sugars and acids. For sugars key spectral

bands are situated between 1100nm-1120nm and 1130nm-

1145nm. In contrast, the impacts of bands around 1230nm and

between 1320nm-1325nm remain minimal. Concerning acids,

spectral bands between 1100nm and 1150nm are significant too.

However, for predicting malic acid, seven peaks were identified,

with the highest at 1120nm-1125nm. This band is not crucial for

predicting sugars, as well as the influence of the region above

1340nm. In the case of acids, the region above 1300nm has a

more pronounced impact on the RMSEP compared to sugars.
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Despite low influences through low prediction capabilities, in

contrast to malic acid, tartaric acid seems to show a superposition

of two peaks at 1120nm-1125nm.
4 Discussion

The findings presented in this study broaden the perspective on

predicting maturity- and quality-determining components in wine

grapes. A spectrometer non-destructively capturing spectral data

within the range of 1100nm to 1350nm was employed for predicting

the levels of individual sugars and acids in berries of four Vitis

vinifera (L.) grapevine varieties. A large data set was generated, with

the help of which various, automatically optimised models could be

built to predict the levels of the target substances in the respective

varieties. Promising results could be achieved using the differently

calculated models for the prediction of both sugars and malic acid.

With this study, previous findings can be confirmed, as the

modelling showed high average prediction accuracies for the sugars

with coefficients of determination over 90% and low RMSEs (see

Table 4) (Donis-González et al., 2020; Ferrara et al., 2022a, 2022). In

comparison to the mentioned investigations, using table grapes,

wine grapes have other ripeness criteria concerning their

constituents. They are richer in polyphenols, especially in red

varieties (Kok, 2017), and show higher sugar and acid contents

(Liu et al., 2006a), essential for the production of high-quality wines.
A B

C D

FIGURE 5

Pre-processed spectra of berries from the Vitis vinifera (L.) varieties ‘Chardonnay’ (A), ‘Riesling’ (B), ‘Dornfelder’ (C), and ‘Pinot Noir’ (D) used to train a
model to forecast fructose content over all four varieties and collected over all timepoints (T1-T5, see Tables 1–3). Depicted are the averaged, pre-
treated (window size 5, polyorder 1) recorded and referenced spectra and their respective 95% confidence interval.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1386951
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cornehl et al. 10.3389/fpls.2024.1386951
Nonetheless, in comparison to wine grapes, table grapes are

typically larger, feature thinner skins and, in some cases, lack

seeds. It is important to bear this in mind when making

comparisons with earlier studies, as the depth of light penetration

into the grapevine berry, the impact of skin thickness, and the

presence of seeds have not been conclusively explored until now

(Lammertyn et al., 2000; Fraser et al., 2001; Nicolaï et al., 2007;

Pratiwi et al., 2023). In their study, Jenne and Zappe (2023)

demonstrated that the skin of seedless table grapes exhibits

a greater.

Scattering coefficient and more forward scattering compared to

the flesh, possibly due to a higher density of cells. This implies that

an increased thickness of the berry skin could possibly amplify

these effects.

However, in contrast to most of the earlier studies (Nicolaï et al.,

2007; dos Santos et al., 2013) using soluble solids content (TSS or

SSC in °Brix) and titrable acid (TA in g malic acid/L) or pH, this

analysis predicts individual sugars and acids. This provides
Frontiers in Plant Science 09
significant value for the wine maker, as it enables for example the

calculation of the glucose-to-fructose ratio, where a ratio near 1

indicates ripe berries for Vitis vinifera (L.) varieties (Kuhn et al.,

2014). Conversely, continuous monitoring, specifically of malic acid

contents, can help ensuring their sufficiently high contents. This is

especially crucial as rising temperatures (Rienth et al., 2016) and

severe water scarcity (Shi et al., 2023) can enhance malic

acid respiration.

Comparing the four Vitis vinifera (L.) varieties used for this

study, there are noticeable differences in berry sizes between the

varieties. Ferrara et al. (2022a) and Ferrara et al. (2022b) investigated

the prediction of sugar contents using a NIR sensor and achieved

better results with table grapes than with wine berries. Nevertheless,

they suspect that berry size might be a factor too. Observations in the

years 2020 and 2021 revealed that ripe ‘Dornfelder’ grapevine berries

exhibit by far the largest size with up to 3.88cm3/4.04cm3.

This is followed by ‘Chardonnay’ (1.41cm3/1.47cm3) and ‘Pinot

Noir’ (1.38cm3/1.51cm3), which are more similar in this regard (see
TABLE 4 Value ranges and standard deviations (s) in g/L of the target substances fructose, glucose, malic acid and tartaric acid for the different data
sets for the training of the models.

Fructose Glucose Malic acid Tartaric acid

Value range (g/L) Value range (g/L) Value range (g/L) Value range (g/L)

s (g/L) s (g/L) s (g/L) s (g/L)

Model R² RMSE (%) R² RMSE (%) R² RMSE (%) R² RMSE (%)

All

1.76–136.45
33.49

4.65–136.44
31.51

0.31–30.39
7.26

4.02–19.21
3.02

0.93 8.52 (6.32) 0.91 9.26 (7.03) 0.84 2.76 (9.18) 0.69 1.65 (10.89)

White

1.76–124.01
35.97

4.96–119.44
33.92

0.74–25.68
7.41

5.08–19.21
3.13

0.94 8.57 (7.01) 0.96 6.60 (5.77) 0.89 2.37 (9.52) 0.69 1.70 (12.05)

Red

2.51–136.45
30.64

4.65–136.44
28.70

0.31–30.39
7.06

4.02–15.09
2.41

0.92 8.18 (6.10) 0.89 9.16 (6.95) 0.82 2.72 (9.04) 0.71 1.24 (11.23)

CHA

2.82–124.01
36.77

7.87–119.44
33.74

0.74–25.68
7.69

5.08–14.90
2.47

0.96 7.25 (5.99) 1.00 1.47 (1.32) 0.90 2.33 (9.34) 0.76 1.18 (12.02)

RIE

1.76–113.94
34.47

4.96–118.68
33.31

1.04–23.65
7.13

6.17–19.21
3.07

0.94 8.37 (7.46) 0.92 8.84 (7.77) 0.91 1.99 (8.81) 0.76 1.44 (11.06)

DOR

3.04–101.65
25.22

9.31–107.36
23.96

0.47–22.55
5.94

4.02–14.22
2.30

0.95 5.36 (5.44) 0.95 5.23 (5.33) 0.94 1.35 (6.13) 0.82 0.93 (9.11)

PIN

2.51–136.45
35.19

4.65–136.44
32.86

0.31–30.39
7.93

5.58–15.09
2.15

0.97 5.78 (4.32) 0.89 10.30 (7.82) 0.85 2.82 (9.36) 0.69 1.14 (11.98)

Ø 0.94 7.43 (6.09) 0.93 7.27 (6.00) 0.88 2.32 (8.77) 0.73 1.33 (11.19)
Models were trained either using all collected spectra (All), spectra of a distinct berry colour (Red and White, respectively) or for one of the individual Vitis vinifera (L.) varieties, comprising
‘Chardonnay’ (CHA), ‘Riesling’ (RIE), ‘Dornfelder’ (DOR) and ‘Pinot Noir’ (PIN). Depicted are the corresponding coefficients of determination (R²) and root mean square errors (RMSE) in g/L,
with the relative to the value ranges corresponding percentages in parentheses, per model and averaged (Ø) over all models for the respective target substances.
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Supplementary Table S4), and ‘Riesling’ berries were smallest

(1.24cm3/1.27cm3). A comparable pattern can be observed in the

intensities of the recorded spectra, depicted in Figure 4, with

‘Dornfelder’ berries showing the lowest intensities in unprocessed

spectra. A minor portion of the light enters the fruit and is reflected

back to the detector, conveying data about the ingredients.

However, most of the light comes from the background, which

accounts for the obvious differences in the unprocessed spectra.

According to Mejıá-Correal et al. (2023), there were no obvious

differences between spectra of red and white grapevine varieties in

the observed wavelength range. Due to low intensities, spectral

changes between sampling dates are weak too. Also striking is that
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the value ranges of the training and the test data sets for

‘Dornfelder’ are the smallest, except for the training data

concerning the tartaric acid. Nevertheless, prediction accuracies

for this variety remained high with a R2 of 95% for both sugars, 94%

for malic acid and 82% for tartaric acid (Table 4). For the

independent test (Table 5) and the two sugars, fructose and

glucose, RMSEP were lowest with on average 7.78 g/L and 7.70g/

L, respectively, and low for the malic acid with a RMSEP of 2.31 g/L

too. Contrary to this, RMSEP of ‘Riesling’ berries were highest

concerning sugars (8.19 g/L - 10.08 g/L), despite moderate value

ranges and R2 values of the training ranging from 76% to 94%.

Using spectra recorded in transmission mode and gaining higher
TABLE 5 Value ranges (min - max, in g/L) and standard deviations (s , in g/L) of the independent test sets for the target substances and the Vitis
vinifera (L.) varieties ‘Chardonnay’, ‘Riesling’, ‘Dornfelder’ and ‘Pinot Noir’.

Analyte ‘Chardonnay’ ‘Riesling’ ‘Dornfelder’ ‘Pinot Noir’

Fructose

min-max 49.02–124.00 59.12–113.59 59.68–99.51 70.96–126.95

s 19.19 12.93 8.80 13.76

All 7.56 (10.08) 10.00 (18.36) 7.54 (18.92) 8.87 (15.84)

Colour 7.63 (10.17) 10.08 (18.51) 8.18 (20.53) 8.09 (15.89)

Individual 8.74 (11.65) 8.19 (15.03) 7.61 (19.10) 7.94 (14.18)

Ø 7.98 (10.64) 9.42 (17.30) 7.78 (19.52) 8.57 (15.31)

Glucose

min-max 49.80–112.81 57.05–105.39 65.90–100.47 70.42–125.19

s 18.26 13.47 8.91 13.54

All 7.86 (12.47) 9.63 (19.92) 7.21 (20.84) 8.65 (15.79)

Colour 8.59 (13.64) 9.37 (19.39) 6.97 (20.16) 8.62 (15.73)

Individual 9.32 (14.79) 9.00 (18.61) 8.93 (25.84) 7.69 (14.03)

Ø 8.59 (13.63) 9.33 (19.31) 7.70 (22.28) 8.32 (15.18)

Malic acid

min-max 0.77–4.37 1.29–5.55 0.57–3.24 0.43–3.91

s 0.75 0.95 0.53 0.91

All 2.57 (71.31) 2.33 (54.62) 2.01 (75.17) 2.27 (65.15)

Colour 2.67 (74.03) 2.31 (54.20) 2.49 (93.38) 2.20 (63.14)

Individual 3.29 (91.50) 2.55 (59.73) 2.43 (90.87) 2.39 (68.69)

Ø 2.84 (78.95) 2.40 (56.18) 2.31 (86.47) 2.29 (65.66)

Tartaric acid

min-max 5.14–8.72 6.33–11.73 4.31–7.24 5.59–9.61

s 0.72 1.09 0.70 0.96

All 1.31 (36.71) 1.80 (33.24) 1.49 (50.79) 1.17 (28.93)

Colour 1.49 (41.81) 1.63 (30.19) 1.29 (44.07) 1.26 (31.37)

Individual 1.09 (30.61) 1.32 (24.41) 1.21 (41.41) 1.06 (26.28)

Ø 1.30 (36.38) 1.58 (29.28) 1.33 (45.42) 1.16 (28.86)
The calculated models using all gathered spectra (All), spectra of the respective colour of the berries (Colour) or spectra of the individual variety (Individual) were applied on the test sets and root
mean square errors of prediction (RMSEP) and the respective mean (Ø) are depicted in g/L with the relative to the value ranges corresponding percentages in parentheses: RMSEP (%).
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intensities, ‘Riesling’ and ‘Dornfelder’ showed best predictions

(Cornehl et al., 2023) for the sugars. There, the RMSEP of the

validation set for ‘Riesling’ and ‘Dornfelder’ were 5.16g/L and 5.17g/

L, and from 5.26g/L and 4.09g/L, for fructose and glucose,

respectively. The portion of reflected light in the measured

intensity in reflectance mode is low and a substantial part of the

intensity stems from the background, thereby reducing the

informational value (Lammertyn et al., 2000). This would be

particularly the case with very small berries, or if the light entry

surface diameter of the sensor is large. Exploring the underlying

reasons for these differences and the influences on the modelling

and prediction accuracies is essential to further enhance precision

for a future use in viticulture.

Comparing the different modellings, it is noticeable that

‘Chardonnay’ and ‘Dornfelder’ predictions showed lowest RMSEP

using the “All” model, concerning the best predictable target

substances fructose, glucose and malic acid, as can be seen in

Table 5. Despite the obvious over-fitting of the model for glucose

for the ‘Chardonnay’ berries in the individual model (RPD=21.74 in

Supplementary Table S1, R2 = 1.00, RMSE = 1.47g/L in Table 4),

RMSEP of the test set was not excessively high with 9.32g/L. In

comparison, the other varieties showed RMSEP of 9.00g/L, 8.93g/L

and 7.69g/L for ‘Riesling’, ‘Dornfelder’ and ‘Pinot Noir’, respectively

(Table 5). This overfitting could have been prevented by reducing

the components and would possibly lower the tests RMSEP. Due to

the brute-force approach, this was not done, to provide a clear view

on the results by automatic optimisation using this technique. By
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narrowly limiting the variables to be tested, the calculation time and

required computing capacity could also be reduced.

Regarding RMSEP for the test sets, it is noticeable that the

influences of different modelings are relatively low for sugar

contents, with the largest observed in the modelings for fructose

and ‘Riesling’ berries (see Table 5). However, these predictions are

associated with the forecasts for individual berries that comprise the

test sets. An initial promising attempt was made to estimate the

average contents of quality-determining substances using this

dataset, as the intention is to utilise this sensor for average

ripening prediction in viticulture. Following Kasimatis and Vilas

(1985) findings, it was concluded that the test set was adequate,

comprising 60 individual berries per variety. Increasing the sample

size would result in a marginal improvement of accuracy. This can

be proven with Table 6, as mean, median and the average of both

showed low differences compared to the respective hundred-

berries-samples concerning sugars (± 0.64 g/L- ± 2.05 g/L) and

acids (± 0.09g/L- ± 0.47 g/L).

The performance of the models (R2) has a significant impact on

the predicted estimations of the average ripeness compared to the

true estimations. Especially if the model is not overfitted, which

typically results in high prediction errors. Although this happened

for glucose prediction in ‘Chardonnay’, the estimation of the

average ripeness remained reliable. It is challenging to predict

tartaric acids contents (Cornehl et al., 2023), as they showed low

R2 values, even with spectra recorded in transmission mode and

higher intensities. Here, the estimations using models for tartaric
TABLE 6 True contents of quality determining substances at harvest for the vineyards of the Vitis vinifera (L.) varieties ‘Chardonnay’ (CHA), ‘Riesling’
(RIE), ‘Dornfelder’ (DOR) and ‘Pinot ‘Noir’ (PIN) measured with high-performance liquid-chromatography, estimated using one hundred-berries-
samples (MS) and the mean (m), the median(md) contents of 60 berries and the respective average of both (Øm md).

Analyte CHA RIE DOR PIN Ødeviation from MS

Fructose MS 95.55 85.35 82.33 103.69

m test 92.64 84.61 81.62 100.73 1.83

md test 98.35 85.16 82.45 103.14 0.92

Øm md 95.50 84.89 82.04 101.94 0.64

Glucose MS 92.05 86.15 86.26 100.87

m test 89.39 85.00 85.38 98.38 1.80

md test 96.06 85.35 85.17 98.57 2.05

Øm md 92.73 85.18 85.28 98.48 1.26

Malic acid MS 2.03 2.68 2.19 2.27

m test 2.14 2.76 2.16 2.13 0.09

md test 2.04 2.52 2.16 1.96 0.13

Øm md 2.09 2.64 2.16 2.05 0.09

Tartaric acid MS 7.24 9.49 5.35 8.35

m test 7.06 8.98 5.55 7.36 0.47

md test 7.17 8.88 5.45 7.40 0.43

Øm md 7.12 8.93 5.50 7.38 0.45
All analytes are measured and depicted in g/L.
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acid showed comparable differences between estimated true and

estimated predicted average contents like malic acid. As can be seen

in Supplementary Tables S2, S3 in the Supplementary Material, the

deviations for both acids are comparable estimating their average

amount, even though the coefficients of determination of the

training sets for tartaric acid (R2 = 0.69–0.82) were lower

compared to malic acid (R2 = 0.82–0.94).

As mentioned by Walsh et al. (2020) for sorting purposes, a

technique makes a valuable contribution if the standard deviation is

greater than the error of the prediction. The observed standard

deviations in the independent test sets ranged from 8.80 g/L to 19.90

g/L and from 0.53 g/L to 1.09 g/L for both sugars and acids,

respectively (Table 5). There it can be noted, that this applies

only to the sugars and the RMSEP concerning individual berries.

However, average contents in the 60 individual berries were

predicted using the NIRONE Sensor S1.4 sensor with deviations

from the estimated average contents between 0.40 g/L and 6.25 g/L

for the sugars, and 0.02 g/L and 1.17 g/L for the acids

(Supplementary Tables S2, S3). Comparing these with the

standard deviations of the test set in Table 5, it can be seen, that

for sugars, again all observed RMSEP are lower than the observed
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standard deviations. Based on this evidence, the most precise

predictions were achieved for both carbohydrates, especially

notable for ‘Chardonnay’ in terms of fructose content. The acids

could also be reasonably estimated, demonstrating notable

prediction accuracy, particularly for malic acid in ‘Dornfelder’. In

this case, the standard deviation was 0.53 g/L, while the prediction

differences were 0.02g/L and 0.14g/L using the models with all

spectra and spectra of the red berries, respectively. Only the

prediction of the average malic acid contents for the variety

‘Riesling’ was not accurate enough, with any of the models

created, and for the variety ‘Dornfelder’ using the individual

modelling. For tartaric acid prediction, using the model calculated

across all Vitis vinifera (L.) varieties, the difference between

estimated and predicted average contents was greater than the

variances for the test sets of ‘Riesling’ and ‘Dornfelder’. However,

average tartaric acid prediction was best using the individual

modelling with low differences from 0.07g/L to 0.08g/L and a

standard deviation ranging from 0.70g/L to 1.09g/L.

For the practical use, the correct estimation of the average

ripeness of the vineyard is decisive, as the winegrowers are often

paid by cooperatives on the basis of the contained sugars. In
A B
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FIGURE 6

Results of the predictions using the modelling with spectra of all Vitis vinifera (L.) varieties; depicted are the training (green) and the independent test
(blue) datasets of the grapevine variety ‘Dornfelder’ per target substance: fructose (A), glucose (B), malicacid (C) and tartaric acid (D), as well as the
root mean square error of prediction from the independent test set (RMSEP). Coefficient of determination (R2) and root mean square error (RMSE) of
the modelling can be found in Table 4 and values of the residual prediction derivation of the training in Supplementary Table S1.
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literature an error of 10 g/L (or 1° Brix) for sugars and 0.5 g/L for

acids are told to be acceptable (Mejean Perrot et al., 2022). In this

study we were able to show that two varieties benefited from the

mixed models, while for the other two the calibration based on the

individual variety worked best (see Tables Supplementary Tables

S2, S3). Nonetheless, when summing up the main stored sugars,

fructose and glucose, the average ripeness predictions using this

sensor and an independent test set revealed high accuracies. The

differences between the predictions and the true estimations

remained in all models and for all varieties under 10g/L, except

for Riesling and the “All”-model with 10.27 g/L. Consequently,

calibration is possible incorporating berries from other Vitis

vinifera (L.) varieties in the calibration and an automatic

optimisation process. This suggests practical applicability as there

is most likely no need to create calibration models for hundreds of

varieties. Moreover, the calibration models can be more readily

tailored to the specific application based on the use case, for

example with regard to the geographical region in which the

measurement is being carried out. As Cozzolino et al. (2006) also

noted, NIR spectroscopy solutions are applied mainly with costly
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scientific equipment in a destructive way, using homogenised

samples. When using a non-destructive sensor, individual grapes

must be measured, although the prediction for each berry is less

critical than the overall assessment of the average ripeness.

This study aims to help surmount the existing obstacles to the

commercial use of non-destructive near- infrared spectroscopy in

viticulture. A potential future scenario could involve using sensors

embedded in smartphones. Given the nearly universal connectivity to

mobile data networks in many countries, a cloud-based evaluation of

the collected data can be initiated. By dynamically creating

calibrations in a cloud and the finding, that ingredient predictions

can span different grapevine varieties, the costs of calibration and the

associated application are minimised. Furthermore, guidelines for

sample collection should be established and implemented. Future

studies should also investigate how accurately average maturity can

be predicted using such models in varieties not included in the

calibration, how large spatial influences can affect such predictions,

and the optimal number of individual berries required for this

analysis. In addition, transformations should be integrated into the

dynamic calibration process, enabling a transfer to other sensors in
A B

DC

FIGURE 7

Results of the predictions using the modelling with spectra of Vitis vinifera (L.) varieties with red berries (‘Dornfelder’ and ‘Pinot Noir’); depicted are
the training (green) and the independent test (blue) data sets of the grapevine variety ‘Dornfelder’ per target substance: fructose (A), glucose (B),
malic acid (C) and tartaric acid (D), as well as the root mean square error of prediction from the independent test set (RMSEP). Coefficient of
determination (R2) and root mean square error (RMSE) of the modelling can be found in Table 4 and values of the residual prediction derivation of
the training in Supplementary Table S1.
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order to be able to follow the rapid technical progress, to minimise

ongoing costs and thus to increase the acceptance of this technology

by viticulturists.
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